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ABSTRACT 

Environmental change interacts with population migration in complex ways that depend on interactions 
between impacts on individual households and on communities. These coupled individual-collective 
dynamics make agent-based simulations useful for studying environmental migration. We present an 
original agent-based model that simulates environment-migration dynamics in terms of the impacts of 
natural hazards on labor markets in rural communities, with households deciding whether to migrate based 
on maximizing their expected income. We use a pattern-oriented approach that seeks to reproduce observed 
patterns of environmentally-driven migration in Bangladesh. The model is parameterized with empirical 
data and unknown parameters are calibrated to reproduce the observed patterns. This model can reproduce 
these patterns, but only for a narrow range of parameters. Future work will compare income-maximizing 
decisions to psychologically complex decision heuristics that include non-economic considerations. 

1 INTRODUCTION 

Understanding how environmental and climatic stress impact human mobility is important for improving 

fundamental knowledge of coupled human and natural systems, and for applying that knowledge to 

planning regarding adaptation to climatic change. Human migration is complex, and environmental stress 

may influence migration decisions in many ways. This complexity has produced a range of approaches to 

modeling environment-migration interactions, with many unresolved questions about which approach is 

best (McLeman 2013; Neumann and Hilderink 2015; Piguet 2010).  

 Agent-based models (ABMs) are an especially promising approach to studying environmental 

migration. ABMs are particularly powerful in representing dynamics between individual-scale and 

collective or community-scale phenomena, and to incorporate psychological and sociologically complex 

decision processes (Thober et al. 2018; An 2012; Klabunde and Willekens 2016). However, only a limited 

number of agent-based models have been used to study environmental migration (Thober et al. 2018).  

 Bangladesh presents an ideal location for studying environment-migration dynamics. It is considered 

one of the most climate vulnerable countries in the world, as well as a location with a naturally dynamic 

environment and complex history of migration (Amrith 2013). Previous work based on longitudinal 

migration histories of rural households in Bangladesh found that drought-induced crop loss had a strong 

effect on internal migration, whereas flooding did not, thus demonstrating the importance of economic 

disruptions for migration in the region (Gray and Mueller 2012). As a response to environmentally-induced 
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livelihood disruption, Gray and Mueller (2012) observed that as the fraction of the community affected by 

an environmental event increased, rates of out-migration dropped at first, and then rose after the fraction 

impacted crossed a threshold. They also found that individual households directly impacted by an 

environmental shock were less likely to migrate than other households within an affected community.  

 Here, we present an original ABM of internal environmental migration from rural villages in 

Bangladesh in which agents make decisions to maximize their household’s expected utility in the form of 

annual income. This work investigates whether an agent-based simulation of local labor markets can 

reproduce the two key patterns of environmental migration observed by Gray and Mueller (2012) in 

Bangladesh. The model allows both community-level and household-level dynamics to influence livelihood 

and migration decisions.  This model also serves as a starting point for future investigations into interactions 

among environmental, social, and behavioral influences on migration. 

2 BACKGROUND 

2.1 Agent-based Modeling to Study Environmental Migration 

The impacts of environmental factors on population mobility are complex, and may be confounded or 
mitigated by economic, political, social, and cultural factors (Obokata et al. 2014; Black et al. 2011; Hunter 

2005). Agent-based modeling is well-suited to analyze the interactions between environmental change and 

migration because of their ability to incorporate nonlinear interactions among individuals and investigate 
the dynamics by which large-scale collective phenomena emerge from individual actions (Thober et al. 

2018). DeAngelis and Diaz (2019) emphasize that ABMs are powerful tools because they can describe 

decision making and the impacts of decisions in great detail. However, Thober et al. (2018) find that few 

existing ABMs of environmental migration fully integrate the social and ecological systems.  
 Pattern-oriented modeling offers a valuable methodological framework for assessing ABMs in terms 

of their ability to simultaneously reproduce multiple patterns observed in a complex system (Grimm et al. 

