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ABSTRACT 

Simulation models are suitable tools to represent the complexity and randomness of hospital systems. To 

be used as forecasting tools during pandemic waves, it is necessary an accurate estimation, by using real-

time data, of all input parameters that define the patient pathway and length of stay in the hospital. We 

propose an estimation method based on an expectation-maximization algorithm that uses data from all 

patients admitted to the hospital to date. By simulating different pandemic waves, the performance of this 

method is compared with other two statistical estimators that use only complete data. Results collected to 

measure the accuracy in the parameters estimation and its influence in the forecasting of necessary resources 

to provide healthcare to pandemic patients show the better performance of the new estimation method. We 

also propose a new parameterization of the Gompertz growth model that eases the creation of patient arrival 

scenarios in the pandemic simulation. 

1 INTRODUCTION 

During pandemic waves, the demand for critical hospital resources like personnel and beds for both acute 

and critically ill patients greatly increases. Accurate forecasts of the required resources help their planning, 

which includes the procurement of equipment, and the redeployment of staff and other resources. 

Sometimes planning also requires the cancellation of elective surgeries. The challenge for healthcare 

planners in pandemic times is planning capacity to treat both pandemic and non-pandemic patient types. 

Simulation emerges as a suitable analytical tool to help hospital managers since it can represent the 

complexity of the hospital system and the variability and uncertainty of the healthcare that patients need. 

Currie et al. (2020) discuss how simulation modelling could help to support decision-makers in making the 

most informed decisions. Garcia-Vicuña et al (2020a) develop a simulation model to predict the necessary 

resources during a pandemic. The accuracy of the predictions made by such simulation models depends on 

accurate modelling of the resources and hospitalization time required by patients for recovery, as well as 

on good modelling of the arrival process of new patients to the health service. 

In this paper, we deal with the problem of getting reliable estimations of all the parameters that define 

the trajectory and length of stay (LoS) of patients in the hospital facilities. These parameters cannot be 

calibrated in advance by using historical data because each pandemic wave may have different 

characteristics, affecting different population groups with different intensity, and even change during the 

pandemic wave. However, during the first days, and even weeks, of the pandemic, few complete data are 

available since a significant proportion of patients are still admitted to the hospital. For this reason, it is 

essential to develop estimation methods that also take into account data coming from the patients of the 

current pandemic wave, even if this information is incomplete. 
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In this work, we present a new estimator that, based on an expectation-maximization (EM) algorithm, 

estimates the branching probabilities using information from patients who do not yet know which path they 

will follow, as well as the parameters of the LoS probability distributions. The estimation method is based 

on the maximum likelihood method and uses exact and censored data. The new estimators are tested by 

simulating pandemic scenarios and compared to other estimators that make use of complete information 

only. The patient arrival process is simulated by using growth Gompertz models. To ease the creation of 

different pandemic waves mimicking real ones we also propose a different parameterization of the 

Gompertz growth model. 

This paper is organized as follows. Section 2 introduces the population growth models, provides a new 

parameterization for the Gompertz model, and describes the patient pathways through the hospital. In 

Section 3 the estimation problem is set and the new estimator is proposed. The performance of the estimator 

is shown in Section 4. The paper ends with the conclusions in Section 5. 

2 PANDEMIC SIMULATION 

2.1 Population Growth Curves. The Gompertz Model. 

Population Growth models (PG) provide methods for modeling the number of cumulative positive cases, 

hospitalizations, and other pandemic variables. Some examples of PG models that have been found in the 

literature are the Gompertz (Gompertz 1825), the Richards (Richards 1959), the Stannard (Stannard et al. 

1985), and the logistic model (Ricker 1979). Growth curves are used in a large variety of scientific fields, 

including the modeling of the spread of outbreaks such as A/H1N1 and Ebola in (Liu et al. 2015), and to 

predict new infection cases caused by the SARS-CoV-2 virus in countries such as China (Shen 2020), India 

(Malavika et al. 2021), Spain (Sánchez-Villegas and Codina 2020), and other European countries (Cássaro 

and Pires 2020). These mathematical models depend on several parameters that can be estimated from real 

data sets. 

The Gompertz model shows a better fit to data of daily Covid-19 new cases as well as better predictive 

capacity than other PG models (Garcia-Vicuña et al. 2020a). This model was used in (Garcia-Vicuña et al. 

2020b) to fit daily hospitalized patient data series during a pandemic wave to predict the expected number 

of patients to be hospitalized each one of the next days. These expected values were used as the input of a 

non-homogeneous Poisson Process from which simulating sequences of patient arrivals. In the next 

subsection, we introduce a new parameterization easier to interpret and to use for creating pandemic 

scenarios over which running hospital simulation models. The new parameterization depends on three 

parameters that reflect the size, the temporal spread, and the temporal location of the pandemic. 

