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ABSTRACT

Network representations of socio-physical systems are ubiquitous, examples being social (media) networks
and infrastructure networks like power transmission and water systems. The many software tools that analyze
and visualize networks, and carry out simulations on them, require different graph formats. Consequently,
it is important to develop software for converting graphs that are represented in a given source format into a
required representation in a destination format. For network-based computations, graph conversion is a key
capability that facilitates interoperability among software tools. This paper describes such a system called
GraphTrans to convert graphs among different formats. This system is part of a new cyberinfrastructure
for network science called net.science. We present the GraphTrans system design and implementation,
results from a performance evaluation, and a case study to demonstrate its utility.

1 INTRODUCTION

1.1 Background and Motivation

There are many uses of socio-technical networks, where nodes or vertices represent entities such as
humans, computers, and organizations, and edges represent pairwise interactions between nodes. Social
and infrastructure networks are used in a variety of simulations, including the transmission of diseases
(e.g., Siettos et al. (2015)), spread of fads and opinions (Weimer et al. 2019), and law enforcement issues
like generational influence of incarceration (Lum et al. 2014). Moreover, network analyses are performed
on these graphs because explanations for simulation results are often identified through the structure of
networks and their properties (e.g., Newman (2003), Rahmandad and Sterman (2008)). Tools to perform
simulations, structural analyses, and other operations often require networks in particular formats. However,
there are many graph formats, including tailored or custom formats, with no standard representation; for
example, the igraph network tool lists 13 formats1. Thus, there is a need for tools that convert graphs
specified in one format to other formats. (In this paper, we use the terms graph and network interchangeably;
terms graph conversion and graph transformation are synonymous.)

This motivation can be expanded along several directions. We examine two here. First, different
formats for graphs are also helpful in more efficient implementations of graph algorithms. For example, for
implementing algorithms for the all pairs shortest path problem, graphs represented as adjacency matrices
can exploit parallel matrix multiplication algorithms (Cormen et al. 2009). Thus, for using such algorithms,
one may need to convert a graph in a given format into its adjacency matrix representation. In addition,

1https://igraph.org/python/doc/tutorial/tutorial.html#igraph-and-the-outside-world
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as new graph algorithms are developed, it is likely that new graph formats and new graph transformations
will be needed for efficiently implementing the algorithms.

Second, software pipelines and workflows are being provided in increasing numbers, e.g., through
software gateways and cyberinfrastructures (CIs). See Ahmed et al. (2020) for a summary of these for
network science applications. When composing tasks to create workflows that utilize multiple tools, which
is a core capability of many CIs, graph transformations are required because these tools, in general, do
not use the same graph formats. New CIs and gateways continue to appear, and this trend is likely to only
accelerate, as it is consistent with the open-source and open-access software paradigms that have also been
in place, and accelerating, over at least the last decade. A key element of the use of these tools, both inside
and outside of CIs, is interoperability. For network-based computations, graph conversion is a key element
that facilitates interoperability among software tools. We are currently building a CI for general purpose
network science, called net.science (Ahmed et al. 2020), and graph transformations, which are routinely
required in the CI2, drove the development of GraphTrans. For all of the above reasons, it is useful to
have tools to automatically convert a graph from one format to another.

1.2 Novelty

We have built a software system to perform graph transformations, from one specified format to another;
some of these may require intermediate transformations. The system makes maximum use of transformations
provided by existing software libraries. Here, we use SNAP and NetworkX as exemplars. The system
also contains a list of formats in different systems that are the same, so that it identifies cases where no
transformations are needed. GraphTrans is particularly adept at performing conversions across formats
from different software systems. These transformations must be reliable and fast because one cannot afford
to save every graph in every format, due to storage limitations. This means that in many cases, a graph
will be transformed for a particular use, then deleted, and will have to be transformed again when it is
needed next. GraphTrans can perform these operations with a single invocation, so that it can be used as
a component in larger systems. As explained in Section 1.1, the system was built because it is needed for
net.science CI. However, it can also be used on its own, as a stand-alone system, by individuals and groups.