2005). Pattern-oriented modeling is especially useful when the system exhibits multiple patterns at different 
scales. Pattern-oriented modeling offers a systematic approach to selecting models and parameterizations, 

and provides clear and useful criteria for testing and validating models (Grimm et al. 1996). We followed 

a pattern-oriented approach in this work because of the complexity of human migration and the availability 
of well-known patterns against which to test our model (Gray and Mueller 2012). 

Agent-based modeling had not been widely applied to environmental migration in Bangladesh, though 

two noteworthy examples were identified (Hassani-Mahmooei and Parris 2012; Bell et al. 2021). Hassani-
Mahmooei and Parris (2012) developed an agent-based model to simulate migration decisions between 
districts based on 10 heuristics as well as “push”, “pull”, and “intervening” factors related to climate change 
scenarios, socioeconomic conditions, and employment. Hassani-Mahmooei and Paris (2012) use the model 
to predict that between 3 and 10 million people in Bangladesh will migrate internally over 40 years, 
especially from coastal areas. Bell et al. developed an ABM of household-level migration within 
Bangladesh, also using a range of “push”, “pull”, and “mooring” factors, though with more complex 
decision-making by also incorporating individual perceptions and place-attachment (Bell et al. 2021; Bell 
et al. 2019). They applied this model to migration responses to different scenarios of sea level rise to show 
that sea level rise is not likely to result in migration away from coasts (Bell et al. 2021). The stark differences 
in the findings between these two works highlight the existing need to refine ABMs of environmental 
migration in the region, as well as the importance of selecting the correct decision-making method.    

2.2 Study Area 

Bangladesh is a flat low-lying country located in the Ganges-Brahmaputra-Meghna Delta along the coast 

of the Bay of Bengal, with a strong monsoon climate. Due to its unique location and geological setting, 
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Bangladesh faces many environmental vulnerabilities including seasonal flooding, frequent exposure to 
tropical cyclones, vulnerability to sea level rise, and rapid land erosion and accretion (Call et al. 2017; 

Dewan et al. 2007; Dewan and Yamaguchi 2009; Hallegatte 2012; Higgins et al. 2014; Islam and Sado 

2000; McGranahan et al. 2007; Auerbach et al. 2015). Further complicating environmental vulnerability, 

Bangladesh is also one of the most densely populated countries in the world, with more than 160 million 
individuals living within an area of just under 150,000 km2 (World Bank 2021). At the same time, most 

people living in Bangladesh are highly dependent on their natural environment for livelihood opportunities, 

especially in agriculture and aquaculture (Tessler et al. 2015).  
 Migration is a common and long-standing strategy in Bangladesh for adapting to challenging 

environmental and social conditions (Alam et al. 2017; Amrith 2013; Black et al. 2005; Martin et al. 2014). 

As such, environmentally induced migration has also been widely studied in Bangladesh (Ahsan et al. 2011; 
Call et al. 2017; Chen and Mueller 2018; Donato et al. 2016; Gray and Mueller 2012, 20; Islam 2017; 

Joarder and Miller 2013). Regular seasonal migration, both rural-rural and rural-urban, plays an important 

role in the Bangladeshi economy (Mobarak and Reimão 2020; Lagakos et al. 2018; Akram et al. 2018), but 

migration in response to acute stress, such as natural disasters, has very different characteristics: it is 
predominantly rural to urban and of indeterminate duration (Mallick and Vogt 2014; Islam and Mehedi 

2016; Kartiki 2011). There is little agreement in the literature as to how environmental changes influence 

migration patterns, and results vary widely based on specific location, methodology, and type of 
environmental impact studied.   

2.3 Patterns of Migration 

We use a pattern-oriented approach to developing and validating our ABM. Gray and Mueller (2012) 

identified two distinct patterns of internal long-distance migration from rural Bangladeshi villages in 

response to drought-induced crop failure: 
 

• Pattern 1: As the proportion of a community impacted by environmental shock increases, rates of 
migration initially decrease below the baseline levels, but then increase, especially above a 

threshold where approximately 20% of the community is impacted. This shows that individual 

migration decisions are strongly influenced in a non-linear manner by community-level impacts. 

