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ABSTRACT 

This paper proposes a framework based on automated machine learning for the classification of candidate 
solutions for logistic and industrial discrete event simulation models. The proposed framework aims to 
augment the capabilities of a decision-maker to make critical yes-no decisions quickly with confidence and 
nearly perfect accuracy. The framework is based on a combination of artificial neural networks and a 
genetic algorithm. Such that the genetic algorithm orchestrates both neural architecture search and 

hyperparameter optimization. The paper demonstrates that the classifiers obtained through the proposed 
procedure can learn and generalize complex nonlinear relations within the discrete-event simulation models 
of subsystems vitally crucial for food supply chains and classify a candidate solution as profitable or not. 

1 INTRODUCTION 

Real-world dynamic systems, as a rule, require operational decisions on a repetitive basis. A manifold of 
such systems can be found in the context of supply chain management, logistics, and production. Decision-
makers work under constant tough pressure to make critical decisions quickly, requiring a decision-support 
system to arrive at a yes-no conclusion with confidence and nearly perfect accuracy. Therefore, prediction 
in general and binary classification, in particular, are core elements of decision-making (Agrawal et al. 
2018). However, two possible obstacles arise. First, predictive models, especially state-of-the-art, require 
the sheer amount of data that the physical system, even stuffed with sensors and IoT devices, cannot provide.  
Second, the complexity, dimensionality, and stochasticity of real-world systems frequently make analytic 

approaches unreliable. Discrete event simulation (DES) can be used to overcome both obstacles. DES 
model allows one to model complex stochastic systems in the most straightforward form, namely in the 
form of an executable computer program. DES models can substitute the modeled physical asset and be 
applied for system performance prediction and control policy formulation. Besides, DES models are a 
perfect source of synthetic data, which can be obtained at a far lower cost and in a shorter time. Furthermore, 
it is worth emphasizing that desirable experiments with the real system are not feasible in many cases due 
to physical or legislation constraints, associated risks, or simply because a system in necessary 
configurations does not yet exist. 
 However, if a DES model is complex, realistic, and detailed, the computational burden can be 
substantial (Barton 2015). In this case, it is reasonable to take advantage of an alternative model known as 
a metamodel. Roughly speaking, a metamodel is a “model of the model” built to approximate the output of 
interests of the original DES with a specified degree of accuracy. However, insofar as a yes-no decision 

regarding a candidate solution is a primary consideration for a plethora of problems in logistics and supply 
chain management, it appears to be reasonable not to approximate an exact numerical outcome of a 
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candidate solution but to classify it according to a particular criterion (e.g., profitability or feasibility). 
Machine learning models in general and artificial neural networks in particular are capable of performing 
such classifications. However, there is a significant challenge that cannot be ignored. Although machine 
learning algorithms are universal and task-unspecific, they are sensitive to various design considerations: 
feature selection and extraction, model selection, neural architecture search, and hyperparameter 
optimization (Hutter et al. 2019). This search for a decent model through laborious fine-tuning and 

customization requires the participation of qualified specialists. Automated machine learning (AutoML) 
has an immense potential to make advanced machine learning accessible to domain scientists, which can 
be considered as “democratization” of the field. In this regard, this paper proposes an AutoML framework 
for the classification of candidate solutions for logistic and industrial DES models. 

The ongoing COVID-19 pandemic has tested food systems to their limits and revealed vulnerabilities 
in food supply chains from farm to fork. The UN Food and Agriculture Organization predicts that the 
number of people suffering from food insecurity could rise significantly. Namely, since the world is 
globalized and interconnected as never before, the combination of movement and trade restrictions caused 
by the pandemic can disrupt global food supply chains, severely exacerbating existing food shortages. In 
this regard, this paper focuses on DES models of subsystems vitally crucial for food supply chains. Namely, 
a grocery retailer’s inventory control system operates with perishable products and a production-inventory 
system with Markov-modulated demand typical for canning and beverage industries. 

The coming text is structured as follows. Section 2 presents the related work and highlights the novelty. 
Section 3 sheds light on the methodology behind the approach. Section 4 contains the description of the 
DES models under consideration and experimental results. Section 5 discusses the results, provides possible 
interpretations, and outlines shortcomings. Section 6 summarizes the results and provides a concluding 
statement. Since the reproducibility of experiments is a pivot of the scientific method, all the source-code 
of DES models and the developed framework can be found in the GitHub repository (Metainventory 2021). 