2.2 New Parametrization of the Gompertz Growth Model 

The original equation of the Gompertz model, proposed in (Gompertz 1825), was rewritten in 

(Zwietering et al. 1990) to ease the biological interpretation of its parameter as follows: 

 

 𝐺(𝑡) = 𝐴 exp (−exp (
K𝑒

𝐴
(𝐷 − 𝑡) + 1)) (1) 

where, 

 

 𝑒 = exp(1) 

 𝐺(𝑡) is the population size up to time 𝑡. 

 𝐴 is the upper asymptote of the curve. 

 𝐾 is the absolute growth rate of the curve at its inflection point. 

 𝐷, known as the lag time, is the time at which 𝐺(𝑡) = 𝐴𝑒𝑥𝑝(−𝑒), which means that it always 

occurs at the same percentage (6.6%) of the upper asymptote. 

 



Garcia-Vicuña and Mallor 
 

 

In the context of a pandemic mathematical modelling, parameter 𝐴 has a clear meaning: the total 

number of infected persons or the total number of hospitalized patients at the end of the pandemic wave, 

when the Gompertz curve is used to model the series of new positive cases or the hospitalization process, 

respectively. However, the parameter 𝐾  has no intuitive meaning, and health managers may have 

difficulties in assigning a value to it in order to create an “artificial” pandemic. To overcome this difficulty 

we propose to replace the parameter 𝐾 by other parameter linked with the duration of the pandemic wave. 

The new parameterization is obtained from equation (1) by calculating the percentile 𝑡𝑝 (𝐺(𝑡𝑝) = 𝑝𝐴) as 

𝑡𝑝 = 𝐺−1(𝑝𝐴): 

 

𝑡𝑝 = 𝐷 −
𝐴

K𝑒
[ln(− ln(𝑝)) − 1] 

 

Let us denote by 𝑇𝑝1,𝑝2
 the elapsed time between 𝑡𝑝1

 and 𝑡𝑝2
. 

 

𝑇𝑝1,𝑝2
= 𝑡𝑝2

− 𝑡𝑝1
=

[−ln(− ln(𝑝2)) + ln(− ln(𝑝1))]

𝑒

𝐴

K
=

𝐶𝑝1,𝑝2

𝑒

𝐴

K
 

 

Where, 𝐶𝑝1,𝑝2
 is a constant that depends on proportions 𝑝1 and 𝑝2. Then, the parameter 𝐾 is equal to 

𝐾 = 𝐶𝑝1,𝑝2
𝐴 (𝑒𝑇𝑝1,𝑝2

)⁄ , and substituting in (1), we obtain: 

 

𝐺(𝑡) = 𝐴exp (−exp (
𝐶𝑝1,𝑝2

𝑇𝑝1,𝑝2

(𝐷 − 𝑡) + 1)) 

 

To simplify this expression, we consider the length of the interval time associated to the central 

proportion 𝛼 of cases, that is, proportions 𝑝1 and 𝑝2 are defined as 𝑝1 = 𝛼 2⁄  and 𝑝2 = 1 − 𝛼 2⁄  to get the 

constant 𝐶𝑝1,𝑝2
= 𝐶𝛼  and the parameter 𝑇𝑝1,𝑝2

= 𝑇𝛼 . With 𝛼 = 0.1 , we obtain 𝐶𝛼 ≅ 4.0674  and the 

Gompertz curve is: 

 

 𝐺(𝑡) = 𝐴exp (−exp (
4.0674

𝑇0.1
(𝐷 − 𝑡) + 1)) (2) 

 

This new parameterization determines the Gompertz curve by setting the total number of cumulative 

cases at the end of the outbreak, the duration of the wave, and the time at which 6.6% of the total cases are 

reached. Therefore, giving values to parameters 𝐴, 𝑇0.1, and 𝐷, from equation (2), custom curves can be 

obtained in order to recreate an outbreak. Figure 1 shows nine different scenarios generated from the 

combination of the three parameters. In each row of graphs, two of the three parameters are held constant. 

Parameter 𝐴  is modified in the first row, 𝑇𝛼  in the second one, and 𝐷  in the third one. Note that the 

parameter 𝐷 affects only the displacement of the curve on the 𝑡-axis. Therefore, only two parameters need 

to be manipulated to modify the shape. 

2.3 Patient Flow Model 

A discrete simulation model is able to mimic the stay of each patient in the hospital facilities to get an 

estimation of the extra resources needed to attend to all Covid-19 patients (Garcia-Vicuña et al. 2020b). 

The simulation model reproduces the patient pathway outlined in Figure 2. Each patient arriving at the 

hospital can be admitted to the hospital ward or directly to the ICU. Besides, those patients admitted to the 

wards may worsen their health status and require the transfer to the ICU. From both facilities, patients can 

die, so they abandon the system, or they can be discharged after improving their health status. In the last 

situation, patients in the ICU would be transferred to the hospital ward until they get over the disease. 
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Figure 1: Nine Gompertz curves generated by fixing the three parameters of Equation 2. The effect they 

have on the curve can be clearly seen. 

The purpose of the simulation model is the short-term necessary resources prediction. Therefore, the 

precision of the predictions strongly depends on the model accuracy in representing the health system's 

initial state and the time evolution of the already admitted patients and the next patients to be admitted. 