• Pattern 2: Households that are directly impacted by environmental shock are less likely to migrate. 
Migration is costly, and affected households may wish to migrate but lack the means to do so.  

 

 These patterns serve as the key patterns that this ABM aims to reproduce at the community level 

(Pattern 1) and the household level (Pattern 2). Both patterns demonstrate that household migration 
decisions are strongly influenced in a non-linear manner by community-level phenomena. Gray and Mueller 

speculate that these effects may be due to the economic effects of environmental shocks on communal risk-

sharing and local labor markets. Related research in four African countries also finds that environmental 
impacts on labor markets play a central role in migration (Mueller et al. 2020). Our model seeks to test this 

hypothesis as an explanation for the patterns in the context of purely economic decision heuristics.  

3 MODEL DESIGN 

3.1 Model Structure and Entities 

Our ABM simulates household decisions whether to migrate under environmental stress. We use the model 

to study relationships between environmental stress and changing livelihood opportunities with regard to 
their impact on mobility patterns. A complete description of the model based on the ODD protocol (Grimm 

et al. 2006; Grimm et al. 2010) and model code are available online (Best 2021). The model is implemented 

in Python and can be run on an ordinary computer. The model has no explicit spatial character. Each time 

step represents one year. A single model run of 20 time steps takes a few seconds.  

https://zenodo.org/record/4526330#.YEzwepNKgUs
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 This model has entities representing individuals, households, and communities. Individuals have 
attributes of gender, age, and employment and corresponding wages, and are assigned to a household. 

Households consist of one or more individuals and have attributes of wealth, land, employees, payments 

and expenses. Each household also has a decision method, which it uses to decide whether or not to send a 

member to seek work outside the community. Each household belongs to a community. The community 
has employment opportunities in agriculture and in skilled and unskilled non-agricultural occupations.  

 Communities are situated within an environment, which stochastically produces environmental “shocks” 

that impact employment opportunities in the community and the wealth of affected households. Figure 1 
shows a schematic of the model’s entities and their relationships.  

 

 
 

Figure 1: Class diagram of model entities with primary variables and operations. 

 

 In addition to entities, the model has a series of global variables including:  
 

• Migration utility – The utility of a household sending a migrant in Bangladeshi taka (BDT) 

• Cost of migration – The cost of sending a migrant (in BDT)  

• Number of households 

• Number of individuals 

• Number of steps to run the model 

• Wealth factor – The mean wealth of households. Household wealth is initialized from a normal 
distribution with this factor as the mean. 

• Shock probability – The probability of an environmental shock in a time step. 

• Shock severity – Either a number between 0 and 1 or a probability distribution on the domain [0,1]. 

When a shock strikes a community, this determines the fraction of households that are affected. 
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 Empirical data from the southwestern coastal region of Bangladesh was used to parameterize the ABM 
(Carrico and Donato 2019; Adams et al. 2016). For each parameter, the available dataset was used to fit a 

distribution or obtain estimates of the parameter in the case of salaries and expenditures (Table 1).  

 

Table 1: Data sources and distributions for model parameterization 
 

Model parameter Distribution Source 

Wealth distribution  Normal Adams et al. 2016 

Household size distribution Poisson Carrico and Donato 2019 

Land owned distribution Lognormal  Carrico and Donato 2019 

Age distribution Weibull Carrico and Donato 2019 

Wage and expenditure estimates NA Adams et al. 2016 

 

3.2 Process and Scheduling 

Each simulation begins by creating and initializing individuals, households, and a community. The number 

of individuals and households remain fixed throughout the model run. Individuals are assigned to a 

household, and a head-of-household is selected from the adult members. Each time-step represents one year. 
Each year begins with the community facing a stochastic risk of an environmental shock, which causes 

some households to lose their crops for the season. If a shock occurs, the fraction of households that lose 

their crops is determined by the magnitude of the shock, which is either a constant value or is drawn from 
a probability distribution, as specified by the global shock severity variable.  

