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ABSTRACT

We present a scalable simulation model of a medical 3D printing center at point of care, which is used for early
strategic decision making concerning its configuration. The model is part of an ongoing research initiative
where 3D printing technology is designed and assessed for the purpose of producing patient specific medical
devices at point of care. The model captures uncertainties in medical 3D printing technology, resulting yield,
maintenance, clinical process, and organizational factors. Based on a set of defined scenarios capturing
current and future demand including ramp up phases the model’s performance can then be evaluated and
used for estimating associated requirements and operational performance. We present the model itself, its
underlying simplifications and assumptions as well as input data and several scenarios. The results and
their impact on strategic decisions will also be discussed.

1 INTRODUCTION

The application of modeling and simulation is a well-established approach for analyzing and designing
processes in health care (Brailsford et al. 2009). Compared to industrial engineering applications, health
care provides some additional challenges, because of complex and complicated diagnostics and treatment
pathways and a mainly patient-centric view (Roy et al. 2020). Nevertheless, treatments and diagnostic
processes are highly standardized and well defined both in quality and performance. Therefore, there are
many success stories of modeling and simulation in health care (e.g.: Salleh et al. (2017)).

In this paper we describe the use of modeling and simulation for generating support for strategic decisions
about the application of new technologies in the context of a large, international, and interdisciplinary
research project on the application of additive manufacturing in health care (Medical University of Graz
2021). A center for 3D printing in a clinic with all its core processes needs to be drafted at a very early stage
to ensure sufficient infrastructure resources for later operations as well as to generate input for business
case calculations.

The main idea is to use 3D printing technology for on-demand generation of personalized, perfectly
fitting, implants directly at the clinic. These implants could be used for treatment of fractures and/or lesions
caused by trauma or tumor infiltration. Such a technology could replace the often improvised usage of
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sub-optimal implants in emergency care. On the patient side this could also avoid a second surgery, caused
by long delivery times for especially produced implants from external commercial suppliers.

The entire printing process exposes a high variability in demand and technology-based variance in
supply at the current state: While 3D printing (metal, polymers as well as ceramics) has been established
as a useful additive manufacturing technology in industry, applications in health care are still in a very
early research state. There are three main reasons for that: one lies in the increased hygienic requirements
regarding surface, tightness, porosity of the printed implants which could lead to lethal immune reactions
— in the worst case. Another reason is the narrow selection of certified bio-compatible materials meeting
both mechanical and technological requirements for 3D printing. The third reason is due to the fact that
correct measuring and designing the implant physiologically correct is difficult, which may lead to several
iterations depending on type and nature of the medical emergency for which the implant is needed. All
these factors lead to a high variance in productivity and quality of such a production.

Currently the demand for 3D printed implants in the clinic is only driven by a few technicians and
interested surgeons at a research level, which leads to a rather small and varying demand. Based on
preliminary promising results of the research initiative, a steep increase in demand can be expected.

Since we are initially operating in a very data-poor environment with many unknowns, and uncertainties
(like processing times, utilization and demand, technology, etc.) we create a scalable, applicable for small and
large 3D printing centers e.g. easy to add more printers or any other type of resources, and configurable, e.g.
easy to change type of materials, printers, and products, simulation model in collaboration with involved
medical stakeholders. Further, we define simulation scenarios which reflect different configurations of
resources (3D printers, employees, tools, IT-workstations, etc.) and allow for the assessment of the
performance for current and future operations.

While simulation in health care operations is often used at a very mature stage with already well defined
processes and procedures, we use a scenario-based approach at a very early stage to gain first insights
on using a new technology and estimating its potential for daily clinical use. Discrete Event Simulation
(DES) (Brailsford and Hilton 2001) is applied to simulate the currently defined manufacturing process
on an operational level. The simulation model is capable of providing long term operational data that
can be used to support early strategic decisions such as the dimensions of the future 3D printing center.
The simulation results for the defined scenarios can also be used for estimating their potential operations
performance and required resources. Furthermore, by combining both factors it may also be possible to
decide on the economic feasibility for daily clinic operations.

This paper is organized as follows: Section 2 describes the context of this research. In Section 3 further
information on simulation in the respective area, 3D printing, and its application in health care is given.
Section 4 describes the conceptual model of a medical 3D printing center. Section 5 provides an overview
of the defined scenarios for the evaluation. In Section 6 the results of all scenarios are presented. Finally,
Section 7 discusses the results, as well as limitations, and provides an outlook for further research.