Usually, when the simulation is intended to investigate the behavior of systems in the long term, in its 

stationary state, the mathematical modeling of the simulation input is done by using historical data which 

is used to fit parameters and probability distributions. Or, if no data is available, estimations can be based 

on data collected from an extensive questionnaire designed to elicit expert knowledge. In both cases, the 

estimated parameters do not change during the simulation (or they may change according to a predefined 

strategy). However, when the simulation is dynamically used in real-time and no historical data is available 

from previous experiences and expert opinions are considered not accurate enough, the estimation of the 

parameters should be done dynamically as new observations are collected. Our research focuses on this 

dynamical estimation of the input parameters of the simulation model. 

 

Figure 2: Representation of patient flow in the health system. 

3 SIMULATION INPUT: ESTIMATION OF PARAMETERS AND PROBABIITY 

DISTRIBUTIONS 

3.1 The Online Estimation Problem 

We consider the problem of estimating the parameters associated with the pathway and LoS of patients 

hospitalized during a pandemic. This is a non-stationary situation, in which hospitalization parameters may 
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vary between different waves, between different places, and evolve during the pandemic. We propose to 

estimate them by using all data collected during the pandemic wave in which the simulation model is being 

applied, that is, from the time the first infected patient was admitted until the present time. However, the 

use of data associated with patients still hospitalized is a complex task, not only because of censorship but 

it is also unknown which event will be observed in the future and then from which variable is observed the 

value. Specifically, it is unknown whether a patient who has been hospitalized for some time will be finally 

admitted to the ICU or not, so it is unknown whether the observed value of the stay is a censored data for 

the variable 𝑍, “time until admission to the ICU”, or for the variable 𝑋, “time to hospital discharge”. In this 

section, we propose an estimation method for the probability distributions of these variables, as well as the 

probability of admission to the ICU from the ward, 𝑝𝑊𝐼, that uses the information of all patients admitted 

currently at the hospital (Figure 3, left). The same estimation methodology can be applied, to the estimation 

of the probability distributions of 𝑌, “LoS in the ICU before being transfer to hospital ward”, and 𝑄, “LoS 
in the ICU until death”, and 𝑝𝐼𝑊, the probability of discharge to hospital ward (Figure 3, right). 

 

Figure 3: Parameters and probability distributions for modelling Ward-to-ICU transition (left) and ICU-to-

Ward transition (right). 

3.2 Data and Taxonomy of Patients 

Hospital electronic health record systems provide information at the patient level that allows knowing the 

pathway of all patients admitted at the hospital and their current location, ward or ICU, in the case they are 

still admitted. Pathway and current location result from the times at hospital admission and discharge (𝑡𝐻𝐴 

and 𝑡𝐻𝐷, respectively) and the times of ICU admission and discharge (𝑡𝐼𝐴 and 𝑡𝐼𝐷, respectively). 

Therefore, for each patient 𝑖 admitted to the hospital until time 𝑡, we suppose a known vector 𝒖𝒊(𝑡) that 

contains these four times (𝒖𝒊(𝑡) = [𝑡𝐻𝐴𝑖
, 𝑡𝐻𝐷𝑖

, 𝑡𝐼𝐴𝑖
, 𝑡𝐼𝐷𝑖]). At time 𝑡, not all four times have been observed 

or are exactly known for all patients. For example, for an already discharged patient 𝑖 from the hospital 

ward that did not need care in the ICU, the two components of vector 𝒖𝒊(𝑡) related with the ICU are not 

observed and are left “empty” (we denote by the symbol ∅ this situation): 𝒖𝒊(𝑡) = [𝑡𝐻𝐴𝑖
, 𝑡𝐻𝐷𝑖

, ∅, ∅]. For 

an admitted patient at the ICU at time 𝑡, it is known that both discharge times, from ICU and from hospital, 

will certainly happen but in a future time. This situation is denoted by 𝒖𝑗(𝑡) = [𝑡𝐻𝐴𝑗
, 𝑡, 𝑡𝐼𝐴𝑖

, 𝑡], and then 

𝑡 − 𝑡𝐼𝐴𝑖
 is a censored time for the LoS of this patient in the ICU. In turn, a patient 𝑗  with 𝑢𝑗(𝑡) =

[𝑡𝐻𝐴𝑗
, 𝑡, ∅, ∅] indicates that he/she is still admitted to the hospital, and his/her LoS is censored by the value 

𝑡 − 𝑡𝐻𝐴𝑗
 and that so far the patient has not required admission into the ICU but it is not known if the 

admission will happen or not. 

According to the values observed for the vector 𝑢𝑖(𝑡), 10 different types of patient states can be 

distinguished at time 𝑡. In the taxonomy of the type of patient, we use the letter 𝐻 to refer to the hospital 

ward and the letter 𝐼 to the ICU. The sequence of letters corresponds to the trajectory in the hospital 

facilities. The asterisk symbol (∗) indicates that the patient is still admitted into the facility indicated by the 

preceding letter, and therefore provides censored data. 