 Next, individuals who are eligible to migrate (males over the age of 14) assess their employment 

opportunities within the community. Individuals in households that own large amounts of land may work 

in agriculture on their own land. Individuals in households without sufficient land or that have lost crops to 
environmental shocks may seek agricultural employment. Households with sufficient land and wealth, 

which have not lost crops to shocks may seek to hire laborers. Individuals who are unable to obtain 

agricultural employment may seek other employment within the community. A specified number of jobs 
are classified as “skilled” and pay more than unskilled non-agricultural jobs. A labor market uses a 

simultaneous double auction to match job seekers with employers and establish wages for agricultural work. 

 After each individual has selected an employment opportunity within the community, the household 
aggregates the total utility of its members and then decides as a household whether to send a migrant to 

seek employment outside the community. The model does not account for different possible destinations, 

but treats migration generically as an economic opportunity outside the community. Each household has a 

DecisionMethod object (Figure 1), which provides a function that implements the decision. In our initial 
implementation, all households decide by maximizing their expected utility, but the model allows for 

alternate decision heuristics, which can vary from household to household.  

 If a household elects to send a migrant, then that individual no longer participates in the community but 
contributes to the household’s wealth by sending remittances from his destination at each future time-step. 

Each household then updates its wealth, each individual ages by one year, and the time-step ends. The 

wealth at the end of time-step, t, is the wealth at the previous time-step, t-1, plus the wages of all employed 

members, plus any income from land that is not affected by environmental shocks, minus any expenses and 
payments to employees:  
 

Wealtht = Wealtht-1+ ∑ (Wagesi,t) + LandProductivity
t
 - individuals

i=1 Expenses
t 
- ∑ Payment

e,t

employees

e=1           (1) 
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Figure 2 shows an overview of the model scheduling for each step. This process repeats for a specified 

number of steps (years). 
 

  
Figure 2: Scheduling of each step of the model for community, individual, and household entities. 

3.3 Migration Decision 

Agent decision rules are critically important to ABMs. Decision rules in ABMs of migration have varied 

from minimalist processes, such as random Bernoulli processes, to simple expected utility maximization, 
to heuristics with intermediate complexity, to representations of more complex strategic and behavioral 

theories (Klabunde and Willekens 2016; Thober et al. 2018). In our model, households make migration 

decisions to maximize expected annual income. A purely economic model provides one plausible 
explanation for the observed migration patterns and also serves as a baseline for assessing whether a simple 

economic decision heuristic can reproduce those patters. We have designed the model to serve as a test-bed 

for comparing different decision heuristics in future research. 

 At the point of decision-making, each household randomly selects an eligible migrant from its members. 
Eligible migrants are any male individual over the age of 14.  The household then assesses whether that 

individual’s migration would result in a greater income, compared to the individual’s potential employment 

within the community. At this stage of the model, the migration decision is a simple binary. If the migration 
would be beneficial for the household and the household has sufficient wealth to meet the cost of migration, 

then that individual will “migrate” and only contribute to the model by contributing its income representing 

remittances at each subsequent step. After a migrant is initially sent, a household subtracts the cost of 
migration from its wealth. 
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4 RESULTS 

4.1 Calibration of Uncertain Parameters 

 We were unable to find sufficient data for estimates of the cost of migration and the migration utility 

parameters in the model, both of which are critically important for the migration decision. To calibrate these 
parameters, we used a pattern-oriented approach to calibration (Grimm et al. 1996; Grimm et al. 2005). We 

used Latin hypercube sampling to cover a wide parameter space for 100 unique combinations of cost of 

migration and migration utility. We then ran the model 20 times for each parameter combination and 
otherwise the same initialization of a test community with 100 households and 700 individuals, and 

compared model results to each of our patterns of interest. Each model was run for 20 steps (20 years). This 

allowed us to identify values of the parameters that could successfully generate the patterns.  

 We assessed the successful parameter combinations by aggregating the results of each of the 20 runs 
for each combination and using a binary variable to indicate whether or not the model satisfied each pattern 

for that combination of migration utility and cost of migration.  The criteria for matching Pattern 1 are that 

the mean number of migrations for a shock with a community impact factor of 0.2 are less than for no shock 
and that the mean number of migrations for a shock with an impact factor of 0.6 is greater than for no shock. 