2 CASE STUDY DESCRIPTION AND MOTIVATION

The research project "CAMed - Clinical Additive Manufacturing for Medical Applications” (Medical
University of Graz 2021), which provides the context of this research, is aiming to develop the entire
process chain to enable 3D printing at point of care and thereby focuses on research areas such as novel
materials, printing technologies, clinical evaluation, and IT and process integration. CAMed aims to improve
patient outcomes by personalized medicine in form of 3D printed patient specific implants, anatomical
models and tools at point of care. Improved patient outcomes for example can be attributed to reduced
duration and even reduced numbers of surgeries. An internal 3D printing research lab was initiated at the
LKH University Hospital Graz to enable a future in-house production. This CAMed 3D printing research
lab is used as basis for data generation in this work. This work investigates the in-house production of
3D printed patient specific implants, anatomical models and tools from an operational point of view. A
simulation model was created to provide a basis for answering strategic questions regarding the operation
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of a medical 3D printing center already in an early research and development phase. The research should
foster strategic decision making for hospital organizations, which aim to operate a medical 3D printing
center on an operative day to day basis.

The model enables to simulate various aspects and scenarios of a medical 3D printing center and
thereby supports quantitative reasoning about economic future scenarios. It considers aspects such as
resources (human, I'T, machines), process duration, shift-plans, and technological future developments for
the manufacturing of the three product types patient specific implants, anatomical models, and tools. The
currently existing CAMed 3D printing research lab and first insights gained in operational details during
the research project serve as a basis. The model also considers general known operative effects such as
increasing learning curves during ramp-up of production and represents the core manufacturing process, pre-
and post processing of the manufactured part, and also supportive processes such as repair and maintenance
of printers and material handling (ordering and storing) processes. The following aspects are aimed to be
answered by the model:

e Which maximum output of manufactured items is possible based on the current setup of the CAMed
3D printing research lab?

* How do the various aspects such as resources (human, IT, machines), process duration, shift-plans,
and technological future developments influence the performance of a medical 3D printing center?

* How does the medical 3D printing center need to be dimensioned, based on expected demand
scenarios?

*  Which service levels in terms of throughput times and quantities can be derived from the insights
gained with the simulation during ramp-up and operational phase of the medical 3D printing center?

*  How does the consideration of learning curves (e.g. improved order process, improved maintenance
and operation processes) during the ramp-up phase affect the operations and in consequence the
output of the medical 3D printing center?

* How does the production system react on increased demands and what are the consequences for
key performance indicators (KPIs) such as throughput times and workloads of various resources
(e.g. 3D printers, test equipment, workloads of persons)?

3 RELATED LITERATURE

Modeling and Simulation is a commonly used tool to analyze and improve health care services. For
exhaustive reviews the interested reader is referred to Brailsford et al. (2009), Giinal and Pidd (2010),
Pitt et al. (2016), or Roy et al. (2020), whereas Salleh et al. (2017) provide an umbrella review on
existing reviews. According to Giinal and Pidd (2010) applications of health care simulations can be
classified in Accident and Emergency (A&E) models, e.g. Furian et al. (2018)), outpatient clinic models,
e.g. Norouzzadeh et al. (2015), inpatient facilities, e.g. Harrison et al. (2005), and other hospital units,
as for example laboratories, operating theaters or screening units. For examples the reader is referred to
Giinal and Pidd (2010). The model of the printing center studied in this paper may best be assigned to
the last category, as it provides auxiliary services tor primary care services in a hospital environment. For
additional studies on Modeling and Simulation in the context of 3D printing in other domains the reader
is reffered to Jia et al. (2016) and Khajavi et al. (2014).

According to Robinson (2006) Conceptual Modeling has high significance in a simulation study in
general. And particularly in this work as the real system doesn’t exist yet. Therefor a structured approach
for defining the conceptual model was required. The Hierarchical Control Conceptual Modeling (HCCM)
framework by Furian et al. (2015) serves this purpose and was therefore applied to design the non-software
specific conceptual model including all decisions and the logic of the 3D printing center. The HCDESLib
by Furian et al. (2016) is based on the structure of the HCCM framework and was used to implement the
conceptual model. Further applications of DES on comparable systems such as blood donation centers or
blood laboratories are described by Doneda et al. (2021) and Kadi et al. (2016).
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The additive manufacturing technology (3D printing) has reached a high level of maturity in various
industrial domains and is considered an established, reliable and future-oriented technology. This has
already been shown in many areas of application (Gao et al. 2015; Attaran 2017). 3D printing has also
great potential in the medical domain by providing many new possibilities in terms of materials, shapes,
etc. for the individualized and fast manufacture of medical devices. However, these newer fields of
application in medicine pose special challenges to the use of this technology due to the higher requirements
for medical devices in terms of bio-compatibility, safety and particular mechanical properties. Currently,
various projects and initiatives foster research and development in this area (Mayo Clinic 2021; Jacob
et al. 2020; University Hospital Basel 2021; Scholer 2019). 3D printing is being utilized in many medical
applications, particularly for patient specific medical devices (Eshkalak et al. 2020). Such applications are
the production of patient specific implants (Memon et al. 2020; Sharma et al. 2020; Willemsen et al. 2019)
or the production of anatomical models for pre-operative planning (Leng et al. 2017; Punyaratabandhu
et al. 2018; Ballard et al. 2020). For an overview of the various fields of application the reader is referred
to Nadagouda et al. (2020).

