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ABSTRACT 

Simulation models can be used to project the impact of interventions on long-term population health 
outcomes. To project the value of an intervention in a specific population, the model must be able to 
simulate individuals with similar characteristics and pathways as the population receiving the intervention. 
We aimed to estimate the long-term colorectal cancer (CRC) outcomes (cancers and deaths averted, life-
years gained) associated with receipt of a first CRC screening through the Colorectal Cancer Control 
Program (CRCCP) among low-income and underserved patients in the U.S. We recalibrate a simulation 
model previously calibrated based on a real-world mix of insurance and demographic factors for a particular 
state. We describe our strategy for developing simulated equivalents in terms of demographics, natural 
history, and CRC screening results for the CRCCP patients and matching these patients to their simulated 
equivalents. We then project lifetime CRC incidence and mortality with and without intervention.  

1 INTRODUCTION 

Simulation models can be used to project the long-term outcomes associated with implementing a public 
health intervention or program at the population level. These models can help to estimate the effectiveness 
of the specific program in improving health outcomes as compared to one or more control scenarios (e.g., 
the absence of interventions). This information about the value of the program in the target population can 
inform decision-making related to potential adaptation or sustainment of the program. However, while 
simulation can be a powerful tool for evaluating health programs, it is essential that the model be able to 
simulate individuals whose characteristics (e.g., demographics, level of risk, etc.) and health results (e.g., 
test results, diagnoses, etc.) reflect those of the actual population receiving the intervention to accurately 
project their outcomes.  

In our case, we aimed to estimate the long-term impact, including cancer cases averted and cancer 
deaths averted, of a first-time colorectal cancer (CRC) screening provided to patients who are uninsured or 
underserved through the Colorectal Cancer Control Program (CRCCP), a Centers for Disease Control and 
Prevention (CDC)-funded program (Joseph and DeGroff 2019). However, our population simulation model 
was previously calibrated to the full population of a single state, reflecting a diverse mix of patient 
demographics and insurance status (Hassmiller Lich et al. 2019; Hassmiller Lich et al. 2017; Nambiar et al. 
2018). Thus, our model was unlikely to generalize to the CRCCP patients, who are geographically diverse 
and often face increased barriers to accessing CRC screening due to being uninsured or underinsured. Since 
patients’ future health outcomes are a function of their demographics and past CRC screening history, we 
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needed to create simulated individuals with equivalent characteristics and experiences as those of the actual 
patient population. Another challenge with estimating the effectiveness of this first CRCCP screening in 
improving CRC outcomes was that we can only partially observe the health trajectories in this population. 
For example, while data are available on CRC test results, such as abnormal stool test results and detection 
of polyps during colonoscopy, the types of evidence-based interventions used to provide this screening 
varied substantially within the CRCCP and data were not available on these variations.  

In this paper, we first describe how we addressed these methodological challenges for projecting the 
outcomes over time specifically within the CRCCP patient population. We explain how we created 
simulated equivalents that reflect the demographics, natural history, and CRC screening test results of the 
CRCCP patients, matched the CRCCP patients to their simulated equivalents, and then sampled their long-
term CRC outcomes. We then report the effectiveness of the CRC screening provided through this program 
in averting CRC cases and CRC deaths and adding life-years over these patients’ lifetimes.  

2 LITERATURE REVIEW 

A digital twin is a virtual representation of a physical object, process, or system that can be used to assess 
its future outcomes through simulation (Tao et al. 2018; Bjornsson et al. 2020). By modeling the physical 
system, the digital twin allows for testing potential solutions and evaluating their expected impact in a way 
that may otherwise not be practically or economically feasible, thus informing decision-making (Bjornsson 
et al. 2020). Digital twins have been used in diverse fields, such as manufacturing (Tao et al. 2018; Shao 
and Helu 2020) and healthcare (Barat et al. 2021; Bjornsson et al. 2020; Corral-Acero et al. 2020). Within 
healthcare, for example, digital twins of individual patients are used to support personalized medicine 
through the virtual testing of pharmaceuticals and other clinical treatment options (Bjornsson et al. 2020; 
Corral-Acero et al. 2020), and digital twins of cities are informing public health approaches for addressing 
the COVID-19 pandemic (Barat et al. 2021).   

