
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

UNITING SIMULATION AND MACHINE LEARNING FOR RESPONSE TIME PREDICTION
IN PROCESSOR SHARING QUEUES

Jamol Pender
Elena Zhang

Operations Research and Information Engineering
Cornell University

Ithaca, NY 14853, USA

ABSTRACT

Processor sharing queues are used in a variety of settings in telecommunications and internet applications
and are known for being fair. In this paper, we study the possibility of accurately predicting the response
times in real time of the G/G/1 processor sharing queue. To this end, we combine stochastic simulation
with supervised learning machine learning methods. We show that many of the current machine learning
algorithms can perform well at predicting response times in real-time.

1 INTRODUCTION

In this paper, we analyze the single-server queue operating under the processor sharing (PS) service discipline.
In this G/G/1/PS queue, jobs arrive to the queue according to a general arrival process. Moreover, each
such job has associated with it a processing time, which is a random variable that represents the amount
of time that the server must spend working on this job to complete its service if it were the only job in
the queue. In the processor sharing queue, jobs never wait and are immediately served when they enter
the queue. However, in a processor sharing queue, the processor is split among all of the jobs in a even
manner i.e. if there are n jobs, then each job receives 1/n of the processor’s effort. As a result, in the
processor sharing queue, it is possible that future arrivals can affect the response time of jobs that have
already arrive since each job experiences additional slowdown when new jobs arrive. Unlike the first in
first out (FIFO) G/G/1 queue, even if one were given all information about all previous arrivals, one cannot
perfectly predict the response time of a job. Thus, one of the most important quantities of interest is to
predict the response time of a job. This is the main focus of this paper.

The processor sharing queue is well studied since its inception in Kleinrock (1967), Kleinrock (1964),
Kleinrock (1970), Kleinrock et al. (1971) and Kleinrock and Muntz (1972) as the limit of round robin
queueing systems. It is well known that the unconditional steady-state response time distribution is
approximately exponential. This implies that prediction is almost hopeless in this setting. It is also
well known in Whitt (1999b) that the unconditional steady-state response-time in the M/G/1/PS queue is
asymptotically exponential in the heavy traffic regime. However, when limited information is available, it
is an important question to know whether response times can be reliably predicted from basic queueing
information. Despite its importance there is only one paper by Ward and Whitt (2000) that attempts to
predict response times in the single server processor sharing queue and quite a few papers in the FCFS
setting i.e. Whitt (1999b), Whitt (1999a), Ibrahim and Whitt (2009), Ibrahim and Whitt (2011) and Shah
et al. (2019). Unlike the G/G/1/FIFO queue, PS response times are not necessarily known at the time of
arrival. This is simply because the response time depends on the number of jobs that arrive after a job. This
feature of PS queues is precisely what makes it interesting to study from a prediction point of view and
is one of the main goals of this work. Here in this work, we provide a new framework for response time

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Pender and Zhang

prediction in single server queues with the PS queueing discipline using simulation as a data generator and
machine learning as a predictive tool. By combining these two areas, we are able to develop new ways of
predicting response times in PS queues and give incoming jobs accurate estimates of departure.

One important feature of our work is that our data driven approach does not assume anything about
the dependence of the arrival and service distributions. Much of the theoretical work assumes Poisson
arrivals, however, recent literature shows that arrivals may not be Poisson, see for example Sriram and
Whitt (1986), Daw and Pender (2018c), Daw and Pender (2018b), Koops et al. (2018), Daw and Pender
(2018a), Saha et al. (2019), Daw et al. (2020).

This paper is valuable in many ways. First we introduce the idea of simulation as a data generation
mechanism for machine learning. This is similar to reinforcement learning, but is still quite different
since our model is not restricted to be in the class of Markov decision processes. Second, we show that
machine learning can be quite helpful at predicting response times. This is relevant in that we can use
these predictions in data centers as a way of partitioning traffic from one server to another.

1.1 Contributions of Our Work

By using stochastic simulation for the G/G/1/PS queue and leveraging machine learning methods, we
provide new insights to the following questions:

• What machine learning methods work well at predicting response times for the G/G/1/PS queue?
• How valuable is additional information when predicting response times of the G/G/1/PS queue?