2 RELATED WORK AND NOVELTY 

A suggested approach is closely related to the concept of metamodeling with artificial neural networks. The 
term metamodel was introduced and further popularized by Blanning (1975). The term indicates an 
application of an alternative cheaper-to-compute model to mimic the input-output mapping of DES or other 
complex simulation models. Among many metamodeling techniques, the most frequently used and praised 
in the literature are response surface methodologies, kriging models, radial basis functions. Nevertheless, 

the rising popularity of deep-learning sparked a surge of interest in metamodeling with artificial neural 
networks. Metamodeling using artificial neural networks can be viewed as a regression problem. However, 
if data generated by a DES model is labeled according to specific criteria, for example, the profitability of 
a candidate solution, metamodeling can be alternatively considered a binary classification problem. 

The first attempt of metamodeling automation can be traced back to Wang (2005), who applied a 
genetic algorithm (GA) to discover a neural architecture capable of approximating the vessel design 
problem. Nezhad and Mahlooji (2014) meticulously studied metamodels based on artificial neural networks 
for realistic inventory control DES models under (s, S) policy. A metamodel based on an artificial neural 
network was successfully applied to perform a metamodel-based optimization of an order-picking system 
(Dunke and Nickel 2020). The authors concluded with the statement that fidelity and flexibility of neural 
networks with acyclic structure make them attractive for metamodeling and metamodel-based optimization 
of complex industrial systems. Owoyele et al. (2021) combined GA with machine learning techniques for 

the metamodeling of computational fluid dynamics simulations. GA was applied for automated model 
selection and hyperparameter optimization. A recent paper demonstrated the efficiency of a combination 
of artificial neural networks and GA for metamodeling automation of logistic and production systems 
(Jackson 2021).   

The framework proposed in this paper inherits the core ideas of its predecessors. However, unlike the 
predecessors, the framework automates both neural architecture search and hyperparameter optimization. 
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Besides, special attention is paid to such overfitting preventing techniques as regularization and dropout as 
well as optimizers with momentum term. 

3 METHODOLOGY 

This section demonstrates how metamodeling can be considered from a binary classification point of view 
and describes the AutoML framework for deriving a model capable of performing such classifications. 

3.1 Metamodeling as a classification problem 

A complex industrial system simulation model can be viewed as a nonlinear input-output map represented 
by a “black-box” function y = f(x), where x stands for the vector of inputs and y is the output. Since the 
output is stochastic in cases covered by this paper, the average value estimated based on n replications is 
an output of specific interest 𝑦̅ = 𝑛−1 ∑ 𝑓(𝑥)𝑛

𝑖=1 . The exact value of n can be derived using the method based 
on confidence intervals proposed by Byrne (2013). 
 

 𝑛 = (
𝑧𝛼 2⁄

𝜁
𝐶𝑉)

2

.  (1) 

 
where n is a minimum number of simulation runs to achieve desired confidence interval width ζ (expressed 

as a multiplier by the mean) for the stochastic output with a coefficient of variation CV. 

A dataset 𝜏 = {𝑥𝑖 , 𝑦̅𝑖}𝑖=1
𝑁 can be obtained by computing corresponding simulation outputs for inputs 

generated in the feasible range. In this context, the classic metamodeling is the process of deriving a 

deterministic function 𝛷(𝑥) that can be fit by the data from 𝜏 and approximate the averaged output of the 

original simulation with the sufficient degree of accuracy ‖𝛷(𝑥) − 𝑦̅‖ <  𝜀, where ε is a positive value, small 
enough for the problem under consideration. Alternatively, metamodeling can be viewed as a binary 

classification problem. Since the output of simulation models considered in this paper corresponds to the 

net profit, the dataset τ can be labeled depending on whether the input 𝑥𝑖 entails positive net profit or not. 
 