1.3 Contributions

The source code for GraphTrans will be available for download by early 2022. Our other contributions
are itemized below.

1. A software system for converting graphs from one format to another. GraphTrans is a Python-based
software system that converts a graph from its current (source) format Fsrc to a user-specified destination
format Fdes. The system determines a sequence of appropriate transformations that are required to reach
the destination format. The sequence, which may include one or more transformations, is determined using
a graph transformation graph (GTG). The GTG is a directed graph wherein graph formats are nodes and
each directed edge (Fs,Fe) indicates that a graph can be converted directly from the (start) format Fs to
the (end) format Fe. Thus, given source Fsrc and destination Fdes formats, a breadth first search (BFS) is
performed on the GTG to find a shortest path from Fsrc to Fdes. Note that an edge (Fs,Fe) may represent a
graph conversion provided by existing open-source software libraries that are integrated into GraphTrans,
or graph conversions that we wrote to make transformations across libraries. Currently, the system handles
14 graph formats, so that users can specify 182 (= 14 · 13) graph transformations. GraphTrans, which
can perform transformations on directed and undirected simple graphs and multi-graphs, is described in
Section 3.

2. Performance evaluation of the system. We study the performance of the graph transformation code in
terms of execution speed. A total of 582 graph transformations are performed on seven networks, which

2The initial version of net.science was released in June 2021 (URL: https://net.science).

https://net.science
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include replicate transformations. These networks range over five (respectively, six) orders of magnitude
in number of graph nodes (respectively, graph edges). For the smallest graph tested with 198 nodes
and 2,742 edges, graph transformations take on the order of 0.1 seconds. For the largest graph tested
with 5.8 million nodes and 129 million edges, graph transformations take on average 5900 seconds. We
demonstrate, however, that transformation times can vary significantly (e.g., by four orders of magnitude)
for a fixed network, depending on Fsrc and Fdes. The networks used in the evaluations and the results of
the evaluations are presented in Section 4.

3. Case study. We illustrate the practical use of GraphTrans by transforming a large social network
representation of the 5.8 million person population of Houston, TX, so that it can be used in graph
structural analysis computations. The data generated from this case study serve to (i) demonstrate the use
and value of GraphTrans by presenting properties of networks, and (ii) assess the overheads of transforming
graphs by comparing transformation times to the times to produce structural properties. See Section 5.

2 RELATED WORK

Graph analysis libraries and online tools. Software libraries for graph analysis are excellent sources
of graph conversion codes. NetworkX (Hagberg et al. 2008), for example, has many graph conversion
methods, and we use them. SNAP (Leskovec and Sosič 2016) also has graph transformations that we use.
There are other software libraries that we have active plans to integrate, including Gunrock (Wang et al.
2017), a GPU-based software system for graph analysis. Additional libraries include graph-tool NetworKit
(Staudt et al. 2014) and igraph (Csardi and Nepusz 2006). There are also online graph conversion tools
(e.g., MROCP: Graph Conversion) which allow a user to upload a graph file in some source format and
carry out the conversion to a specified destination format; the user may then download the resulting output
file. There are several difficulties with this approach, e.g., ability to handle very large graphs, privacy in
handling sensitive data, and system extensibility. In net.science, we chose to integrate the graph conversion
methods in NetworkX and SNAP first because of their very large user bases (at least tens of thousands
of downloads each), and because they are complementary: SNAP can handle very large networks and
NetworkX has many methods. These large user bases suggest that graph conversions may be useful when
using these tools. We demonstrate in Section 3 how our system is extensible and not tied to any library.
Simulators that use networks. GraphTrans, our tool for graph conversions, is not focused solely on
graph structural analyses. As mentioned in the Introduction, there are many applications for simulations of
networked systems. Commensurately, there are many simulation systems that use networks for representing
a “population.” Among well-known systems are Repast HPC (see Collier and North (2012) and Swarm
(Iba 2013)). Surveys and listings of simulators are found in (Railsback et al. 2006). A good overview of
agent-based modeling and simulation is provided in (Macal and North 2014); see also (Shen et al. 2019).
Cyberinfrastructures. Section 1.1 motivates the use of our graph conversion tool in CIs. The XSEDE Sci-
ence Gateway lists more than 50 gateways (https://www.xsede.org/ecosystem/science-gateways); the Science
Gateways Community Institute (SGCI) has over 600 gateways (https://catalog.sciencegateways.org/#/home).
An admittedly high-level search on the SGCI site using keyword network science returns 15 CIs. GraphTrans
can also be useful in these systems to foster interoperability, and interoperability between gateways.