The criterion for matching Pattern 2 is that non-migratory households are directly affected by more 

environmental shocks than migratory households.  
 We then identified regions of parameter space in which the patterns were satisfied by fitting support 

vector regression models (SVM) with radial kernels to the data using the Latin Hypercube samples of the 

migration utility and the cost of migration parameters as inputs and the binary indicator of successfully 

reproducing the pattern as the outcome variable (for Pattern 1 and Pattern 2). These SVM models predict 
the success of pattern reproduction across the whole parameter space (Figure 3a,b). We were then able to 

identify where these parameter spaces overlap, representing the area that we would expect to successfully 

reproduce both patterns (Figure 3c). Overall, 18% of the parameter combinations reproduced Pattern 1, 
while 27% reproduced Pattern 2. The difficulty of matching both patterns simultaneously is due both to the 

greater difficulty of matching Pattern 1 and to the lack of overlap between the regions of parameter space 

that are favorable to Pattern 1 and those favorable to Pattern 2. 
 

  
Figure 3: Parameter combinations of migration utility and migration threshold and SVM predicted 

successes of the parameter space for Pattern 1 (a), and Pattern 2 (b). Overlap between the predicted spaces 
(a) and (b) is plotted with the successes of simultaneously reproducing both patterns (c). Points show 

parameter combinations sampled in the numerical experiments with green points indicating successful 

pattern replications and orange points indicating failed pattern replications. Colors show SVM predictions 
where green represents predicted success and orange represents failure. The unshaded region of (c) 

represents a region in which neither pattern was replicated. 
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4.2 Pattern Replication 

We then ran the model 960 times using a combination of parameter values from the overlapping space for 

both patterns for which both patterns are predicted to be reproduced well (Figure 3c), in order to study the 
model output in greater detail. We used a migration cost of 835,000 BDT (approximately 9,800 USD) and 

a migration utility of  47,250 BDT (approximately 560 USD), which successfully reproduced both patterns 

in calibration. We ran 120 batches of simulations, where each batch ran the at varying levels of community 
environmental impact between 0 (no impact) and 1 (the entire community is impacted). Of these 120 

batches, we aggregate the results to assess the patterns. 

 

 

Figure 4: Model results of number of migrations in the community by varying levels of community impact. 
The black lines represent the mean of 120 model runs for each community impact factor, and the gray band 
represents the 95% confidence interval for the mean. 

 
Figure 4 shows the average number of migrations within the community for different levels of 

community impact. The nonlinear dimension of Pattern 1 is apparent, with a decline in migration occurring 
as community impact factor increases, followed by an increase in migration after an impact factor of 0.6, 
consistent with our operationalization of Pattern 1 (Figure 4). The threshold effect is apparent, though it 
occurs at higher levels of community impact than predicted.  

 To explore Pattern 2, we compared households that had migrated during the model run with those that 
had not, and counted how many times each household was directly impacted by an environmental shock 

(Figure 5).  Here, we observed Pattern 2 at levels of community impact above 0.4. For a community impact 

factor of 1.0, there are no unaffected households, so we cannot test for Pattern 2. When aggregated across 
all runs and levels of community impact, Pattern 2 is confirmed: migratory households are impacted an 

average of 1.41 times with a standard error of 0.012, while nonmigratory households are impacted an 

average of 1.60 times with a standard error of 0.007, and a chi-squared test finds the difference significant 

with p < 0.0005.  
 These runs confirmed that both patterns were reproduced, but only some aspects of Pattern 1 were 

reproduced. Some of the variation can be attributed to the inherent stochasticity in the model at initialization, 

in the timing of environmental shocks, and in determining which households are impacted. This also reflects 
the inconsistency in reproducing Pattern 1 and the narrow range of parameter space in which both patterns 

could be reproduced simultaneously.   
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5 DISCUSSION 