 𝑙𝑎𝑏𝑒𝑙𝑖 =  {
1, 𝑖𝑓 𝑦𝑖 > 0

𝑒𝑙𝑠𝑒 0
. (2) 

 

 After profitable candidate solutions are labeled as 1 and the rest as 0, a new labeled dataset 𝜏̃ =

{𝑥𝑖 , 𝑙𝑎𝑏𝑒𝑙𝑖}𝑖=1
𝑁 is obtained and can be further used for binary classification. In these settings, the inputs can 

be classified as either leading to profit or not by minimizing the binary cross-entropy function, also known 

as a log-loss score: 
 

 𝐶𝐸 =  −
1

𝑁
∑ 𝑙𝑎𝑏𝑒𝑙𝑖 𝑙𝑜𝑔2(𝑃𝑟𝑜𝑏(𝑙𝑎𝑏𝑒𝑙𝑖)) + (1 − 𝑙𝑎𝑏𝑒𝑙𝑖)𝑙𝑜𝑔2(1 − 𝑃𝑟𝑜𝑏(𝑙𝑎𝑏𝑒𝑙𝑖))𝑁

𝑖=1  .          

 
Table 1 demonstrates the confusion matrix taking into account the context of the problems under 

consideration. The confusion matrix allows one to visualize the performance of a supervised learning 
algorithm. Each row of the matrix stands for the instances in a predicted class, while each column represents 
the instances in an actual class 

Table 1: The confusion matrix in the context of the considered problems. 

Confusion matrix Actual class 

Profitable (1)  Non-profitable (0) 

Predicted 

class 

Profitable (1) True positive (tp) False positive (fp) 

Non-profitable (0) False negative (fn) True negative (tn) 
 



Jackson and Velázquez-Martínez 
 

 

Each row of the confusion matrix corresponds to the instances of a predicted class, whereas columns 
stand for the instances of an actual class. Calculating true positive (tp), false positive (fp), false negative 
(fn), true negative (tn) instances, a plethora of performance estimation metrics can be calculated, including 
accuracy, precision, recall, and F1-score: 

 

  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
 .  

    𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
 .   

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
 .   

 𝐹1 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 .   

3.2 AutoML framework for classifying candidate solutions 

A multilayer perceptron (MLP) equipped with regularization and dropout layers is chosen as a baseline 
model. Several reasons can support this choice. First, MLP is the most general feedforward architecture, 
and other feedforward networks can be considered its specific case, making it especially suitable if there is 
a lack of information regarding the structure of the problem. Second, the universal approximation theorem 
recently extended by Hanin (2019) guarantees that MLP equipped with nonlinear activation functions can, 
in principle, learn and generalize nonlinear relations between simulation variables. Third, the presence of 
regularization and dropout layers serves as an efficient overfitting-preventing mechanism (Wager et al. 
2013).  
 Despite the mentioned advantages, MLP is sensitive to a manifold of design considerations related to 
architecture, optimizers, regularization constants, and other hyperparameters. As it has been demonstrated 
by Mazzawi et al. (2019), a neural architecture search and hyperparameter optimization conducted using 

evolutionary computations can rival and even outperform human data scientists and machine learning 
experts. The proposed AutoML procedure for deriving an MLP classifier is driven by GA distinguished by 
Gray-code chromosome representation, uniform crossover, and tournament selection. This recipe is not 
accidental and can be justified by evidence from seminal papers. Because of space-efficiency, a binary 
representation is an apparent choice. However, chromosome representations vary significantly even among 
different binary schemes. In the case of the reflected Gray coding scheme, only one bit has to be flipped in 
order to reach the neighboring value. This property postulates gradualism, which is necessary to overcome 
problems related to large Hamming clefts (Caruana and Schaffer 1988). In the uniform crossover, the 
number of crossover points is not constant, and flipping a bit is made independently for every single bit in 
a chromosome. In this regard, the crossover operator will less likely split up the fit building blocks. 
Additionally, the uniform crossover can potentially decrease the chance of premature convergence (Back 
et al. 2018). The tournament selection allows one to fine-tuned the convergence by varying the tournament 

size (Miller and Goldberg 1995).  
In high-level programming interfaces like Keras, artificial neural networks can be assembled from 

prebuilt building blocks that include layers, activation functions, optimizers, along with corresponding 
hyperparameters that include learning rate, momentum term, and regularization terms (Chollet 2018). If 
this information is encoded into a binary chromosome a ∈ A, GA can orchestrate the morphism of MLP 
architecture and hyperparameters searching for such a chromosome a* ∈ A that produces the fittest classifier 
Φ(a*, x). Fitness in this context is measured by the average F1-score estimated using the k-fold cross-
validation. Figure 1 demonstrates a complete pipeline from simulation replication to the derivation of the 
fittest classifier.  
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Figure 1: AutoML framework for driving the MLP capable of classifying candidate solutions. 