1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 introduces the processor sharing queue and
provides a brief history of its construction. In Section 3, we present our simulation and machine learning
results for various methods. We also explain how various parameters of the queueing model affect the
performance of predicting the response times of processor sharing queues. Finally, a conclusion is given
in Section 4.

2 THE PROCESSOR SHARING QUEUE

To the authors knowledge, there are not many papers that discuss response time prediction for processor
sharing queues in real time. Most research explores the use of fluid and diffusion limits or Laplace
transforms to construct an approximate expected response time, see for example Hampshire et al. (2006),
Whitt (1999b), Zhang et al. (2011), Ramanan et al. (2003). Moreover, the approximation might only depend
on the number in the system and the job size and not other forms of information. One reason is that it is very
difficult if not impossible to construct analytical estimates for the conditional mean response time given
different forms of information other than the queue length or job size. To this end, we leverage machine
learning to understand how well current machine learning methods can use this additional information in
the context of response time prediction. Hence, we develop the following approach for generating response
time predictions for the G/G/1/PS queue:

1. Construct a discrete-event simulation of the G/G/1/PS queue.
2. The discrete-event simulation is then used to record for each job, the job size, the queue length

upon arrival, the response time, and the amount of work in the system upon arrival.
3. Partition the data generated from the discrete-event simulation into training and test sets.
4. Train various machine learning methods on the training sets and develop predictive models.
5. Use the predictive models generated from the training sets and make predictions on the test sets.
6. Evaluate via some metric like average mean square error which machine learning methods perform

well on the test data.

Pender and Zhang

2.1 How the Data is Collected and Analyzed

This paper leverages simulation and machine learning together for prediction purposes. In this regard,
we view the simulation part as essential because it is by which we generate the training data used by the
machine learning methods. Thus, the simulation step should be viewed as a data collection step. Unlike
most data collection situations, via simulation, we can collect whatever data we want as long as it can be
simulated. Before we go into more detail describing the various machine learning methods that we use to
predict the response times, we will describe how we generate the training data via simulation. Moreover,
we outline how we generate the numerical results that follow.

The experiments that follow were all trained on 10,000 simulated waiting time observations and are
implemented or tested on 10 independent sets for all methods and averaged. All numbers that are reported
are based on the sample mean squared error for the 10,000 samples i.e.

Average MSE =
1
n

n

∑
i=1

(
Ri − R̂i

)2
.

where
R̂i = f

(
X (1)

i ,X (2)
i ,X (3)

i

)
for some function f (·) and

• X (1)
i = size of the ith job

• X (2)
i = amount of work in system at time of arrival of the ith job

• X (3)
i = queue length at time of arrival of the ith job

• Ri = the response time of the ith job.

Thus, we aim to predict the response time, Ri, of the ith job by using information such as the job size
X (1)

i , the amount of work in the system at the time of arrival of the ith job X (2)
i , and the queue length

at the time of arrival of the ith job X (3)
i . We will consider both Markovian and non-Markovian queueing

models and we will use the parameter ρ = λ

µ
throughout the rest of the paper. Finally all numbers reported

in tables are AMSE for the test sets and not the training sets since for all of our examples, the test sets
performed worst than the training sets.

2.2 Arrival and Service Distributions

In this paper, we simulated the processor sharing queues using exponential and non-exponential distributions.
For the exponential case, we assumed that the inter-arrival times occurred as exponential random variables
with rate parameter λ and the job sizes were exponential with rate parameter µ . For the non-exponential
case, we considered log-normal random variables for the inter-arrival times and job sizes given by LN(µa,σa)
and LN(µs,σs) for the inter-arrivals and the job sizes respectively. For consistency of results, we ensured
that the mean and variance of the log-normal random variables were the same as the exponential settings.
This makes it easier for comparison purposes. Finally, all calculations were done using Python’s sci-kit
learn packages.