 

 𝐻: Patients with a full stay in the hospital ward who have not needed ICU ([𝑡𝐻𝐴, 𝑡𝐻𝐷 , ∅, ∅]). 

 𝐻∗: Patients with an incomplete stay in the hospital ward who have not needed ICU ([𝑡𝐻𝐴, 𝑡, ∅, ∅]). 

They do not have a discharge date and may or may not be admitted to the ICU. 
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 𝐻𝐼∗ : Patients with an incomplete stay in the ICU transferred from the hospital ward 
([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡], 𝑡𝐻𝐴 < 𝑡𝐼𝐴). 

 𝐻𝐼 : Patients died in the ICU after being transferred from the hospital ward 
([𝑡𝐻𝐴, 𝑡𝐻𝐷 , 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 < 𝑡𝐼𝐴, 𝑡𝐻𝐷 = 𝑡𝐼𝐷). 

 𝐻𝐼𝐻∗: Patients with a full stay in the ICU after being transferred from the hospital ward. They are 

still admitted to the hospital ward after leaving the ICU ([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 < 𝑡𝐼𝐴). 

 𝐻𝐼𝐻: Patients with a full stay in the ICU after being transferred from the hospital ward. They have 

been discharged from the hospital ward after leaving the ICU ([𝑡𝐻𝐴, 𝑡𝐻𝐷 , 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 < 𝑡𝐼𝐴, 𝑡𝐻𝐷 >
𝑡𝐼𝐷). 

 𝐼∗: Patients admitted directly to the ICU with an incomplete stay ([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡], 𝑡𝐻𝐴 = 𝑡𝐼𝐴). 

 𝐼: Patients admitted directly to the ICU who die there ([𝑡𝐻𝐴, 𝑡𝐻𝐷 , 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 = 𝑡𝐼𝐴, 𝑡𝐻𝐷 = 𝑡𝐼𝐷). 

 𝐼𝐻∗: Patients admitted directly to the ICU with a full stay. They are still admitted to the hospital 

ward after leaving the ICU ([𝑡𝐻𝐴, 𝑡, 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 = 𝑡𝐼𝐴). 

 𝐼𝐻: Patients admitted directly to the ICU with a full stay. They have been discharged from the 

hospital ward after leaving the ICU ([𝑡𝐻𝐴, 𝑡𝐻𝐷 , 𝑡𝐼𝐴, 𝑡𝐼𝐷], 𝑡𝐻𝐴 = 𝑡𝐼𝐴, 𝑡𝐻𝐷 > 𝑡𝐼𝐷). 

 

3.3 Maximum Likelihood Estimation at the End of the Pandemic Wave 

First, we address the problem of estimating the parameters and probability distributions involved in the 

patient transition Ward-to-ICU when, for each patient admitted to the hospital, the values of the vector 

𝑢𝑖(𝑡) are fully known. Therefore, the pandemic wave is over and all patients have been discharged from 

the hospital (classified in the types 𝐻, 𝐻𝐼, 𝐻𝐼𝐻, 𝐼 and 𝐼𝐻). 

For the rest of the paper we denote: 

 

 𝑛𝑇(𝑡) as the number of patients of type 𝑇 (generic) at time 𝑡. To simplify the notation, and when 

there is no confusion, we will use 𝑛𝑇 instead of 𝑛𝑇(𝑡). 

 𝑥(𝑡) = (𝑥1(𝑡), … 𝑥𝑖(𝑡), … 𝑥𝑛𝑋(𝑡)(𝑡)) the realization of the variable 𝑋, with 𝑥𝑖(𝑡) = 𝑡𝐻𝐷𝑖
− 𝑡𝐻𝐴𝑖

. 

 𝑧(𝑡) = (𝑧1(𝑡), … 𝑧𝑖(𝑡), … 𝑧𝑛𝑍(𝑡)(𝑡)) the realization of the variable 𝑍, with 𝑧𝑖(𝑡) = 𝑡𝐼𝐴𝑖
− 𝑡𝐻𝐴𝑖

. 

 𝜃𝑉 as the vector of parameters of the distribution function of variable 𝑉. 

 𝜃𝑉 as the estimation of the vector of parameters 𝜃𝑉. 

 𝐿𝑉(𝜃𝑉|𝑣(𝑡)): is the likelihood function of sample 𝑣(𝑡) used to estimate 𝜃𝑉. 

 

The estimation of the probability distribution parameters of the LoS variables 𝑋 and 𝑍 is done by the 

maximum likelihood method. 