The procedure starts with generating a random vector of inputs in the feasible range. In order to generate 
one observation, a DES model is replicated with randomly generated input n times. An exact value of n is 
calculated using equation (1). The obtained output is averaged and labeled according to equation (2).  By 
repeating this procedure in a loop, a dataset is synthesized. The dataset is split by training and test 
subsamples using k-fold cross-validation. Such that every MLP-based classifier is expected to predict the 
label for such vectors of inputs that have not been encountered during the training phase. 

3.3 Simulations under consideration  

The industrial systems under consideration are represented as DES models and implemented in Python 3.7. 

3.3.1 Perishable inventory system  

The first DES model under consideration corresponds to the inventory control of a grocery retailer that 
operates with perishable products. The model is referred to as PIS (perishable inventory system) further in 
the text. The complete description of the model can be found in (Jackson 2019a). The inventory control 
system operates with multiple products under the constrained total inventory capacity. Such that inbound 
exceeding the available capacity is unfeasible and penalized. See Figure 2 for example. 
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Figure 2: The limited storage capacity can be illustrated as the square with side length equal to the square 
root of the maximum storage capacity √𝐼𝑚𝑎𝑥. 

 The model incorporates realistic perishability mechanics. See Figure 3 for example. Products that the 
inventory control system operate with constitute a sequence 𝑃 = (𝑝1, 𝑝2, . . . , 𝑝𝑛)𝑛∈ℕ+ . Timings of discrete 
events constitute a sequence 𝑇 = (𝑡1, 𝑡2, . . . , 𝑡𝑛)𝑛∈ℕ+. In order to model perishability realistically, the storage 
is denoted as a sequence of independent batches replenished at different moments of time 𝑆𝑡

𝑝
=

(𝑠1
p,t

, 𝑠2
p,t

, . . . , 𝑠𝑛
p,t

)𝑛∈ℕ+. Such that for each 𝑆𝑡
𝑝
there is a corresponding sequence of days to expiration 𝐸𝑡

𝑝
=

(𝑒1
p,t

, 𝑒2
p,t

, . . . , 𝑒𝑛
p,t

)𝑛∈ℕ+. For every single product at each instance of time, there is an inventory level ∑ 𝑆𝑡
𝑝𝑛

𝑖=1 . 
The following equation models how the days to expiration decrease over time: 

 

 𝐸t+1
𝑝 = 𝜀(𝐸t

𝑝, 𝑡i, 𝑡i+1) = (𝑒0
p,t

− (𝑡i+1 − 𝑡i), . . . , 𝑒𝑛
p,t

− (𝑡i+1 − 𝑡i)).         

 

Figure 3: Illustration of the perishability mechanics. 

For all products in the inventory system, there is a pair of control parameters (𝑄𝑝, 𝑟𝑝) that postulates a 
replenishment policy. As soon as the current inventory level reaches the reorder point  𝑟𝑝, namely, the 
condition 𝐼𝑡

𝑝
≤ 𝑟𝑝 is satisfied, a new batch of the size 𝑄𝑝 is ordered. The system operates in a stochastic 
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environment. In the following numerical example, demand size and replenishment lead times are normally 
distributed, and demand interarrival time is distributed exponentially.  

Five composite costs are considered:  ordering costs, inventory costs, backorder costs, overflow fee, 
and recycling fee. Ordering cost includes both purchase price and transportation cost and costs for 
associated logistics (loading, packaging, unloading). The principle of cut-off point quantity discount is 
adopted. Such that discount is given only to the extent that the order exceeds a cut-off point. Depending on 

the context, unit inventory cost can consist of handling costs and opportunity loss associated with the 
“frozen capital”. In this context, the “frozen capital” is the lost possibility of using the capital for other 
purposes. Inventory cost is constant and set for a unit of modelling time. Every single out-of-stock is 
considered to be associated with a loss of business reputation. When a product is backordered, a customer 
is directly stimulated to search for a substitute. Therefore, every out-of-stock event is related to a constant 
fee. Overflows (exciding the total inventory capacity) are also penalized by a constant fee. In real world, 
such expenses are associated with reverse logistics. Therefore, when a batch perishes, a similar penalty 
related to reverse logistics of expired goods arises (a batch must be sent for recycling). Taking into account 
that each unit of product is sold by a constant price. Total net profit of the system is treated as the simulation 
output. Figure 4 demonstrates the dynamics of commodity and financial flows.   