Although the use of digital twins is becoming more common, there is not yet a standardized definition 
across fields. That said, the development of digital twins typically depends on having complete, detailed 
records for the physical objects being replicated which are updated in real-time. As examples, digital twins 
in warehouse logistics integrate real-time data about staffing and productivity (Shao and Helu 2020), and 
digital twins in healthcare include comprehensive patient-level data (Barat et al. 2021; Bjornsson et al. 
2020).  

Building on the concept of digital twins, in this analysis, we aimed to create simulated individuals who 
match those in our CRCCP patient population as a method to simulate and evaluate their future CRC 
outcomes which cannot yet be observed. However, our simulated individuals differ from other digital twins 
in two key ways. First, our goal was to create simulated individuals who match the CRCCP patients in one 
exact moment – when they decide to participate in the CRCCP by completing their first CRC screening – 
rather than serve as exact replicas across the lifespan. Second, and relatedly, our available data to create a 
type of digital twin was more limited. Instead of using complete patient records, we had data on the results 
of the CRCCP patients’ first CRC screening and limited information on their demographic characteristics 
and prior personal and family history of CRC. Therefore, we subsequently refer to matched individuals in 
our simulation model as simulated equivalents, rather than digital twins, of the CRCCP patients.   

Multiple simulation models have been developed and widely used to inform CRC screening and care 
decisions (Rutter et al., 2016). These models seek to explore various what-if scenarios to inform decisions 
about how to best improve CRC outcomes. In this analysis, we use our simulation model previously 
developed to estimate the impact of evidence-based interventions and health policy scenarios on CRC 
screening, incidence, and mortality (Davis et al. 2019; Hassmiller Lich et al. 2019; Hassmiller Lich et al. 
2017; Nambiar et al. 2018; Powell et al. 2020). To apply this model to the CRCCP intervention, we 
developed simulated equivalents for the patients in the CRCCP population.  
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3 METHODS 

3.1 Simulated Interventions 

The CDC’s Colorectal Cancer Control Program (CRCCP) aims to improve CRC screening among age-
eligible adults, with the ultimate goal of reducing CRC incidence and mortality, by funding state and tribal 
organizations to provide and promote screening (Joseph and DeGroff 2019). Grantees partner with clinical 
providers to provide CRC screening tests to low-income, uninsured, and underinsured patients. In addition, 
they implement evidence-based interventions, such as client and provider reminders and small media, to 
promote population-level CRC screening awareness and uptake (Joseph and DeGroff 2019). In this 
analysis, we focused specifically on CRCCP grantees’ provision of a first-time CRC test to underserved 
patients as the intervention. We included two cohorts within the CRCCP population – 1) those who 
underwent a screening colonoscopy (“Screening Colonoscopy Cohort”), and 2) those who completed a 
stool test (e.g. fecal immunochemical test or FIT) and, after testing positive, underwent the recommended 
follow-up diagnostic colonoscopy (“Diagnostic Colonoscopy after Positive Stool Test Cohort”). For each 
cohort, we compared the CRCCP patients’ outcomes with and without this single CRC test. The CRCCP 
has been closely evaluated and monitored for its effectiveness in improving CRC screening since its 
inception (Hannon et al. 2019; Hannon et al. 2013; Nadel et al. 2019; Sharma et al. 2021); however, this is 
the first time that simulation is used to project the longer-term impacts of this program.      

3.2 Target Population 

Patients who are eligible to receive a CRC screening test through the CRCCP include those with an annual 
household income less than or equal to 250 percent of the federal poverty level (equivalent to $66,250 for 
a family of 4 in 2021, for example) (U.S. Department of Health & Human Services 2021). In addition, 
patients are either uninsured or underinsured, meaning that their insurance did not cover preventive services 
or they were unable to afford co-pays or deductibles for their preventive services (Joseph and DeGroff 
2019). As of February 2021, the CRCCP awards 35 grantees, including 20 states, 8 universities, 2 tribal 
organizations, and 5 other organizations, which are located across all regions of the U.S. (CDC 2021).  