4 MODEL DESCRIPTION

This section describes the conceptual model of a medical 3D printing center. The conceptual model was
created following the HCCM framework (Furian et al. 2015). The design of the conceptual model is based
on the CAMed 3D printing research lab (Medical University of Graz 2021). First, an overview of the
system including modeled entities, their individual behavior, and defined control structures is given. Next,
the inputs and outputs of the model are explained. Finally, the applied simplifications and assumptions as
well as the implementation, verification and validation of the model are described.

4.1 System Overview

The system overview (see Figure 1) illustrates the main production processes for manufacturing individualized
3D printed medical devices such as implants or anatomic models. The shown process is an aggregated
version of the detailed business process. The process starts with arrival of orders and ends with the delivery
of the product to the customer. The production process is structured in four main processes, which are:
”Request 3D Printed Product”, "Manufacture 3D Printed Product”, ”Check Quality of 3D Printed Product”,
and “Sterilize and Deliver 3D Printed Product”. The manufacturing part of the process is further split into
three main steps: ”Segmentation”, "Modeling”, and 73D Printing”. Whereas 3D Printing” also includes
the related post processing activities, such as the removal of support structures.

Each main process consists of various activities and requires certain entities for execution. These
entities are orders, employees, 3D printers, materials, computer, software, tools, and working benches. The
orders represent the demand of 3D printed products for the hospital. A demand growth can be applied to
represent an expected economic growth of the business over time. Orders are treated in dependence of
their priority. The priority is defined in three levels: urgent, normal, and low priority. Orders represent
3 types of products, which are patient specific implants, pre-operative anatomical models, and tools. The
type of product determines if certain activities are required or not. For example, in our scenarios it is not
required for anatomical models to be sterilized, as those anatomical models are not supposed to be used
in the operating theater. Whereas it is required to sterilize implants. Furthermore, the type of product
also determines the required material and therefore also the required 3D printer. In this model 3D printers
are specialized for certain materials such as high or low temperature materials. Besides that, computers
including various types of software are required. The types of software are represented as skills of a
computer. For example a certain type of software is required to create a 3D model of the part to be printed.
In addition to those, tools and working benches for post processing or maintenance activities are also
represented as entities. Employees are currently structured in technical staff, radiology technologists, and
quality managers. Each employee is assigned to specific activities, concerning his profession.
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The duration of certain activities are modeled with a distribution function to represent a realistic
behavior. For example, the duration of repairing a printer is modeled with an exponential distribution
function, to also represent exceptional situations that might take much longer than expected.

Relevant decisions throughout the production process such as ”Order Complete?” or ”Quality Check
OK?” are modeled with probability functions and an optional ”Learning Curve”. This ”Learning Curve”
should represent an organizational learning in terms of process mastery and minor technological improve-
ments.

Besides the main processes also required support processes for repairing and maintaining the 3D printers
and for ordering and storing the required printing material are included in the model and are triggered
based on the availability and operating hours of the 3D printers.

4.2 Inputs and Outputs

Inputs have been defined in a way that allows high flexibility in the definition of scenarios and avoiding
additional programming efforts. The inputs are grouped in general, resource specific and process related

parameters (see Table 1).