 

Figure 4: Dynamics of commodity and financial flows. 

To summarize, the DES model is multiproduct, stochastic, incorporates lost sales, discounts, and 
perishability.   

3.3.2 Markov-modulated production-inventory system  

The second DES model corresponds to a production-inventory system with Markov-modulated demand. 

The model is referred to as MMPS (Markov-modulated production-inventory system) further in the text. 
The demand process is associated with an underlying Markov chain. Such that demand states of a Markov 
process represent environmental parameters. The complete description of the model can be found in 
(Jackson 2019b). 

As in the previous case, the production-inventory system also operates with a sequence of products P, 
and the total storage capacity is limited. For each product inventory level at time t is given by a 

corresponding sequence 𝑆𝑡 = (𝑆1, . . . , 𝑆𝑝)
𝑝∈𝑃

. Each product is produced on an individual machine with 

stochastic production rates measured in items per unit of time. Each production rate is distributed normally. 
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At any moment, incoming demand consists of all products 𝐷𝑡 = (𝐷1, . . . , 𝐷𝑝)
𝑝∈𝑃

. Such demand for each 

particular product is a random variable under the distribution that depends on the current environmental 

state. Considering a set of demand states 𝛱 = (1, . . . , 𝑞)𝑞∈𝑁+, the demand state is a Markov chain over Π with 

the corresponding transition matrix Mp={mij}. Such that 0 ⩽ mij ⩽ 1, and ∑ 𝑚𝑖𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝛱. Figure 5 

illustrates the particular case with three environmental states. 

 

Figure 5: An example of Markovian demand for a market with three environmental states. 

Demand inter-arrival time is also a random variable under exponential distribution. According to the 
all-or-nothing principle, arising demands are satisfied depending on the available inventory capacity. 
Namely, either the composite demand is fulfilled completely or considered wholly lost. Such settings are 
pretty typical for cross-docking and consolidation problems.   

The system operates according to quite a straightforward control rule. Namely, there is a sequence of 

production statuses 𝑈𝑡 = (𝑈1, . . . , 𝑈𝑝)
𝑝∈𝑃

, so as 𝑈𝑡,𝑝 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}  ∀𝑝 ∈ 𝑃. For each product, there is a pair 

of control parameters (Gp, Hp), which prescribe the inventory level that must be reached to stop and resume 
the production process. Each resumption of production is associated with setup costs. The following 

function is denoted to switch the statuses and count the corresponding setups: 
 

 𝑢(𝑆𝑡 , 𝑈𝑡) = {
𝑈𝑡,𝑝 ← 𝐹𝑎𝑙𝑠𝑒, 𝑖𝑓 𝑈𝑡,𝑝 = 𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝑆𝑡,𝑝 >  𝐺𝑝

𝑈𝑡,𝑝 ← 𝑇𝑟𝑢𝑒, 𝑆𝑒𝑡𝑝 ← 𝑆𝑒𝑡𝑝 + 1, 𝑖𝑓 𝑈𝑡,𝑝 = 𝐹𝑎𝑙𝑠𝑒 𝑎𝑛𝑑 𝑆𝑡,𝑝 <  𝐻𝑝    
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Figure 6: Inventory dynamics under the control rules. 

Each product unit has production costs, handling costs, setup costs, and fees associated with lost sales 
and overflows. Each unit of product is sold for a constant price. The total net profit of the production-
inventory system is the simulation output of special interest and subject of maximization. To summarize, 
the production-inventory model can be characterized as multiproduct and stochastic with lost-sales and 
Markovian demand. 