3 MACHINE LEARNING METHODS FOR THE PROCESSOR SHARING QUEUE

3.1 Linear Regression

In this section, we aim to understand how well linear regression will perform in predicting response times
for the processor sharing queue. In the linear regression framework our goal is to find the coefficients

Pender and Zhang

β0,β1,β2,β3 in order to minimize the following loss function

min
β0,β1,β2,β3

n

∑
i=1

(
Ri −β0 −β1X (1)

i −β2X (2)
i −β3X (3)

i

)2

in terms of the independent variables
(

X (1)
i ,X (2)

i ,X (3)
i

)
. Linear regression is an attractive prediction method

because it is quite simple and gives a natural interpretation of just weighting the available information
upon arrival to construct a prediction. In fact, if one just receives the queue length as the information i.e
β0 = β1 = β2 = 0, then the linear regression can be interpreted as a statistical version of Little’s law as it
relates the queue length to the response time in a linear relationship.

In Tables 1 - 4, we observe that the performance of linear regression improves as we scale the arrival
rate and service rate (large parameter setting). Moreover, we also observe that the performance degrades as
we let λ approach µ i.e. we are in heavy traffic. Surprisingly, we also observe that the coefficients for the
linear regression are quite similar for specific offered load values. One should also note that the performance
is quite similar in regardless if we use a Markovian model where the inter-arrival and service times are
exponentially distributed or a non-Markovian model. In all of the simulation experiments, we observe that
the intercept i.e. β0 is always negative. This suggests that the other coefficients are overestimating the
response time. However, as we scale up the arrival rate and service rate parameters, the magnitude of the
shift decreases significantly and approaches zero. We also observe that the coefficient β1 is proportional
to the offered load parameter λ/µ since we know that the response time is of the order x/(1−ρ), see
for example Ward and Whitt (2000). The coefficient β2, which measures the impact of the work in the
system upon arrival, is also positive. It gets smaller as the arrival rate and service rate get large and it also
gets slightly larger as λ approaches µ . Finally, we observe the parameters β3 is pretty consistent in all
parameter regimes.

We can also connect the linear regression to the conditional mean response time with job size x and n
customers at arrival given in Asare and Foster (1983) by the following formula

Rn(x) =
x

1−ρ
+

n
µ −λ

·
(

1− e−(µ−λ)x
)
− λ

(µ −λ)2 ·
(

1− e−(µ−λ)x
)
.

Thus, the signs and magnitudes of the coefficients are well approximated by this formula in the M/M/1/PS
model. We find that the AMSE for the conditional mean response time is decent, however, does not do
better than the linear regression in most settings. We observe that it also does not do better than most of
the machine learning methods. This is possible as additional information is added to the prediction for the
other methods. We also observe that conditional mean response time is about as accurate for the M/M/1
queue and the G/G/1 queue as well.

Table 1: Linear Regression Response Time Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Linear (AMSE) 1.56 8.37 8.21e+1 2.92e+3 1.85e-2 1.06e-1 1.02 2.20e+1
β0 -1.01 -2.96 -8.03 -4.54e+1 -4.54e+1 -2.79e-1 -9.29e-1 -5.19
β1 2.01 4.18 9.52 4.78e+1 1.97 3.98 1.08e1 5.48e+1
β2 3.36e-1 4.08e-1 4.55e-1 4.97e-1 3.37e-2 4.13e-2 4.40e-2 5.06e-2
β3 3.30e-1 3.92e-1 4.28e-1 4.71e-1 3.40e-1 3.81e-1 4.62e-1 4.47e-1

Rn(x) AMSE 1.94 6.37 2.84e+1 2.16e+2 2.14e-2 7.18e-2 3.41e-1 2.26

Pender and Zhang

Table 2: Linear Regression Response Time Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Linear (AMSE) 1.40e-4 9.92e-4 1.24e-2 4.73e-1 2.00e-6 9.00e-6 9.40e-5 1.20e-3
β0 -9.84e-3 -2.81e-2 -9.52e-2 -6.41e-1 -1.01e-3 -2.72e-3 -8.90e-3 -4.15e-2
β1 1.98 4.08 1.10e+1 6.70e+1 2.01 3.95 1.05e+1 4.48e+1
β2 3.43e-3 3.89e-3 4.31e-3 4.65e-3 3.38e-4 4.09e-4 4.42e-4 4.66e-4
β3 3.07e-1 3.95e-1 4.77e-1 5.08e-1 3.20e-1 3.72e-1 4.43e-1 4.75e-1

Rn(x) AMSE 3.53e-1 4.02e-1 4.50e-1 4.83e-1 3.36e-1 3.79e-1 4.19e-1 4.68e-1

Table 3: Linear Regression Response Time Prediction G/G/1 Queue.