3.3 Simulated Cohorts 

Between 2009 and 2020, a total of 82,973 unique patients received a CRC test as part of the CRCCP. For 
this analysis, we selected two cohorts of these patients based on testing modality (screening colonoscopy 
or stool test plus diagnostic colonoscopy) who were between ages 45 and 75 (i.e., recommended ages for 
CRC screening) (U.S. Preventive Services Task Force 2021) and at average risk for developing CRC (i.e., 
reported no personal history of polyps or CRC). We excluded patients with missing data (e.g. gender), those 
with history of CRC or polyps, and those who reported information indicating that the CRC test may not 
be due to screening (e.g. currently experience symptoms). Lastly, we excluded individuals with prior 
screening history, resulting in 62,682 individuals. Of these 22,880 screened with colonoscopy first and 
39,802 with FIT/FOBT first. 

  3.3.1 Screening Colonoscopy Cohort 

For our first cohort, we included patients who screened specifically by colonoscopy for their first CRC 
screening as part of the CRCCP. After excluding patients who did not have a final or conclusive diagnosis, 
our final cohort is comprised of 22,605 first-time colonoscopy screeners, with a median age of 54. Table 1 
presents the demographic characteristics of this cohort.  
 
 3.3.2   Diagnostic Colonoscopy after Positive Stool Test Cohort 
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For our second cohort, we identified 39,802 CRCCP patients who screened for the first time using a stool 
test, such as FIT or fecal occult blood test (FOBT). We then focused specifically on the individuals within 
this group who had a positive FIT/FOBT result, underwent the recommended follow-up diagnostic 
colonoscopy, and had a final diagnosis available from their diagnostic colonoscopy, providing a final cohort 
size of 2,802 patients. The reason that we did not include patients who either received a negative FIT/FOBT 
test result or received a positive result but never completed their diagnostic colonoscopy is that these events 
do not directly impact their health trajectories. While these events may potentially affect these individuals’ 
future screening adherence, only the possible detection of polyps and CRC during the diagnostic 
colonoscopy will affect their natural history. This cohort of 2,802 individuals who completed a diagnostic 
colonoscopy after a first-time FIT/FOBT screening has a median age of 56. The demographic composition 
of this cohort is presented in Table 1.  

Table 1: Demographic characteristics of the two simulated cohorts of CRCCP patients. 

 Screening 
Colonoscopy 
Cohort 

Colonoscopy after 
Positive 
FIT/FOBT Cohort 

Characteristic N % N % 

Total 22,605 100.0 2,802 100.0 

Sex 
Female 14,718 65.1 1,858 66.3 

Male 7,887 34.9 944 33.7 

Race 

Black 4,637 20.5 339 12.1 

White 14,406 63.7 2,144 75.4 

Other 3,562 15.8 349 12.5 

Ethnicity 
Hispanic 6,410 28.4 1180 42.1 

Non-Hispanic 16,195 71.6 1,622 57.9 

3.4 Model Description 

Our CRC simulation model is an individual-level microsimulation model run using Anylogic software, 
version 8.5.2. The model consists of three components: 1) polyp incidence and development, 2) individual 
health states, and 3) screening and surveillance. Figure 1 summarizes the different model components and 
highlights which parts of the model were modified specifically for this analysis. In our model, individuals 
are simulated from birth until death from either CRC or other non-CRC natural causes. During their 
lifespan, individuals can develop polyps, which may progress from non-cancerous to cancerous as the 
individuals transition within and across health states. The implementation of interventions, such as a 
colonoscopy screening provided through the CRCCP, can change individuals’ natural history by detecting 
and removing polyps before the individuals would have otherwise become symptomatic. Likewise, the 
completion of a diagnostic colonoscopy following an abnormal FIT/FOBT test provided through CRCCP 
can also alter individuals’ natural history. Details about the model structure, parameters, and assumptions 
have previously been reported (Davis et al. 2019; Hassmiller Lich et al. 2019; Hassmiller Lich et al. 2017; 
Nambiar et al. 2018; Powell et al. 2020). In this paper, we adapted the model as described in Figure 1. We 
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removed the statistical model previously used to determine how individuals screen (e.g., by which 
modality). We also did not model individuals’ type of and access to insurance. Instead, we focused 
specifically on the impact of their first CRC testing.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 1: Components of the CRC simulation model. Shaded sections indicate those parts of the model that 
we changed specifically to be able to simulate the long-term outcomes of the one-time CRCCP intervention. 