 

𝐿𝑋(𝜃𝑋|𝑥(𝑡)) = ∏ 𝑓𝜃𝑋
(𝑥𝑖)

𝑛𝑋

𝑖=1

→ 𝜃𝑋 = arg max
𝜃𝑋

𝐿𝑋(𝜃𝑋|𝑥(𝑡)) 

𝐿𝑍(𝜃𝑍|𝑧(𝑡)) = ∏ 𝑓𝜃𝑍
(𝑧𝑖)

𝑛𝑍

𝑖=1

→ 𝜃𝑍 = arg max
𝜃𝑍

𝐿𝑍(𝜃𝑍|𝑧(𝑡)) 

 

Where 𝑓𝜃𝑋
(𝑥𝑖) and 𝑓𝜃𝑍

(𝑧𝑖) are the density functions of variables 𝑋 and 𝑍, respectively, and 𝑛𝑋(𝑡) =
𝑛𝐻(𝑡) and 𝑛𝑍(𝑡) = 𝑛𝐻𝐼(𝑡) + 𝑛𝐻𝐼𝐻(𝑡) are the sizes of the samples for variables 𝑋 and 𝑍. 

The probability 𝑝𝑊𝐼 is estimated by the observed ratio of patients that are admitted to ICU from wards: 

 

�̂�𝑊𝐼 =
𝑛𝐻𝐼 + 𝑛𝐻𝐼𝐻

𝑛𝐻𝐼 + 𝑛𝐻𝐼 + 𝑛𝐻𝐼𝐻
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3.4 The Expectation-Maximization Algorithm for Parameter Estimation during the Pandemic 

Wave 

In this subsection, we develop an algorithm to estimate the probability 𝑝𝑊𝐼 , and the parameters of the 

probability distributions of variables 𝑋 and 𝑍 at any time 𝑡 during the development of the epidemic wave, 

making use of the information of all patients that have been admitted so far at the hospital. Let us consider 

the variable vector 𝑊 = (𝑆, 𝛿)  with 𝑆  the time spent in hospital by a patient until discharge or until 

admission in the ICU and 𝛿 the indicator of whether the patient is admitted to the ICU or not. 

 

𝛿𝑖 = {
1 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐼𝐶𝑈        
0 𝑖𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝐼𝐶𝑈

 

 

Variable 𝑋, the time spent in hospital by a patient that is discharged from hospital with no admission 

in the ICU, verifies that 𝑋 ≡  𝑆|𝛿 = 0 , and 𝑍 , the time spent in hospital by a patient before his/her 

admission in the ICU is 𝑍 ≡  𝑆|𝛿 = 1. At the end of the pandemic the value of 𝛿𝑖 is observed for each 

patient 𝑖 admitted to the hospital. However, at a time 𝑡, when the pandemic is not over, the value of 𝛿𝑖 is 

not known for patients already admitted at the hospital ward that have not been admitted in the ICU. 

Specifically, for each patient 𝑖 of type H (𝑡𝐻𝐷𝑖
< 𝑡 ) or types 𝐻𝐼, 𝐻𝐼𝐻, 𝐻𝐼∗, 𝐻𝐼𝐻∗ ( 𝑡𝐼𝐴𝑖

< 𝑡) the value 

of the indicator variable 𝛿𝑖  has been observed, and the vector 𝑤𝑖 = (𝑠𝑖 , 𝛿𝑖) provides an observation for 

variable 𝑋 in case 𝛿𝑖 = 0 (𝑥𝑖 = 𝑠𝑖), or for 𝑍 in case 𝛿𝑖 = 1 (𝑧𝑖 = 𝑠𝑖). However, for each patient 𝑖 of type 

𝐻∗ (with 𝑡𝐻𝐴𝑖
< 𝑡, 𝑡𝐻𝐷𝑖

> 𝑡 𝑎𝑛𝑑 𝑡𝐼𝐴𝑖
> 𝑡 or ∅ ) the variable 𝛿𝑖 has not been observed at time 𝑡, and then 

𝑡 − 𝑡𝐻𝐴𝑖
 is a censored time that is not known to which variable corresponds, 𝑋 or 𝑍. 

Suppose that at time 𝑡 of the pandemic there are 𝑛(𝑡) patients that have been admitted at a hospital 

ward. We denote as 𝒘(𝑡) = (𝑤1(𝑡), … 𝑤𝑖(𝑡), … 𝑤𝑛(𝑡)(𝑡)) the realization of the variable 𝑊 in these 𝑛(𝑡) 

patients. The vector 𝒘(𝑡)  can be divided in two parts 𝒘(𝑡) = (𝒘𝑭(𝑡), 𝒘𝑰(𝑡)) : 𝒘𝑭(𝑡) , contains the 

observations of patients for which the value of 𝛿𝑖 has been observed, and 𝒘𝑰(𝑡) contains the observations 

of those patients with unknown value for 𝛿𝑖. We have developed an iterative procedure, based on the EM 

(Expectation-Maximization) algorithm, to estimate the distribution functions of variables 𝑋 and 𝑍 and the 

probability 𝑝𝑊𝐼. First, an initial estimation of the parameters is carried out by only using the fully-known 

data (those observations with known value for 𝛿𝑖). In the main iteration, the estimated parameters are used 

to update the probability of being admitted to the ICU for each one of the patients admitted in the ward. 

These updated probabilities are used to calculate a new likelihood function for the parameters, which is 

maximized to obtain a new estimation of the probability distribution parameters. These two steps (updating 

ICU admission probabilities and getting and maximizing new likelihood function) are repeated until 

stopping criteria are met. We use the following additional notation: 

 

 𝜃𝑋
(𝑘)

: is the estimation of vector 𝜃𝑋 in the 𝑘-th iteration of the algorithm. 