1/µa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/µs 1 1 1 1 10 10 10 10
1/σs 1 1 1 1 10 10 10 10

Linear (AMSE) 1.00 6.84 7.21e+1 1.82e+3 9.78e-3 1.05e-1 5.44e-1 4.61e+1
β0 -1.13 -2.86 -7.29 -5.93e+1 -1.09e-1 -2.86e-1 -6.90e-1 -6.44
β1 1.96 3.86 8.56 6.20e+1 1.92 3.88 8.32 6.60e+1
β2 4.41e-1 5.50e-1 5.86e-1 6.39e-1 4.29e-2 5.22e-2 5.49e-2 6.17e-2
β3 2.22e-1 2.40e-1 2.91e-1 3.24e-1 2.35e-1 2.72e-1 3.17e-1 3.44e-1

Rn(x) AMSE 1.58 5.78 22.88e+1 3.68e+2 1.55e-2 7.68e-2 2.76e-1 3.42

Table 4: Linear Regression Response Time Prediction G/G/1 Queue.

1/µa 50 75 90 99 500 750 900 990
1/σa 50 75 90 99 500 750 900 990
1/µs 100 100 100 100 1000 1000 1000 1000
1/σs 100 100 100 100 1000 1000 1000 1000

Linear (AMSE) 1.15e-4 9.37e-4 1.45e-2 3.83e-1 8.46e-7 1.80e-5 5.80e-5 1.61e-2
β0 -1.11e-2 -2.78e-2 -8.19e-2 -5.58e-1 -1.11e-3 7.00e-6 -7.96e-3 -4.97e-2
β1 1.90 3.82 9.52 5.91e+1 1.94 3.76 9.34 5.13e+1
β2 4.61e-3 5.10e-3 5.95e-3 6.41e-3 4.29e-4 5.61e-4 5.82e-4 5.70e-4
β3 2.13e-1 2.81e-1 2.88e-1 3.13e-1 2.41e-1 2.71e-1 3.29e-1 4.11e-1

Rn(x) AMSE 1.69e-4 7.11e-4 4.85e-3 3.20e-2 1.51e-4 6.00e-6 3.20e-5 1.04e-3

3.2 Gaussian Processes

In this section, we describe the performance of Gaussian processes on predicting the response times of the
processor sharing queue. In Tables 5 - 8, we observe that the performance of Gaussian processes improves
as we scale the arrival rate and service rate (large parameter setting). Moreover, we also observe that
the performance degrades as we let λ approach µ i.e. we are in heavy traffic. The performance under a
Markovian setting or a non-Markovian setting is roughly the same. We note that the Gaussian processes
do not do as well as linear regression when the arrival rate and service rates are small, however, Gaussian
processes work well when the rates are large. We compare three different kernels (squared exponential,

Pender and Zhang

Matern 5/2, rational quadratic) and observe that the rational quadratic and squared exponential seemed to
work uniformly better than the Matern kernel.

Table 5: Gaussian Processes Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Squared Exponential 3.98e+4 9.45e+6 5.50e+7 1.45e+8 7.84e-2 6.38e-1 8.49e+1 3.01e+2
Matern 52 4.33e+4 6.17e+3 1.12e+5 2.67e+7 1.50e+1 5.36e+1 4.10e+2 6.76e+3

Rational Quadratic 4.05e+1 1.31e+2 1.66e+2 2.16e+3 2.77e-1 1.34 7.34 4.09e+1

Table 6: Gaussian Processes Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 9900

Squared Exponential 1.50e-4 9.53e-4 8.98e-3 5.37e-1 1.84e-6 6.00e-6 4.40e-5 8.68e-4
Matern 52 7.96e-4 5.42e-3 2.37e-2 8.51e-1 1.19e-4 4.08-4 5.10e-5 3.93e-3

Rational Quadratic 8.56e-4 3.99e-2 9.48e-2 1.48 7.32e-6 5.20e-5 3.72e-4 3.82e-3

Table 7: Gaussian Processes Prediction G/G/1 Queue.