3.5  Model Calibration 

To start the calibration process using our CRC simulation model, we first assessed how accurately our 
model was able to predict polyp detection and CRC incidence for our cohort of CRCCP colonoscopy 
screeners. Although individuals in both cohorts included in this analysis may have their natural history 
changed by undergoing a colonoscopy, we calibrated our model using only the screening colonoscopy 
cohort for two reasons. First, our diagnostic colonoscopy cohort is relatively small in size compared to the 
screening colonoscopy cohort (2,802 vs. 22,605 individuals, respectively). Second, there is a potential for 
bias in the data when a colonoscopy is triggered due to a positive FIT/FOBT test. For example, an abnormal 
FIT/FOBT may result in increased likelihood that polyps are detected during a diagnostic colonoscopy, as 
compared to a screening colonoscopy, due to providers’ awareness of the stool test result (Ebner and Kisiel 
2020; Kligman et al. 2018). Thus, we calibrated our model to the colonoscopy results of the screening 
cohort in which providers have no prior knowledge of the potential presence of polyps or cancer.  
      For the screening colonoscopy cohort, our previous model (which adjusts for age, sex and race) well 
underestimated the actual proportion of polyps and cancers based on their CRCCP results. Specifically, 
the proportion of polyps and cancers among these CRCCP patients was about 0.4184 and 0.0050, 
respectively; however, our simulated results showed proportions of 0.1051 and 0.00329, respectively. Our 
model likely underestimated the colonoscopy outcomes in this cohort because it was previously calibrated 
to cancer incidence in the full state population of North Carolina using the North Carolina Central Cancer 
Registry (Hassmiller Lich et al. 2019). In contrast, the CRCCP patient population is a U.S.-wide low-
income and underserved population with low CRC screening rates.  

Due to the large differences between the actual and simulated results, our first step was to calibrate the 
model to the colonoscopy findings for our CRCCP screening colonoscopy cohort. We aimed to identify the 
best combination of multipliers to match the actual CRCCP data for three parameters - 1) individual risk 
factor, 2) incidence rate, and 3) transition rate from polyp to cancer. One multiplier is associated with each 
of these three parameters. We focused on these three specific parameters as they drive incidence and polyp 
progression toward cancer in the model. The risk factor is associated with how susceptible a person is to 
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Simulation Model 
cohort-based, individual-level microsimulation model of the natural history of CRC progression after intervention 
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ever developing polyps. The incidence rate is associated with the likelihood of developing a polyp based 
on a person’s age. Finally, the third parameter affects the rate at which non-cancerous polyps become 
cancerous. We focused on finding multipliers for the original parameters as extensive time-based clinical 
data about CRC incidence and progression is not available for this population, and this allowed us to 
maintain interactions between sex, age, and race that had been calibrated in the population-level model.  

We used Latin hypercube sampling (LHS) to achieve our calibration objective. LHS is a sampling 
method (Mckay et al. 1979; Helton and Davis 2003) in which a grid of all possible variables is created and 
samples are selected from non-overlapping intervals across each dimension. In 2-dimensions, for example, 
this results in one sample in each row and column. This method allows for coverage of the entire parameter 
space with a smaller number of samples. We chose LHS as the simulation model runs are computationally 
expensive. The full calibration process is described in Figure 2. The main objective was to reduce the initial 
sample space after obtaining a batch of samples at each step by identifying the concentration of points 
giving us the lowest Sum of Squared Errors (SSE). The SSE was calculated as the sum of squared errors 
between the average proportion of polyp and cancer rates of the simulated versus true data. Our stopping 
criterion was to find a combination of multipliers that gave predicted proportions of polyps and cancers 
within +/- 1% of the actual values. To account for randomness in the simulation model, each LHS sample 
was run 30 times and average values were obtained. We selected a total of 30 replications due to 
computationally expensive runs and to also ensure a halfwidth of less than 0.005 and 0.0005 around the 
mean of the estimated proportions of polyps and cancers in the simulated population, respectively.  

Figure 2: Model calibration process. 

      After calibration, our model successfully matched the CRCCP data for the screening colonoscopy 
cohort based on our criteria; simulated results now showed proportions of about 0.4171 and 0.0050 for both 
polyps and cancers, respectively. This is less than a one percent difference in both the simulated proportion 
of detected polyps and the simulated proportion of detected cancers compared to the actual results. 
Computationally, based on the point combination, 30 replications took between 1 and 10 minutes to run. 