3 SYSTEM DESCRIPTION

This section discusses several aspects of the system, including the graph formats supported and the algorithm
used to obtain the sequence of transformations that will convert a given graph in format Gsrc to the destination
format Gdes. System-level algorithms are also provided.
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3.1 Graph Formats

The formats currently supported by the system are: GraphML, GML, MatrixMarket, Edge list (NetworkX,
SNAP), adjacency list, GEXF, YAML, Graph6, Multigraph adjacency list, Pajek, GPickle, Sparse6, and
SNAP TTable. These represent a large number of popular formats. Section 3.5 addresses how the system
handles the addition of a new format.

5

1 2

34

Figure 1: A simple graph G.

To illustrate the differences between the descriptions of a graph in two different formats, an example
of a small undirected graph G is shown in Figure 1. Representations of G using SNAP-TTable and GML
formats are shown in Figure 2.

1 2
1 4
2 4
2 3
2 5
4 3
3 5

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

<graph id="G" edgedefault="undirected">
<node id="1"/>
<node id="2"/>
<node id="3"/>
<node id="4"/>
<node id="5"/>
<edge source="1" target="4"/>
<edge source="1" target="2"/>
<edge source="4" target="2"/>
<edge source="4" target="3"/>
<edge source="2" target="3"/>
<edge source="2" target="5"/>
<edge source="3" target="5"/>

</graph>
</graphml>

Figure 2: Representations of the graph G in Figure 1 using SNAP:TTable format (left) and GML format
(right).

3.2 Graph Transformation Graph GTG

We use graph libraries, currently SNAP and NetworkX, to perform direct graph transformations (Fsrc,Fdes)
where possible. We can extend GraphTrans to include other software libraries for other direct transformations.
We now address the case where no direct transformation between two formats exists.

Figure 3 shows a portion of the graph transformation graph (GTG) used for graph conversions between
formats across libraries. This GTG is a star graph, with the SNAP TTable format in the center as the hub node.
For every graph format F i and every transformation (Fsrc,Fdes) that is admissible that does not have a direct
graph transformation provided by a network library within GraphTrans, the transformation uses TTable as an
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intermediate format; the TTable format is designated FT T . A transformation specified by a user, represented
as (Fsrc,Fdes), is broken down into a sequence of two transformations: (Fsrc,FT T ) and (FT T ,Fdes). In
this way, new formats F j can be introduced into the system by writing the transformation codes (F j,FT T )
and (FT T ,F j), which we have done in GraphTrans. We constructed 24 of the 26 transformations between
each of the 13 remaining formats (see Section 3.1) and TTable. Given a specified source format Fsrc

and destination format Fdes, a BFS is performed on the GTG to produce a shortest path Psd between the
two formats whose transformations are executed (each edge in Psd is a transformation). Note that direct
transformations provided by software libraries within GraphTrans are also represented as edges in the GTG.

SNAP:PNEANetSNAP:PNGraphSNAP:PUNGraph

Adjacency List SNAP:TTable

nx:Graph nx:DiGraph nx:MultiGraph nx:MultiDiGraph

(undirected) (directed) (directed)

Figure 3: A graph transformation graph (GTG) for converting graphs between two formats. This repre-
sentation considers the SNAP and NetworkX graph formats, provided by the respective libraries. Each node
F i ∈ V in this graph is a graph format, in a rectangle, from the specified graph library. Not all formats are
shown. Edges represent transformations. Each edge in the figure between nodes F i and F j is displayed as
bidirected, signifying two transformations (i.e., two directed edges): from F i to F j, ei j = (F i,F j), and from
F j to F i, e ji = (F j,F i).