Table 1: Overview of inputs for the simulation model.
Input Group | Input Type Description Input Values
Simulation time ~ Start date & time and end date & time of simulation. " Date & Time
Type of product Selection of predefined product types. Implant, model, and tool
Time between order arrivals Defines the amount of orders per product type. Hours
General . T . . . T
Average weight of product  Defines a specific average weight of a certain product. g
Urgency: low, normal, high  Defines the priority of the order. Percentage of urgency
Demand growth Defines the relative increase of orders per year. Percentage per year
Employees Defines amount of predefined types of employees Techmca.] staff, radiology technologists,
and quality manager
. Selection of amount, type, and availability of 3D printers . .
3D printer including build up rateyznd material skillsy. P Name, type, and material skills
Material Defines amount and type of available materials. Ngme', am01.1nt of units,
Resources unit size, min. amount on stock
Computer Defines amount of available computers. Amount of computers
Working Benches Defines amount of available working benches. Amount of working benches
Tools Defines amount of available tool sets. Amount of tool sets
Working Shift Defines the start time and end time of a shift on a daily basis. ~Start time, end time
Activity Durations " Defines the duration of each predefined activity. * Minutes
Decision Probabilities Defines the probability of each predefined decision. Percentage
Defines the start and end probability of
Process .
predefined decision parameters:
Learning Curve Parameters  Availability of printer, Percentage
order request complete, and
quality check OK

Outputs (see Table 2) are defined KPIs that should represent the performance of the medical 3D printing
center. The outputs are calculated and aggregated during run-time of the simulation and reported in a
structured output file.
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Table 2: Overview of outputs of the simulation model.

Output type Description Output values

Total simulation time Overall time of simulation run. Hours

Total throughput time per product type | Throughput time for each product type. Hours (average, median, min., max.)
Total working time Overall working time in simulation period. Hours

Total finished orders Overall amount of finished orders. Amount

Working times Working times are calculated per activity and per produced part. Hours (total, average, median, min., max.)
Waiting times Waiting times are calculated per activity. Hours (total, average, median, min., max.)
Workloads Calculated for each resource based on overall working time. Percentage

Material consumption Usage of material in total and per produced part. g

Material reorders Amount of required material reorders. Amount

Repair and maintenance efforts Amount of repair and maintenance activities including required hours. | Amount and hours

Printer downtime Relative downtime of each 3D printer. Percentage

Printing time Actual printing time of each 3D printer. Hours

Order specific output Printing time per order and working times of resources per order. Hours

4.3 Simplifications and Assumptions

Due to an early stage of the CAMed research project and the novelty of the business following simplifications
and assumptions are applied in the model:

Working days are Monday to Friday, vacations and sick leaves are not considered.

Breaks (e.g. lunch break) are not considered by the simulation.

3. Orders arrive during working time. If an order arrives at any other time it is rescheduled to to the
start working time of the next working day.

4. The required material for an ordered part is defined by a mean value per product type and created

with a Gaussian distribution.

The build up rate of a printer is based on empiric data from the CAMed 3D printing research lab.

The printing time is based on this build up rate and the required amount of material for the order.

The 3D printer repairs are based on their defined availability.

Printers can be repaired by technical staff, therefore no waiting times for external support are

considered.

9. Already started activities, that would take longer than the defined working shift, will be finished.

This situation is considered as overtime.

N —

PN W

4.4 Implementation, Verification, and Validation

The conceptual model was implemented with the HCDESIib (Furian, Neubacher, Vossner, O’Sullivan, and
Walker 2016). The implemented simulation model was verified with test scenarios by varying the input
parameters and observing if the simulation model provides expected and logical outputs. Currently no
detailed recordings of e.g. throughput times or any other outputs are available. In addition to that, the
existing lab is only used for research purposes and doesn’t represent a fully operational 3D printing center.
(Paal 2020; Rosenzopf 2021)

The simulation model was validated by reviewing and discussing each scenario and the corresponding
simulation outputs (see Section 6) with subject matter experts in a workshop. These experts are the technical
leader of the 3D printing research lab, the managing director of the CAMed project and the scientific leader
of the CAMed project. The simulation outputs were considered as reasonable based on their experience
gained throughout the current operation of the research lab, especially for the baseline scenarios, which
represent the current resources state of the 3D printing research lab.

5 SCENARIOS

This section describes all defined scenarios for the evaluation of the simulation model. Table 3 provides an
overview of the used input parameters for each scenario. Following general constraints, based on discussion
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with domain experts from the CAMed 3D printing research lab, are applied to all scenarios. Only two types
of printers are used. Each printer is capable of printing a certain material and therefore only capable of
producing a certain product. Each shift is considered to be eight hours. The technical staff is also capable
to conduct the quality inspection. The learning curve parameters are set as follows:

* Availability printer: Start value: 90%, end value: 95%
*  Order request complete: Start value: 90%, end value: 98%
*  Quality inspection of end product OK: Start value: 80%, end value: 98%

The baseline scenarios are defined in a way to represent roughly the current resources state of the
CAMed 3D printing research lab. At a given demand, which is estimated based on current experiences by
subject matter experts, it should set the performance baseline for the medical 3D printing center.