3.6 Simulated Equivalents and Matching Strategy 

To assess the long-term impact of the first-time CRC testing intervention provided through the CRCCP in 
our two CRCCP cohorts and stay true to the individuals’ clinical results, we created simulated equivalents 
for each individual in the CRCCP cohort. The process of creating simulated equivalents is fully described 
here using the CRCCP screening colonoscopy cohort. However, we used the same process to create 
simulated equivalents for the diagnostic colonoscopy after positive FIT/FOBT cohort since we directly 
simulated the diagnostic colonoscopy, but not the stool test itself since stool tests do not alter natural history. 
Figure 3 presents the full process we used to create the simulated equivalents and then match the CRCCP 
screening colonoscopy patients to their simulated equivalents. 

Our initial step in constructing simulated equivalents was to identify unique combinations of 
demographic characteristics for each cohort (see Steps 1 and 2 in Figure 3). We focused specifically on the 
race, gender, and age of the individuals at the time of receipt of their baseline CRCCP testing. Using these 
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three demographic factors for our screening colonoscopy cohort of 22,605 individuals, there were a total of 
T=183 combinations of individuals with unique demographic characteristics (e.g., white male screened at 
age 50) to simulate. Identifying these combinations allowed us to reduce both the number of individuals we 
needed to track and the number of simulations that we needed to run because we were able to pool simulated 
individuals to sample from who shared the same characteristics.  

After creating the reduced cohort of T combinations of individuals (i.e., individual types) sharing the 
same demographic information as our CRCCP screening colonoscopy cohort, we simulated their lifetimes 
with and without receipt of the CRCCP screening colonoscopy numerous times as shown in Step 3 in Figure 
3. We created up to R = 1 million replications of each individual type in the set T. Replications that did not 
reflect reality were discarded. For example, we removed replications where simulated individuals died 
before their age when they received the CRCCP intervention, or where they were diagnosed with cancer 
prior to receipt of the intervention. Then, in Step 4, we chose simulated equivalents – that is, simulated 
individuals who in addition to matching demographically shared the correct colonoscopy result as their real 
counterpart’s CRCCP colonoscopy result. We grouped the colonoscopy results into the following 
categories: normal with no polyps detected, polyps detected but not cancerous, and diagnosed cancer. We 
ran up to one million replications for each individual type in set T to ensure that we had enough to sample 
the desired number of simulated equivalents for each person in the original cohort. 

Figure 3: Process for creating simulated equivalents and matching CRCCP patients to their equivalent for 
our screening colonoscopy cohort. We used the same steps to simulate equivalents for our diagnostic 
colonoscopy after positive FIT/FOBT cohort. 
 

To estimate this cohort’s long-term outcomes, we matched individuals in the CRCCP screening 
colonoscopy cohort to their simulated equivalents with the correct colonoscopy result in Step 4 and then 
sampled the required number of replications in Step 5. The number of replications for the CRCCP screening 
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colonoscopy cohort (n = 450 simulated equivalents per cohort individual) was established to produce results 
that were within 1% of the total number of cancers in the population. To estimate the impact of the CRCCP 
screening colonoscopy intervention compared to no intervention, we identified the corresponding simulated 
equivalents with the same replication number in the set of no CRCCP intervention replications (Step 6).  

3.7    Outcomes Simulated 

For both of our CRCCP cohorts, we report the number of cancer cases averted both overall and by stage 
compared to no CRC testing across the individuals’ lifetimes. We also report the number of CRC deaths 
averted, and the number of life-years gained, of the CRCCP intervention compared to no intervention.  

4 RESULTS 

4.1 Screening Colonoscopy Cohort 

Using the simulated equivalent method, we simulated different possible CRC related pathways for the 
screening colonoscopy cohort while being true to their current diagnosis and assessed the potential impact 
of the screening colonoscopy intervention compared to doing nothing over their lifetimes. Table 2 
summarizes the number of CRC cases and deaths expected over these individuals’ lifetimes without 
intervention, and the number of cases and deaths averted as a result of the CRCCP screening colonoscopy 
intervention. All reported incremental changes in outcomes are statistically significant and the 95% 
confidence intervals are shown for each outcome.   

Table 2: CRC cases and deaths over the simulated individuals’ lifetimes without intervention, and the 
expected change associated with the CRCCP screening colonoscopy. 