There are several reasons for choosing TTable as the hub format. First, it is the base format in SNAP,
and SNAP is known for its ability to handle large networks. Second, and relatedly, the format for SNAP
TTable is very similar to that for database tables. For net.science, we are considering storing graphs in a
database management system (DBMS) to facilitate direct querying of the contents of graph files. TTable
provides a consistent format for graph files, for both needs. Third, SNAP provides additional methods for
operations on graphs (e.g., forming a union graph from two graphs) and these methods use the TTable
format. Based on usage of the system, we are considering storing each graph in TTable format when a
transformation through that format in Figure 3 is required. This would reduce the number of transformations
required for subsequent graph conversions, and at the same time, provide each graph in the format required
for these additional graph operations. The TTable format also reduces hard disk usage because it does not
contain syntax per node or per edge that some formats require; see Figure 2 for an example comparison.

3.3 Alternative Solution

The approach described in Section 3.2 is neither the only candidate solution, nor the easiest to implement.
Figure 4 provides a more complex GTG; the current system uses the simpler GTG discussed in Section 3.2.
This alternative solution has the advantage that it makes maximum use of graph transformations provided
by the SNAP and NetworkX libraries. The downside of this approach is that it is harder to reason about, as
the structure is more complicated than that in Figure 3. For example, it is less clear where to insert a new
graph format (node) into this graph. Further, as new formats get added over time, the structure of the GTG
is likely to become more complex, thus making it more difficult to maintain the software system. Note
that both approaches could be used because in each case, a BFS on a GTG, to compute Psd , is possible.
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Other Supported

Format

SNAP TTable SNAP List

Format

NetworkX

Formats

Format

NetworkX List

Edge TTable Node TTable Edge List

PUNGraph PNEANet PNGraph

Edge List Node List

SNAP Formats

Node List

nx.Graph nx.DiGraph nx.MultiGraph

PUNGraph

nx.MultiDiGraph

PNGraph

PNEANet
Binaries

SNAP

Formats

Figure 4: A candidate graph transformation graph (GTG) for converting graphs between two formats.
This representation considers the SNAP and NetworkX graph formats, provided by the respective libraries.
Each node vi ∈ V (represented by a rectangle) in this graph is a graph format from the specified graph
library. Edges represent transformations. For compactness, each edge in the figure between nodes vi and
v j is displayed as bidirected, but signifies two transformations (i.e., two directed edges): from vi to v j,
ei j = (F i,F j), and from v j to vi, e ji = (F j,F i).

3.4 Algorithmic Description

Algorithms 1 and 2 provide a formal description of the system. The first algorithm covers the overall steps
in the code and the second algorithm focuses on graph transformations that take place across libraries. There
are several inputs to each algorithm and the output of GraphTrans is the graph in the destination format,
denoted Gdes. In Algorithm 1, after reading the source graph, and the source and destination formats, the
code determines whether the two formats are the same (step 3C), and if so, then there is no transformation
and the algorithm terminates. Otherwise, a BFS is performed to determine a shortest path from Fsrc to Fdes

in the graph of Figure 3 (step 3D). If the formats are different, and a direct transformation can be effected
(step 3E), then this action is taken. The final case is that the specified transformation requires conversions
across libraries (step 3F) and this includes a call to Algorithm 2.

3.5 Adding a New Transformation

Consider a new graph format F for which there are no direct graph transformations to and from any other
existing format F i in GraphTrans. Then, transformations (F,FT T ) and (FT T ,F) are effected by subclassing
the GraphTransformation class, which has four major methods: read a graph in format F from file, write
a graph in format F to file, and effect transformations (F,FT T ) and (FT T ,F).