 𝜃𝑍
(𝑘)

: is the estimation of vector 𝜃𝑍 in the 𝑘-th Iteration of the algorithm. 

 �̂�𝑋
(𝑘)(𝑥) = 𝐹𝑋 (𝑥; 𝜃𝑋

(𝑘)
): is the distribution function of 𝑋 with parameters 𝜃𝑋

(𝑘)
. 

 �̂�𝑍
(𝑘)(𝑥) = 𝐹𝑍 (𝑥; 𝜃𝑍

(𝑘)
): is the distribution function of 𝑍 with parameters 𝜃𝑍

(𝑘)
. 

 �̂�𝑊𝐼
(𝑘)

: is the estimation of the probability 𝑃𝑊𝐼 in the 𝑘-th iteration of the algorithm. 

 𝑛𝐹(𝑡): number of patients with full information at time 𝑡 (the size of vector 𝒘𝑭(𝑡)). 

 𝑛𝐼(𝑡): number of patients with incomplete information at time 𝑡 (the size of vector 𝒘𝑰(𝑡)). 

 

To simplify the notation, and when there is no confusion, we will use 𝑛𝐹 and 𝑛𝐼, instead of 𝑛𝐹(𝑡) and 

𝑛𝐼(𝑡), respectively. 

Steps of the algorithm 

1. Initialization. 

 𝑘 = 0 

Estimate the parameters 𝜃𝑋, 𝜃𝑍 and the probability 𝑃𝑊𝐼  by using the data in the vector 𝒘𝑭(𝑡): 
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�̂�𝑊𝐼
(k)

=
1

𝑛𝐹
∑ 1{𝛿𝑖=1}

𝑛𝐹

𝑖=1

 

𝐿𝑋
(k)(𝜃𝑋|𝒘𝑭(𝑡)) = ∏ 𝑓𝜃𝑋

(𝑠𝑖)

𝑛𝐹

𝑖=1

(1 − 𝛿𝑖) → 𝜃𝑋
(k)

= arg max
𝜃𝑋

𝐿𝑋
(k)(𝜃𝑋|𝒘𝑭(𝑡)) 

𝐿𝑍
(k)(𝜃𝑍|𝒘𝑭(𝑡)) = ∏ 𝑓𝜃𝑍

(𝑠𝑖)

𝑛𝐹

𝑖=1

𝛿𝑖 → 𝜃𝑍
(k)

= arg max
𝜃𝑍

𝐿𝑍
(k)(𝜃𝑍|𝒘𝑭(𝑡)) 

 

2. Repeat until the stop criteria is met. 

Iteration 𝒌 + 𝟏. From the 𝑘-th iteration, 𝑘 ≥ 0, we know the estimations 𝜃𝑋
(𝑘)

, 𝜃𝑍
(𝑘)

, and �̂�𝑊𝐼
(𝑘)

; of the 

parameters 𝜃𝑋1
, 𝜃𝑍, and the probability 𝑃𝑊𝐼 . 

The iteration is divided into two steps: in the first one the calculation of the expected value of the 

indicator function 𝛿𝑖  in each patient with incomplete data is carried out, which allows estimating the 

probability of admission in the ICU, 𝑃𝑊𝐼, and the expectation of the likelihood function when all data, 

complete and incomplete, are considered. The second step estimates 𝜃𝑋  and 𝜃𝑍  by maximizing the 

likelihood functions estimated in the previous step. 

2.1 Expectation. 

For each patient 𝑖, the probability of being admitted to the ICU is updated as the posterior probability 

given the time already spent at the ward: 

 

�̂�𝑖
(𝑘+1)

≡ �̂�(𝑘+1) (𝛿𝑖 = 1 |�̂�𝑊𝐼
(𝑘)

, 𝜃𝑋
(𝑘)

, 𝜃𝑍
(𝑘)

) =
(1 − �̂�𝑍

(𝑘)
(𝑠𝑖)) �̂�𝑊𝐼

(𝑘)

(1 − �̂�𝑍
(𝑘)

(𝑠𝑖)) �̂�𝑊𝐼
(𝑘)

+ (1 − �̂�𝑋
(𝑘)

(𝑠𝑖)) (1 − �̂�𝑊𝐼
(𝑘)

)
 

 

The updated probabilities of being admitted in ICU for each patient of type H* allows to update the 

unconditional probability of admission in the ICU: 

 

�̂�𝑊𝐼
(𝑘+1)

= 𝐸 [𝛿 = 1 |�̂�𝑊𝐼
(𝑘)

, 𝜃𝑋
(𝑘)

, 𝜃𝑍
(𝑘)

] =
1

𝑛(𝑡)
∑ 𝐸[1{𝛿𝑖=1}]

𝑛(𝑡)

𝑖=1

=
1

𝑛(𝑡)
(∑ 1{𝛿𝑖=1}

𝑛𝐹

𝑖=1

+ ∑ �̂�𝑖
(𝑘+1)