  No intervention--
status quo (Mean) 

No intervention--
status quo (95% 
CIs) 

Incremental 
change compared 
to status quo 
(Mean) 

Incremental 
change compared 
to status quo (95% 
CIs) 

Total CRC cases 1,494.18 (1490.78, 1497.59) -791.71 (-794.23, -789.19) 
CRC cases by 
stage at diagnosis 

        

    Stage 1 160.83 (159.69, 161.97) -40.95 (-42.57, -39.33) 
    Stage 2 217.49 (216.08, 218.89) -90.44 (-92.17, -88.71) 
    Stage 3 603.02 (600.85, 605.18) -342.34 (-345.08, -339.60) 
    Stage 4 512.85 (510.81, 514.90) -317.98 (-320.51, -315.45) 
CRC deaths  698.16 (695.67, 700.65) -407.87 (-409.75, -405.99) 

 
In the absence of the CRCCP screening colonoscopy, and assuming no future CRC screening or 

surveillance other than diagnostic testing in the case of CRC symptoms, we estimated a total of 1,494 
cancers over the lifetimes of the 22,605 individuals in this cohort. Of these CRC cases, 74.7 percent would 
be diagnosed at advanced stages (i.e., stage 3 or 4), which are associated with higher mortality. In this 
cohort, we projected a total of 698 CRC-specific deaths, which means that nearly half of the diagnosed 
cancers would result in a CRC death. The cohort was projected to have a combined 8,533 life years lost due 
to cancer without intervention, with an average of 12.2 years lost per individual who died due to CRC.  

Compared to no intervention, the one-time CRCCP screening colonoscopy led to substantially 
improved health outcomes. With the screening colonoscopy, there would be an estimated 792 CRC cases 
averted; of these averted cancer cases, more than 300 would be advanced-stage cancers. The number of 
cancer-related deaths consequently averted was 409, which was associated with 5,132 (+/- 27.56) life years 
lost averted. Therefore, receipt of the CRCCP intervention is associated with reduced CRC diagnoses, the 
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shifting of remaining cancer cases from more advanced to earlier stage cancers, lower CRC mortality, and 
longer length of life, compared to no intervention.  

In addition to capturing the overall and incremental change in the numbers of CRC cases and life years, 
we assessed the distribution of CRC cases averted each year from the time of receipt of the colonoscopy. 
Figure 4 shows the cumulative number of cancers averted by the number of years after receiving the 
colonoscopy. The negative numbers in early years reflect cancers detected due to screening that would have 
gone undetected until later years. Investment in providing this CRCCP screening colonoscopy quickly pays 
off after approximately 3 years, the point at which the removal of polyps through colonoscopy begins to 
prevent the development of cancers. Additional cancer cases are averted each year until approximately 40 
years post-intervention when the trend starts stabilizing with no additional cancers being averted. 
 

 

Figure 4: Cumulative CRC cases averted by years after receipt of the one-time CRCCP screening 
colonoscopy (N=22,605 patients). 

4.2   Diagnostic Colonoscopy after Positive Stool Test Cohort 

We replicated the simulated equivalent method for this cohort and outputted similar outcome measures as 
the screening colonoscopy cohort to identify the impact of the diagnostic colonoscopy after a positive 
FIT/FOBT. Table 3 summarizes the average number of CRC cases and deaths without the stool test plus 
diagnostic follow-up, assuming no future screening tests, and the expected change with the CRCCP 
intervention. All presented values are statistically significant at the 5% significance level with 95% 
confidence intervals shown, except for stage 2 averted cancers where the interval contains zero. 

In the absence of the FIT/FOBT and follow-up diagnostic colonoscopy, an estimated 255 CRC cases 
would be found over the lifetime of this cohort. The majority (78.1%) of these CRC cases would be 
diagnosed at stage 3 or stage 4, similar to the findings from the screening colonoscopy cohort. We projected 
that the cancers detected in this cohort without intervention would result in 121 deaths. This would lead to 
a combined 1,639 life years lost with an average of 13.5 life years lost per individual who died of cancer.   