1/µa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/µs 1 1 1 1 10 10 10 10
1/σs 1 1 1 1 10 10 10 10

Squared Exponential 1.55e+6 9.87e+5 1.78e+7 2.53e+8 1.93e-2 5.29 2.31e+2 3.62e+4
Matern 52 9.29e+2 4.76e+3 3.04e+5 4.93e+5 1.01e+1 3.54e+1 7.53e+2 2.09e+2

Rational Quadratic 2.16e+1 9.62e+1 3.07e+2 7.05e+3 2.02e-1 3.72 3.37 1.82e+1

Table 8: Gaussian Processes Prediction G/G/1 Queue.

1/µa 50 75 90 99 500 750 900 990
1/σa 50 75 90 99 500 750 900 990
1/µs 100 100 100 100 1000 1000 1000 1000
1/σs 100 100 100 100 1000 1000 1000 1000

Squared Exponential 1.14e-4 1.22e-3 9.26e-3 1.32 1.29e-6 2.20e-5 5.14e-4 1.84e-3
Matern 52 6.33e-2 3.70e-2 2.88 4.62 8.94e-6 2.10e-5 2.14e-3 1.01e-1

Rational Quadratic 7.46e-4 1.11e-2 7.55e-2 1.75 2.17e-6 8.60e-5 2.71e-3 5.53e-3

3.3 Deep Neural Networks

In this section, we describe the performance of deep neural networks on predicting the response times of
the processor sharing queue. In Tables 9 - 12, we observe that the performance of deep neural networks
improves as we scale the arrival rate and service rate (large parameter setting). We also observe that the
performance degrades as we let λ approach µ , which implies that we are in the heavy traffic regime. The
performance under a Markovian setting or a non-Markovian setting is roughly the same, however, there

Pender and Zhang

are some settings where DNN does better for the G/G/1 and vice versa. In contrast to Gaussian processes,
deep neural networks appear to work as well as linear regression when the arrival rate and service rates
are small, however, deep neural networks outperform the linear regression when the rates are large and
the performance is comparable to Gaussian processes in the large parameter regime. We compare three
different activation functions (ReLU, Sigmoid, Tanh) and observe that ReLu slightly outperforms Sigmoid
and Tanh uniformly. Moreover, we compare different numbers of layers and observe that with both 100
and 400 layers, the performance is very similar.

Table 9: Deep Neural Network Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

ReLU (100 layers) 1.14 1.09 3.19 207.02 1.57e-2 4.48e-2 .55 4.57
ReLU (400 layers) 1.14 1.12 3.13 209.45 1.55e-2 4.50e-2 .56 4.39
Tanh (100 layers) 1.14 1.17 3.24 338.77 1.93e-2 4.81e-2 .61 4.93
Tanh (400 layers) 1.15 1.18 3.32 291.34 2.12e-2 4.84e-2 .66 5.37

Sigmoid (100 layers) 1.14 1.20 3.46 351.25 2.05e-2 6.68e-2 1.12 6.96
Sigmoid (400 layers) 1.31 1.20 3.43 301.01 2.10e-2 6.89e-2 1.38 1.07

Table 10: Deep Neural Network Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

ReLU (100 layers) 1.91e-4 1.29e-3 9.10e-3 1.39e-1 6.45e-6 2.60e-5 1.95e-4 4.84e-3
ReLU (400 layers) 1.46e-2 9.98e-4 7.34e-3 1.23e-1 5.96e-6 2.00e-5 1.91e-4 4.84e-3
Tanh (100 layers) 1.86e-4 1.51e-3 9.87e-3 1.22e-1 1.13e-5 2.90e-5 2.22e-4 4.96e-3
Tanh (400 layers) 1.62e-4 1.33e-3 7.92e-3 1.47e-1 6.36e-6 1.90e-5 1.86e-4 4.94e-3

Sigmoid (100 layers) 3.77e-4 2.18e-3 1.83e-2 3.17e-1 6.80e-6 2.70e-5 2.06e-4 4.83e-3
Sigmoid (400 layers) 2.84e-4 1.78e-3 1.52e-2 2.53e-1 6.32e-6 2.60e-5 1.95e-4 4.93e-3

Table 11: Deep Neural Network Prediction G/G/1 Queue.