In the overload scenarios the demand is significantly increased to ensure that there is always a new
order available. This should provide insights on the performance boundaries of the system. Further on,
resources are increased to evaluate their impact on the performance.

The demand growth scenarios are a variation of the baseline scenarios. This scenarios should demonstrate
the effect of a growing demand over time. It should help to identify at which point of time the KPIs such
as throughput time increase significantly. This could indicate at which point of time it is required to invest
in more resources to maintain the performance.

Finally, the specific evaluation scenarios deal with the goal to evaluate which technology and process
improvements are required to achieve a certain throughput time. The targeted throughput time is based on
clinical demands for the production of implants.

Table 3: Overview of scenarios

Scenario
Group

Scenario

Simulation
time
[years]

Implant
orders

[#]

Anatomical
model
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Learning
curve

Demand
growth
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shift
[#]

Radiology
technologist /
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6 RESULTS

This section describes the results based on the outputs of the previously described scenarios. The outputs
are based on the average of 200 simulation runs. Table 4 shows a selection of operational KPIs for different
scenarios of the medical 3D printing center. The term “Implant” refers to patient specific implants and the
term “Model” refers to anatomical models. The column "Computer” only shows the value of the computer
with the highest workload, except for scenario 2_3 (double resources), where the value for the computer
with the second highest workload is also shown.

6.1 Baseline Scenarios

First the results of the baseline scenarios 1_1 - 1.3 are discussed. The comparison of 1_1 and 1_2 show
that due to the learning curve the median throughput times drop by 0,5 days. Even though more orders can
be finished, workloads can be reduced by 1 to 5%, depending on the resource type. Generally the learning
curve reduces the throughput time of orders by 12 hours. With two shifts (1_3) the average waiting time
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Table 4: Simulation results

Avg. throughput | Median through- | Min. through- | Avg. working time
time [days] put time [days] put time [days] [hours] VWEEAeEES (1]
Scenario £, KR Model Implant | Model Implant | Model Implant | Model Implant ngh. temp. LOW. temp. "[jec.:hn Rad.l o Comp-
orders [#] printer printer -ician logist uter
1.1 86 7,34 5,08 57 4,94 2,06 2,02 50,29 59,51 8 24 25 28 42
12 87 6,11 4,55 527 4,48 2,05 2,02 44,23 54,61 7 21 22 27 39
13 87 5,17 4,09 4,18 4,15 1,65 2,01 50,46 59,27 8 25 12 14 22
21 268 102,31 4498 97,08 47,58 2,13 2,82 43,82 54,3 28 51 104 132 127
22 341 78,21 2284 77,62 6,39 2,06 1,98 43,89 54,7 36 65 70 110 108
23 531 34,55 21,75 38,7 8,57 2,12 2,06 439 54,43 371723 48 147 90/85 130/130 124/124
2.4 349 53,17 62,65 59,2 64,74 2,12 2,82 43,89 54,23 18/8 43742 104 132 123
2.5 366 99,72 46,05 94,71 9,59 2,14 2,12 43,74 54,49 49 51 95736 124/125 124
2.6 476 73,11 12,78 74,41 7,69 1,82 1,98 43,81 54,65 64 68 56 95 94
2.7 542 20,26 34,65 19,7 8,96 1,96 1,91 43,94 54,59 55 53/54 94 98 /94 105
3.1 261 13,34 6,55 7,55 5,74 1,98 2,02 44,03 54,43 30 46 66 84 100
32 266 6,6 4,39 4,45 4,22 1,61 1,61 44,02 54,58 30 48 33 42 57
Avg. throughput Median through-  Min. through- Avg. working High temp. Low temp. Techn Radio- Comp-
Implants only : . . . . , an :
time [hours] put time [hours]  put time [hours] time [hours] printer printer -ician logist uter
4.1 58 12,96 6,00 4,08 5,04 0,.. - 3 1 3
42 58 10,56 4,32 2,88 3,43 0,.. - 2 1 2

drops by 40 to 50 hours. The higher reduction of throughput time of anatomical models can be justified
with the longer overall working and printing time. Whereas implants in our process always require 24
hours in sterilization, which is not required for anatomical models that are not supposed to be used in the
operating theater in our scenarios.