With the diagnostic colonoscopy following the abnormal FIT/FOBT test, 115 (+/- 1.2) CRC cancers 
are expected to be averted; of these averted cases, 61 would be stage 3 cancers and 70 would be stage 4 
cancers. It is important to note that the incremental change in stage 1 cancers is a positive value, indicating 
that more cancers are detected early before progressing to advanced stage cancers. The number of stage 2 
cancers, in contrast, is the same before and after the intervention. Approximately 63 CRC deaths would be 
averted as a result of the FIT/FOBT plus diagnostic colonoscopy, with an associated number of life years 
gained of 712. Therefore, there is also a large benefit of investing in the CRCCP intervention for this cohort 
compared to the status quo, with meaningful differences in the ability to detect polyps and cancers in the 
earliest possible stage. 
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Table 3: CRC cases and deaths over the simulated individuals’ lifetimes without intervention, and the 
expected change associated with the CRCCP diagnostic colonoscopy after positive FIT/FOBT. 

  

No intervention-- 
status quo (Mean) 

No intervention-- 
status quo (95% 
CI’s) 

Incremental 
change compared 
to status quo 
(Mean) 

Incremental 
change compared 
to status quo (95% 
CI’s) 

Total CRC cases 255.24 (253.56, 256.92) -115.08 (-116.24, -113.92) 
CRC cases by 
stage at diagnosis 

        

Stage 1 22.51 (22.03, 23.00) 16.34 (15.53, 17.15) 
Stage 2 33.25 (32.63, 33.87) 0.037 (-0.83, 0.900) 
Stage 3 103.39 (102.27,104.52) -61.13 (-62.44, -59.83) 
Stage 4 96.09 (95.07, 97.11) -70.32 (-71.46, -69.18) 

CRC deaths 120.95 (119.80, 122.10) -63.11 (-63.94, -62.28) 
 

In Figure 5, we show that it takes, on average, 6 years for the CRCCP FIT/FOBT plus diagnostic 
colonoscopy to begin averting CRC cases, which is approximately a 3-year longer timeframe than for the 
screening colonoscopy cohort. This could be due to a higher number of cancers detected in this group per 
capita (0.0411) as compared to the screening colonoscopy group (0.0350). The stool test group was slightly 
older, and as mentioned earlier diagnostic colonoscopies after positive FIT/FOBT may result in increased 
likelihood that polyps are detected (Ebner and Kisiel 2020; Kligman et al. 2018). As seen with the screening 
colonoscopy cohort, cancers continue to be averted for approximately 40 years, demonstrating the long-
term impact of this one-time CRCCP intervention.  

 

 

 

 

 

 

 

Figure 5: Cumulative CRC cases averted by years after receipt of CRCCP diagnostic colonoscopy after a 
positive FIT/FOBT (N=2,802 patients). 

5 CONCLUDING REMARKS 

By assigning simulated equivalents to members of both of our CRCCP modality-based cohorts, we were 
able to replicate the CRC-related health status of each individual. We were also able to assess the impact 
of the screening colonoscopy intervention and the FIT/FOBT testing followed by a diagnostic colonoscopy 
compared to no intervention for each respective cohort. Both intervention types proved to be effective in 
averting cancers and reducing both the number of deaths and life years lost by more than half over the 
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individuals’ lifetimes. For this application, one aspect to keep in mind is that both cohorts were assumed to 
be screening naive and so the impact observed would be lessened for a cohort with prior CRC screenings. 

Regarding our simulation model, we calibrated three natural history parameters based on the real 
clinical results of the screening colonoscopy cohort. This was especially important given that the CRCCP 
specifically aims to provide CRC screening to patients who are low-income, underinsured or uninsured, 
and thus experience higher than average barriers to seeking preventive care.  If this model is used to project 
the long-term health outcomes of another cohort with different screening behaviors, access to care, or 
known cancer/polyp rates, we would need to revisit these parameters and similarly re-calibrate our model 
to match the new cohort’s specific demographic characteristics and clinical results.  

In general, the simulated equivalent method proved to be effective and can be extended to include past 
screening history and/or other aspects relevant to simulating a cohort. Planned future work includes 
estimating the quality-adjusted life years (QALYs) gained and cost-effectiveness of the CRCCP 
intervention for both cohorts compared to no intervention. We also plan to estimate these same outcomes 
for the full CRCCP population, which includes patients who also received FIT/FOBT or colonoscopy but 
did not follow-up on these tests and/or do not have a confirmed diagnosis. Informed assumptions will be 
made to handle these cases to estimate the full impact of CRC testing provided through the CRCCP.   
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