Our model incorporates individual, household, and community-level variables and dynamics in order to 

simulate environmental migration. The model is parameterized based on available data from Bangladesh 
(Carrico and Donato 2019; Adams et al. 2016). The uncertain parameters of cost of migration and migration 

utility (benefit to migrate) are calibrated using a pattern-oriented approach with Latin Hypercube sampling 

combined with SVM regressions in order to assess the parameter space (Figure 3).  
 Results from this calibration show that the model is able to reproduce both patterns with varying rates 

of success. Pattern 2 is reproduced with a high rate of success across the bottom half of the parameter space 

(Figure 3b). In contrast, Pattern 1 was only reproduced inconsistently, and primarily in the upper half of the 
parameter space (Figure 3a). While the majority of model runs with varying parameter combinations were 

able to reproduce an increase in migration with increasing scale of environmental impact, the initial decline 

in migration followed by an increase at an approximately 20% threshold was more difficult to reproduce, 

which could indicate that the processes that generate the non-linear aspects of Pattern 1 are less fully 
captured within the current model dynamics. This resulted in a narrow range of parameter combinations 

that were able to successfully reproduce both patterns simultaneously (Figure 3c).  
 

 
 

Figure 5: Households are divided into those that have migrated (1, blue) and those that have not (0, red). 

The mean number of times a household was impacted directly by an environmental shock across all 120 

trials is plotted with error bars indicating 95% confidence intervals of the mean. For community impact 

factors above 0.4, Pattern 2 is reproduced: non-migratory households were impacted by more environmental 

shocks than migratory households were. 

 

 Despite the lower frequency of success in reproducing the details of Pattern 1, the nonlinear dynamics 

of the pattern are apparent (Figure 4). Pattern 2 is reproduced consistently for aggregated model runs, and 
when disaggregated by community impact factor, we find that this pattern appears only for community 

impact factors of 0.4 and above, and becomes stronger for larger impact factors (Figure 5).  
Decisions to migrate away from one’s home village involve far more than economic considerations. 

There is great hedonic value in connections to one’s home community (Mallick and Schanze 2020) and it 
is also well-known that more generally, considerations such as risk- or loss-aversion and social norms can 
powerfully influence responses to hazards and opportunities (Beckage et al. 2020; Gilligan 2018; Laciana 
et al. 2007). Social networks also appear to play important roles in migration decisions (Till et al. 2018; 

Hunter et al. 2015; Thober et al. 2018). Thus, a purely economic model of decision-making around 
migration might not be sufficient to reproduce the details of actual human behavior and it is notable that 
this simple model performs as well as it does. In addition, the difficulty in reproducing both patterns 
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simultaneously suggest that the interactions occurring between community and household scale may be 
more complex than the current model accounts for.  

6 CONCLUSIONS 

We developed an ABM that simulates environmental migration through the impacts of environmental 

shocks on local labor markets. We used a pattern-oriented approach to calibrating and testing the model. 
We identified two patterns of interest in the empirical literature. Pattern 1 captures the dynamics of 

nonlinear interactions between household and community-level phenomena, with  a pronounced threshold 

of community-impact above which out-migration increases. Pattern 2, in contrast, captures household level 

dynamics, with households that have not been directly affected by an environmental shock migrating more 
than households that have been directly affected.  

 Our model successfully reproduced these patterns, but inconsistently, and only for a few combinations 

of parameters representing the cost and utility of migration. One possible explanation for these results 
suggest would be that, while economic considerations are important in driving migration decisions, non-

economic considerations may also be important. Our model does not attempt to capture psychological and 

sociological aspects of decision-making, so it is not surprising that it has only limited success in reproducing 
the patterns of interest. In future work, we will investigate more complex decision heuristics. 

 We designed this model to work as a test bed for comparing different decision be flexible, so new 

capabilities can be added easily and without disrupting the base structure and scheduling. In addition to 

incorporating richer decision rules, future work will also investigate the impacts of future scenarios of 
environmental and climatic change. In the coming decades, growing environmental stress and accelerating 

change will make it increasingly important to understand how environmental change interacts with 

population mobility, ABMs have the potential to provide insights into these complex processes.  
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