4 PERFORMANCE EVALUATION

4.1 Overview

We report results from the performance evaluation of GraphTrans. The study included 14 network formats,
seven networks, and 582 graph transformation sets. We used the NetworkX and SNAP libraries for selected
transformations. Each data point in each plot of this section and the next section is the average of three
replicates. Networks used in this study are discussed in the next subsection. These studies as well as
those discussed in Section 5 were performed on a high performance computing (HPC) cluster with Dell
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Algorithm 1: Graph Transformation
1 Input: (1) Name of the file containing the source network Gsrc. (2) Whether the graph is directed or

undirected. (3) Whether the graph is simple or a multigraph. (4) Whether the graph has attributes (on nodes
and/or edges) or not. (5) source graph format Fsrc of Gsrc. (6) destination graph format Fdes to which Gsrc

is converted. (7) Name of the file to which the destination network Gdes is written. (8) File containing the
GTG for all the graph transformations provided by the system.

2 Output: (1) Gdes written to file.
3 Steps:

A. Read the GTG file.
B. Read the source and destination graph formats Fsrc and Fdes.
C. if (Fsrc ≡ Fdes) do:

1. No graph transformation is required because instances of the two formats are the same textually, as
follows.

i. Use the existing source format Fsrc for the graph as the destination format Fdes; i.e., set
Gdes = Gsrc.

ii. Return.

D. Perform a breadth first search (BFS) on the GTG, from the source graph Fsrc to the destination graph format
Fdes, to determine a directed path graph Psd , from node Fsrc to node Fdes, i.e., the required sequence of
graph transformations.

E. if (Fsrc and Fdes are graph formats from the same library) do:

1. Use the particular library’s code cgt to perform the graph transformation, as follows.
i. This means that a software library provides the one-step transformation, represented by the edge
(Fsrc,Fdes).

ii. Select the provided graph transformation code cgt from the library.
iii. Generate Gdes using Gdes = cgt(Fsrc,Fdes,Gsrc) and write Gdes to the specified output file.
iv. Return.

F. else // This means that Fsrc and Fdes are formats from different libraries.

1. Use the path graph Psd obtained from the GTG, and Algorithm 2, to produce Gdes as follows.
i. Invoke Algorithm 2.

ii. The return from this call is Gdes, the graph in the destination format Fdes.
iii. Write Gdes to file.

G. Return.

PowerEdge C6420 2.666 GHz hardware nodes, with 384 GB RAM and 40 cores per node. Each core in a
node is an Intel Xeon Gold 6148, 2.40 GHz processor with 1280 KiB L1 cache, 20 MiB L2 cache, and
27 MiB L3 cache. (GraphTrans is a serial code and uses only one compute node per execution.)

4.2 Networks

Social networks used in our performance and case studies are shown in Table 1. These networks were
selected to cover five orders of magnitude in numbers n of nodes, and six orders of magnitude in numbers
m of edges. Selected structural properties of these networks are also provided; these values were generated
using GraphTrans and the codes in the net.science CI (Ahmed et al. 2020) for network science, which
contains the structural analysis methods in SNAP (Leskovec and Sosič 2016) and NetworkX (Hagberg et al.
2008). The smallest networks come predominantly from (Jure Leskovec and Andrej Krevl 2014). The
larger three social contact networks were generated according to the procedures in Barrett et al. (2009).
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Algorithm 2: Multi-Format Graph Conversions, i.e., Conversions Across Libraries
1 Input: (1) Name of the file containing the source network Gsrc. (2) Whether the graph is directed or

undirected. (3) Whether the graph is simple or a multigraph. (4) Whether the graph has attributes (on nodes
and/or edges) or not. (5) source graph format Fsrc of Gsrc. (6) destination graph format Fdes to which Gsrc

is converted. (7) the path graph Psd .
2 Output: The graph Gdes in the destination format Fdes.
3 Steps:

A. Read Gsrc into memory.
B. Assign the in-memory representation of Gsrc to G.
C. Traverse the path graph Psd , from node Fsrc to node Fdes, in transforming the graph G, as follows.