𝑛𝐼

𝑖=1

) 

 

and, the likelihood functions of the sample as expected functions: 

 

𝐿𝑋
(𝑘+1)(𝜃𝑋|𝒘(𝑡)) = 𝐸[𝐿𝑋(𝜃𝑋|𝒘(𝑡))] = ∏ 𝑓𝜃𝑋

(𝑘)
(𝑠𝑖)

𝑛𝐹

𝑖=1

(1 − 𝛿𝑖) ∏ (1 − 𝐹𝜃𝑋

(𝑘)
(𝑠𝑖))

𝑛𝐼

𝑖=1

(1 − �̂�𝑖
(𝑘+1)

) 

𝐿𝑍
(𝑘+1)(𝜃𝑍|𝒘(𝑡)) = 𝐸[𝐿𝑍(𝜃𝑍|𝒘(𝑡))] = ∏ 𝑓𝜃𝑍

(𝑘)
(𝑠𝑖)

𝑛𝐹

𝑖=1

𝛿𝑖 ∏ (1 − 𝐹𝜃𝑍

(𝑘)
(𝑠𝑖))

𝑛𝐼

𝑖=1

�̂�𝑖
(𝑘+1)

 

 

2.2 Maximization. The likelihood functions are maximized to find the estimation of the parameters. 

 

𝜃𝑋
(𝑘+1)

= 𝑎𝑟𝑔 max
𝜃𝑋

(𝐿𝑋
(𝑘+1)(𝜃𝑋|𝒘(𝑡))) 

𝜃𝑍
(𝑘+1)

= 𝑎𝑟𝑔 max
𝜃𝑍

(𝐿𝑍
(𝑘+1)(𝜃𝑍|𝒘(𝑡))) 
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3. Stop criteria. Repeat Step 2 until the sequence of values of the likelihood function or the values 

of the estimated parameters converges: 

 

|𝐿𝑋
(𝑘+1)

(𝜃𝑋|𝒘(𝑡)) − 𝐿𝑋
(𝑘)

(𝜃𝑋|𝒘(𝑡))| ≤ 𝜀1 

|𝜃𝑋
(𝑘+1)

− 𝜃𝑋
(𝑘)

| ≤ 𝜀2 

 

4 RESULTS 

4.1 Experimental Design 

A simulation experiment has been designed to validate the estimation method developed in Section 3 

(named EM method) and its impact on the quality of the predictions made on the necessary resources, 

specifically, about the necessary ICU beds. The simulation of a pandemic wave requires the simulation of 

the patient arrival process, which is carried out using the Gompertz model exposed in (2), and the generation 

of a trajectory in the hospital for each patient, which is carried out according to the flow of patients shown 

in Figure 2. 

Specifically, generated pandemic waves mimic those observed in reality (Garcia-Vicuña et al. 2020a) 

with the parameters for the arrival and hospitalization processes described below. Each pandemic wave 

simulation generates data over time that is used to test the performance of the proposed estimation method 

EM and its comparison with the other two estimation methods. The results about the estimation accuracy 

are shown in Section 4.2 and the impact on the precision of the predictions in Section 4.3. 

Gompertz model parameters. Patient arrivals are generated according to the accumulated curve 

described by equation (2) with parameters 𝐴 = 2000, 20000, 𝑎𝑛𝑑 100000, 𝑇0.1 = 60, and 𝐷 = 18. That 

is, a pandemic wave that spreads 60 days (to account for the 90% central cases) and varying sizes, from 

2000 (corresponding to a small region) to 100000 (corresponding to a medium-size country). Daily 

admissions are determined by the difference between the value of the Gompertz curve in two consecutive 

days, rounded to the nearest integer number. 

Patient hospital path. Probability distributions for the LoS are assumed to be Weibull (𝑊(𝛼, 𝛽), where 

𝛼 is the scale parameter and 𝛽 the shape parameter): LoS in the hospital ward of a patient not needing ICU 

(variable 𝑿) 𝑊(10.74, 1.25), the time spent by a patient in the hospital ward before transfer to the ICU 

(variable 𝒁) 𝑊(5.06, 0.98). In addition, the LoS of a patient in the ICU 𝑊(18.91, 1.15), and the LoS of a 

patient in the hospital ward after being discharged from the ICU 𝑊(12.90, 1.4). 

The probability of a patient initially admitted to a ward requiring transfer to ICU (𝑝𝑊𝐼) (0.073). In 

addition, the probability of direct admission to ICU upon arrival (0.021), and the probability of patient 

transfer from ICU to hospital ward (0.75). 

Estimation methods. Three parameter estimation methods are compared. The first one consists of 

assuming that all available information is completely known (method 𝐼). That is, the probability 𝑝𝑊𝐼 is 

estimated by the ratio of patients that were admitted at the ICU divided by patients admitted at a hospital 

ward, to date. Therefore times at the hospital of patients of type 𝐻∗ are considered censored times for 

variable 𝑋. The second method is similar to the first one, but only patients that were admitted more than 5 

days before are considered for the estimation calculations (method 𝐼-5). This avoids overestimating the 

number of patients who will not require ICU in the future. Finally, the third method is the one developed 

in Section 3.3 (method 𝐸𝑀). 