6.2 Overload Scenarios

In the overload scenarios 2_1 - 2_6 the system boundaries including bottlenecks of the medical 3D printing
center with different resources are examined. Here only orders with high priority are finished, which is also
proving the correct dispatch order of the simulation model. The workloads above 100% arise from allowing
overtime and calculating the workload with respect to the planned working hours. Meaning the current
activity is finished even if working time is over. Results show, on the one hand, that the best output in terms
of finished orders for anatomical models is the double resource scenario 2_3 due to their long printing time.
On the other hand the three shift scenario gives the best output for implants. This can be explained by the
fact that the average printing time of implants is lower and therefore the printer can be higher utilized in
three shifts. With respect to anatomical models three shifts without more printer-resources don’t increase
the performance. In all scenarios the radiology technologists is the bottleneck. This can be explained due
to the high segmenting and modeling activity duration. Implants, with less resource intense manufacturing,
are generally processed faster. Moreover, this scenario shows that the workload of printers can only be
raised with more staff available. With respect to limited resources, adding one radiology technologists and
one low temperature printer and operating with two shifts would give the best performance. This scenario
is evaluated in the additionally added scenario 2_7, which shows superior throughput times with just using
little more resources.

6.3 Demand Growth Scenarios

The results of the scenarios 3_1 and 3_2 show that due to increasing demand the workloads are 2-8% higher.
Compared to the one-year baseline scenario the effect of the learning curve can be seen in the minimum
throughput time of 1,61 days for anatomical models and implants. As a result of the increasing demand the
average and median throughput times are longer. A significant increase of the throughput times is noticeable
after three years. From this we infer that the demand at this point is the margin demand for the baseline
scenario resources to fulfill the process efficiently. At that point in time we recommend adding resources
to maintain the performance level of the medical 3D printing center of the first three years. Furthermore
in the long run the allocation of the working times referred to the main processes explained in section 4.1
can be determined. Manufacturing duration of anatomical models is predominantly defined by the printing
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time, which is 72% of the overall working time. For implants the sterilization requires with 45% most of
the time. As a result of the lower weight printing is here just 34% of the overall working time.

6.4 Specific Evaluation Scenarios

Scenarios 4_1 and 4_2 consider the goal of the CAMed project to print implants close to (a day before) or
even during surgery. Significant time reductions are required and can be reached with enhanced printing
technologies (faster printing) and with avoiding the need for additional sterilization e.g. by already producing
a sterile product. Moreover, the automation of segmenting and modeling activities, with computer-aided
software, is crucial for a short throughput time. Comparing to the baseline scenario, setup 4_1 brings
already a significant step towards the goal of 4 hours throughput time. Nevertheless the target is only
reached in the best case, see min. throughput time in table 4. To meet the target of 4 hours throughput
time in average our results suggest that the duration of order processing activities has to be shortened too.

7 CONCLUSION, LIMITATIONS, AND OUTLOOK

This paper presents the application of modeling and simulation in health care for the purpose of early
stage strategic decision making for the design of a medical 3D printing center at point of care. A scalable
simulation model was implemented and a scenario-based approach was applied to estimate the potential
for a daily clinical use. The results indicate potential operations performance and required resources for a
given demand. Various allocations of resources were evaluated to understand their potential impact on the
operations performance and to identify the levers for performance improvement. The effects of a learning
curve and a growing demand over time were also evaluated. In the demand growth scenarios it was shown
at what point of time it may be required to invest in additional resources to maintain the performance of the
medical 3D printing center. Additionally in the specific evaluation scenario it was shown that the simulation
model can also give indications for required technological enhancements and process improvements to
achieve certain targets. These results also indicate that, despite the early stage of the business and the
initially data-poor environment, the simulation model can serve as tool that supports the rough sizing of
a medical 3D printing center. Furthermore, a successful application of the HCCM framework and the
corresponding HCDESLIib has been shown.

Due to the early stage of the 3D printing research lab and the initially data-poor environment the
simulation model may not be complete and the data may not be accurate. At this point of time it was not
possible to validate the outputs of the simulation model with the real world, as the medical 3D printing
center for daily clinical use doesn’t exist yet.

The simulation model should act as base for further enhancements concerning the model and the ongoing
process of gaining more data from the real world. It should further support the activity of establishing
a medical 3D printing center at the hospital. It is planned to use the generated operational data for a
quantitative business case analysis to support the decision regarding the economic feasibility for daily clinic
operations. Further potential research activities are to integrate aspects of production planning and aspects
of synchronizing operation planning with the production process into the simulation model.
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