1. Set Fs = Fsrc.
2. for each (edge in Psd) do:

i. The edge is (Fs,Fe). G is in format Fs by construction.
ii. Transform the graph from format Fs to Fe. So now the graph G is in format Fe.

iii. Set Fs = Fe.
3. By construction, the graph G is now in format Fdes, i.e., we have Gdes.

D. Return the graph Gdes, which is in format Fdes.

Table 1: Social networks used in performance evaluation and case study. If there are multiple connected components
in a graph, we use only the giant component. Here, n and m are numbers of vertices and edges, respectively, in the
giant component; dave and dmax are average and maximum degrees; kmax is maximum kcore; cave is average clustering
coefficient; and ∆ is graph diameter. Jazz is a network of musicians, Ca-Hepth and Ca-Astroph are collaboration net-
works, Epinions represents trust on Epinions, and VA-Beach, Miami, and Houston are synthetic population networks.
The networks for Miami and Houston are the social contact networks among individuals in these cities for a normative
Wednesday, among the most active week days.

Network Edge
Multiplicity

Edge
Direction

n m dave dmax kmax cave ∆

Jazz simple undirected 198 2,742 27.7 100 29 0.617 6
Ca-Hepth simple undirected 8,638 24,806 5.74 65 31 0.482 18
Ca-Astroph simple undirected 17,903 196,972 22.0 504 56 0.633 14
Epinions simple undirected 75,877 405,739 10.7 3044 67 0.138 14
VA-Beach simple directed 167,722 4,229,716 50.4 779 760 0.186 10
Miami, FL simple undirected 4,894,150 87,077,324 35.6 656 47 0.092 11
Houston, TX simple undirected 5,841,222 129,310,137 44.3 706 51 0.073 12

4.3 Execution Speed

Figure 5 shows three plots of time used by transformations. Since TTable is the hub format in Figure 3, the
plots show data for the cases: (i) TTable is the destination format (source formats in legend), (ii) TTable
is the source format (destination formats in legend), and (iii) transformations are through TTable in going
from Fsrc to Fdes per legend. Thus, the transformations in the first two plots are single-hop, and those in the
last plot use two hops. In Figures 5a and 5b, the blue points for MatrixMarket (label “mtx”) are underneath
the orange points for the SNAP edgelist format for the Ca-Astroph and larger networks. We are currently
investigating why execution times for MatrixMarket and SNAP edgelist execution times decrease, as the
graph size increases (from Epinions to VA-Beach) in Figure 5a; we have run replicates and the behavior
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is repeatable. The plots demonstrate that execution times for the same transformation can vary by four to
five orders of magnitude across networks.
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Figure 5: Performance data in terms of execution times for graph transformations for each graph (on the x-axis).
The three plots have different classes of transformations, as follows. (a) Transformations times from the identified
graph format Fsrc in the legend to Fdes = TTable. (b) Transformation times from Fsrc = TTable to the formats Fdes

identified in legend. (c) Transformation times from the specified source Fsrc to destination Fdes formats, where each
transformation goes through TTable; thus, these transformations are 2-hop.

Figure 6a shows three transformations for each graph along the x-axis. The three transformations are
chosen from the data to represent lesser, intermediate, and greater execution times. The large execution
times involve the MatrixMarket format (labeled “mtx,” orange bars).

Figure 6b shows data for a total of 119 transformations over the seven networks. (In this plot, unlike
the other plots, data points are individual measured times and do not represent the average of multiple
replicates.) The purpose is to show the range of transformation times possible for each network, e.g.,
Epinions has times over almost five orders of magnitude. For each of the networks Ca-Hepth, Ca-Astroph,
Epinions, and VA-Beach, the two data points with the greatest execution times are transformations from
edge lists to the MatrixMarket format.