4.2 Parameter Estimation Accuracy 

This section assesses the accuracy in the estimation of the probability 𝑝𝑊𝐼  and the scale and shape 

parameters of the Weibull distribution of variables 𝑋 and 𝑍 as the pandemic progresses. The simulation 
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model recreates the patients' arrival and their stay at the hospital according to the parameters and probability 

distributions fixed in Section 4.1. After simulating one day of the pandemic, the three estimation methods 

are applied to estimate the probability parameters and distributions. The results of these estimations are 

shown in Figure 4. Therefore, the differences in the estimations produced by the three methods are assigned 

to the differences in their prediction capability and not to the randomness of the simulation because it is 

controlled and the same for each method. 

Figure 4 shows the evolution of the estimation of parameters 𝑝𝑊𝐼 and 𝜃𝑍 over time (𝜃𝑋 values show 

small differences among different methods). Each pandemic scenario is simulated 10 times and the results 

show the estimation averages over the 10 runs. The three methods provide results that converge to the true 

value of  the estimated parameter. However, the method 𝐸𝑀 has a fast convergence in all simulated cases, 

which turns to be important when the simulation model is used as a prediction tool for the resources needed 

in the future, as we expose in the next subsection. 

 

Figure 4: Estimation of parameters 𝑝𝑊𝐼 and 𝜃𝑍 over time (the horizontal axes represent the time during the 

pandemic) with the 3 methods (𝐼, 𝐼-5, and 𝐸𝑀) and the real values. Results are shown for different values 

of parameter 𝐴 of the Gompertz curve (2000, 20000, and 100000). 

4.3 Impact on the Simulation Output. Bed Occupancy Prediction Accuracy 

The objective of the simulation model is to predict the future bed occupancy level during the course of the 

pandemic wave. The predictions of the simulation model are obtained by the statistical analysis of the output 

of many simulation model runs. In this section, we evaluate the quality of the predictions made with the 

simulation model with each of the three estimation methods. For each estimation method, predictions are 

obtained at different times of the pandemic evolution by simulating patient pathways and LoS by using the 

respective estimated branching probabilities and probability distribution parameters. The results obtained 

from each method are compared with those obtained by simulating using the true value of the parameters 

and probabilities. 
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Once the prediction day is set, many simulations are run with each method and the predictions obtained 

are compared with those made from the actual parameters. Figure 5 shows nine predictions of ICU bed 

occupancy made with all methods from 3 different days (20th, 25th, and 30th). Note that these days are 

quite far away from the peak occupancy. The green line in each graph represents the evolution of the 

simulated pandemic up to the Simulation Starting Point (SSP), which is represented by a black dot. For 

each prediction, the 5th percentile (P5) and the 95th percentile (P95) are plotted. As the pandemic progresses, 

the predictions of occupation become closer to reality. But in all cases, the 𝐸𝑀 method is the closest. 

 

Figure 5: Prediction of ICU bed occupancy on the 20th, 25th, and 30th days of the pandemic with the 3 

methods (𝐼, 𝐼-5, and 𝐸𝑀) compared to prediction with actual parameters. 

5 CONCLUSIONS 

In this work, we have proposed a new method suitable for the online estimation of hospital simulation-

model input parameters. The method is based on an EM algorithm which allows the use of the data provided 

by all patients admitted so far. This characteristic is a big advantage when only a small ratio of patients 

have been discharged and can provide full information about their hospital pathway and LoS. Simulation 

tests have shown a better performance than other estimation methods that use only complete information. 

Poor estimation of the parameters and probabilities leads to poorer estimations of the output variables of 

interest as the number of beds necessary to attend to all pandemic coming patients. 

The estimation method has been applied to the estimation of the admission probability to the ICU from 

the ward and to the parameters of the probability distributions of variables LoS in the hospital ward and the 

time to admission to the ICU. The same stochastic situation occurs for the admitted patients to the ICU, 

since it is unknown whether at the end of their stay they will be transferred back to the ward, due to 

improved health, or will leave the ICU due to death. The application of the estimation method to this case 

allows estimating the probability of recovery, and the parameters of the probability distributions of the time 

until transfer to the ward and the time until death. 
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Note that, in addition to the probabilities and parameters set forth above, it is only necessary to estimate 

the probability of direct admission to the ICU and the LoS in the ward after transfer from the ICU to 

complete the estimation of all the variables and parameters that describe the randomness of the pathways 

and LoS of patients through the hospital, as it is described in Figure 2. The probability of direct admission 

to the ICU is estimated by means of the observed proportion, which obviously uses the information of all 

the patients admitted so far. The probability distribution parameters of the LoS in the hospital ward after 

ICU can be estimated by maximum likelihood: those patients already discharged provide an exact value, 

while those who are still hospitalized provide a censored value. 
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