3.4 Testing the AutoML framework 

An experiment starts with generating a random vector of inputs in the feasible range for a 10-product case 
of the PIS model and a 4-product case for the MMPS model with three market states. The DES models 
contain 151 and 81 independent variables respectively. In order to generate one observation, the PIS and 
MMPS models are replicated with randomly generated input 35 and 44 times respectively. The obtained 
output is averaged and labeled. By repeating this procedure in a loop, two datasets of 600 observations are 

synthesized. Both datasets are split by training and test subsamples using 10-fold cross-validation. Such 
that every MLP-based classifier is expected to predict the label for such vector of inputs that have not been 
encountered during the training phase. Besides, inputs are standardized before training using Z-score. 
AutoML procedure is driven by GA with a tournament size of 5, crossover probability of 0.35, and mutation 
probability of 0.04. The evolution lasts ten generations, and each generation is populated with 40 MLP-
based classifiers. Besides, the total number of trainable parameters is constrained to 20000. 
 In ten generations of architecture morphism, the MLP-based classifiers with the average F1-score of 
0.96 have been derived for both PIS and MMPS simulation models (see Figure 7). It is essential to point 
out that for both cases, the variance of F1-score calculated using the 10-fold cross-validation is insignificant, 
which implies that the MLP-based classifiers were able to learn and generalize nonlinear input-output 
mapping (from the candidate-solution to the corresponding label). Due to the limited computational 
resource, the number of epochs is reduced to 60, which should not affect the grist of the learning process. 

Figure 8 demonstrates how accuracy, precision, and recall are improving during the learning process. 
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Figure 7: Evolution of the fittest classifiers. 

 

Figure 8: Accuracy, precision, and recall are improving as the classifiers learn. 

Table 2 contains the specification of architecture and hyperparameters of the fittest MLP-based 
classifiers derived during the AutoML procedure. 
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Table 2: Architecture and hyperparameters of the fittest classifier. 

Models Depth Width Optimizer Learning 
rate 

Activation 
functions 

L1 L2 Dropout 

PIS 2 60 Adamax 0.004 SELU 0.005 0.002 0.05 

MMPS 2 70 Nadam 0.002 SELU 0.004 0 0.05 

 

4 DISCUSSION AND POTENTIAL LIMITATIONS  

Paying attention to the components underneath the fittest classifiers, it should be emphasized both models 
have several important things in common. First, architectures of both MLP-based classifiers are relatively 
shallow (2 hidden layers). Second, both classifiers take advantage of Adam-based optimizers, emphasizing 
the importance of momentum in the learning process. The success of the SELU activation function can be 
explained by its property of self-normalization, which extirpates vanishing gradients (Kim et al. 2020). 
Although artificial neural networks are robust to stochastic noise in data, the MLP-based classifier will 
inevitably have an upper bound for accuracy. Nevertheless, the amount of noise can be reduced by 

increasing the number of replications of a DES model, which leads to a standard trade-off between accuracy 
and computational efficiency. It is also important to mention that the total number of parameters (neurons 
and weights) can be constrained. In other words, a potential user of the framework can decide how compact 
and computationally fast the resulting classifier should be. 

It is also important to point out that both components within the proposed AutoML framework are 
strongly associated with the so-called “No Free Lunch” theorem. According to the theorem, there cannot 
exist an algorithm for solving all possible problems that is, in an average case, superior to any competitive 
one. This statement is true for both optimization driven by GA and supervised learning performed by MLP-
based classifiers (Wolpert and Macready 1997). In this regard, in the general case, the question of whether 
the proposed approach is inferior or superior to any alternative has no sense. However, the following can 
be highlighted as advantages of the proposed framework: 

1. Automatism. Such labor-intense and time-consuming steps as sampling, labeling, neural 

architecture search, hyperparameter optimization, and performance evaluation are fully automated 
within the proposed framework and do not require the participation of human experts.  

2. Parallelism. The essential components of the proposed framework GA and MLP-based classifiers 
are implemented in parallel so that computations necessary for genetic operators and learning can 
be distributed across different processors.  

3. Universality. Both GA and MLPs are universal and task-unspecific. Namely, the universal 
approximation theorem justifies the universality of MLPs (Cybenko 1989), and Holland’s schema 
theorem highlights the universality behind GA (Holland, 1975). 

5 CONCLUSIONS  

MLP-based classifiers obtained through the proposed AutoML procedure can learn and generalize complex 
nonlinear relations within the DES models of subsystems vitally important for food supply chains and 
classify a candidate solution as profitable or not. Although the net profit has been considered as an output 

of interest and subject of maximization, it is essential to emphasize that the cost function incorporates 
substantial fees for events associated with adverse environmental implications, for example, perished goods 
and overproduction. 

The distinguishing features of the proposed AutoML framework include automatism, universality, and 
parallelism. In this regard, the framework can make advanced artificial neural network models accessible 
to domain scientists, which can be considered “democratization” of the field.  
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