Table 2 provides a representative breakdown of times for major steps of the transformation process.
The BFS traversal of the GTG is fast, as expected, but reading and writing a graph can consume significant
time. Moreover, differences in reading and writing times can be significantly different even though it is
the same graph (compare the contents of graph files in Figure 2).

Table 2: Representative measured times for selected tasks and the total execution time for graph transfor-
mation for the Houston network from format NetworkX Edgelist to format SNAP Edgelist.

Task Task Execution
Time(s)

Perform BFS on GTG to obtain Psd . 0.000017
Read graph in format Fsrc from file. 2721.9
Write graph in format Fdes to file. 411.8
Perform in-memory transformation from Fsrc to Fdes. 4833.0
Total code execution time. 7966.7
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(c) All transformation times, error bars

Figure 6: (a) Performance data in terms of execution time across multiple graph transformations for five
graphs (on the x-axis). The three transformation types are chosen based on the following: the first transfor-
mation is among the fastest across all networks; the second transformation is a representative transformation
that has intermediate execution times; and the third transformation is among the most time consuming across
all networks. Bars have black lines indicated ± one standard deviation. These are all “one-hop” transforma-
tions. The directed edge (Fsrc,Fdes) for each transformation per network is in the legend. (b) Performance
data in terms of execution times for all networks. Each x-axis value is one network, with number of edges
also listed. For each network, several data points are given that represent times for various transformations;
each data point corresponds to one of 119 transformations. The purpose is to identify the ranges in times
that transformations can take, depending on format. (c) The data point for each network represents the mean
of all transformations in plot (b), and error bars represent ± one standard deviation on the log scale.

5 CASE STUDY

The primary purpose of our case study is to illustrate the practical use of GraphTrans. A network
representation of the pairwise interactions among the 5.8 million people in Houston, TX is specified in a
NetworkX format. The goal is to generate structural analysis parameters of the network, so that these can
be used to reason about simulation results; see for example (Kuhlman et al. 2015). The structural analysis
methods in SNAP and NetworkX, and “home-grown” codes, are used. For SNAP, the graph needs to be
transformed to the PUNGraph format. Structural properties are generated and code execution times for
these methods are recorded.

Figure 7a provides the timing data, where the first bar (magenta) is the graph transformation time (“Gr.
Conv”). This transformation time is greater than the time to compute several structural properties (the total
time for all structural analyses is the last bar). These results can be understood as follows. First, the graph
transformation requires two hops, through TTable in Figure 3, and second, the reading and writing of a
network consumes considerable time (see Table 2).

Two plots showing the computed structural properties are shown: Figure 7b contains clustering coefficient
distributions for all networks and Figure 7c depicts betweenness centrality distributions for five networks.
Plots illustrate characteristic curves for each property, e.g., clustering coefficient distributions often have
a concave-upward shape, with larger numbers of nodes with near-zero and near-one clustering coefficient
values. These data serve two purposes: (i) they demonstrate the use and value of GraphTrans, and (ii) the
timing comparisons give a sense of the “overhead” associated with transforming graphs.
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(a) Timing data, Houston network
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Figure 7: Various results enabled by graph transformations. (a) Timing data for the Houston network. The
magenta bar is the time to convert it from NetworkX graph format to SNAP PUNGraph edge list. The re-
maining bars are the times to compute various structural properties of the Houston network. (b) Clustering
coefficient distributions for all networks of this study (the time to generate these data for the Houston net-
work is given in the “Clust.Coef.” blue bar in (a)). (c) Betweenness centrality distributions for five of the
seven networks. (This computation is a very expensive in terms of time; results were not available for the
largest two networks even after 296 hours (2 weeks) of computation on an HPC cluster).

6 SUMMARY

The GraphTrans system for large graph conversions has been presented, with contributions of our work
in Section 1.3. The system is described, evaluated, and used in a case study in Sections 3, 4, and 5,
respectively. Future enhancements to the system will include adding conversion codes for other graph
representation formats and identifying other base formats (similar to SNAP TTable used in Figure 3) that
can help in making certain common transformations run faster.
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