1/µa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/µs 1 1 1 1 10 10 10 10
1/σs 1 1 1 1 10 10 10 10

ReLU (100 layers) 7.58e-1 4.02 9.12 4.32e+2 8.20e-3 5.14e-2 2.37e-1 7.86e-1
ReLU (400 layers) 7.56e-1 4.05 8.93 4.57e+2 8.24e-3 5.30e-2 2.40e-1 7.90e-1
Tanh (100 layers) 7.91e-1 4.24 134.97 7.27e+2 9.80e-3 5.39e-2 2.50e-1 8.38e-1
Tanh (400 layers) 8.10e-1 4.23 1.20.52 5.97e+2 9.57e-3 5.34e-2 2.53e-1 8.31e-1

Sigmoid (100 layers) 8.40e-1 4.61 115.16 1.04e+3 9.24e-3 8.49e-2 3.70e-1 9.05e-1
Sigmoid (400 layers) 9.19e-1 4.75 109.07 8.32e+2 9.37e-3 8.45e-2 5.26e-1 9.30e-1

3.4 K-Nearest Neighbors

In this section, we describe the performance of K-nearest neighbors on predicting the response times of
the processor sharing queue. In Tables 13 - 16, we observe that the performance of K-nearest neighbors

Pender and Zhang

Table 12: Deep Neural Network Prediction G/G/1 Queue.

1/µa 50 75 90 99 500 750 900 990
1/σa 50 75 90 99 500 750 900 990
1/µs 100 100 100 100 1000 1000 1000 1000
1/σs 100 100 100 100 1000 1000 1000 1000

ReLU (100 layers) 1.52e-4 1.68e-3 5.41e-3 3.22e-1 4.53e-5 4.10e-5 5.45e-4 6.26e-3
ReLU (400 layers) 1.25e-4 1.09e-3 4.61e-3 3.12e-1 3.69e-6 3.20e-5 5.11e-4 6.27e-3
Tanh (100 layers) 1.57e-4 1.92e-3 8.23e-3 3.37e-1 1.07e-5 5.50e-5 6.10e-4 6.41e-3
Tanh (400 layers) 1.44e-4 1.53e-3 6.74e-3 3.45e-1 3.90e-6 9.90e-5 6.13e-4 6.56e-3

Sigmoid (100 layers) 3.32e-4 2.62e-3 1.42e-2 6.36e-1 4.72e-6 3.70e-5 4.85e-4 6.34e-3
Sigmoid (400 layers) 2.70e-4 2.17e-3 7.41e-3 7.38e-1 4.71e-6 4.00e-5 4.77e-4 6.75e-3

improves as we scale the arrival rate and service rate (large parameter setting). We also observe that the
performance degrades as we let λ approach µ , which implies that we are in the heavy traffic regime. Unlike
the other methods, we observe that K-NN works slightly better under the non-Markovian setting when
compared to the M/M/1 model. In contrast to the other methods, K-NN also appears to work well in the
small parameter regime setting. This is mostly because, K-NN has a conditional expectation interpretation
and we are finding the closest representatives to our test points. K-NN also outperforms the linear regression
when the rates are large and the performance is comparable to Gaussian processes and deep neural networks
in the large parameter regime. We compare three different values of K (5,10,25) and observe that the
performance is similar, but K = 5 slightly outperforms the other values.

Table 13: K-Nearest Neighbor Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

k = 5 4.96e-3 3.12e-2 6.66e-2 2.94 2.38e-4 8.18e-4 1.80e-2 4.72e-1
k = 10 9.48e-3 1.06e-1 7.67e-2 5.06 5.24e-4 2.07e-3 3.54e-2 8.30e-1
k = 25 2.63e-2 4.20e-1 3.47e-1 2.03e+1 1.50e-3 5.46e-3 8.92e-2 1.88

Table 14: K-Nearest Neighbor Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

k = 5 3.00e-6 4.70e-5 1.16e-3 2.44e-2 1.25e-7 4.96e-7 8.00e-6 7.64e-4
k = 10 8.00e-6 1.34e-4 2.49e-3 5.25e-2 2.70e-7 1.36e-6 2.00e-5 1.87e-3
k = 25 2.3e-5 3.60e-4 5.57e-3 1.26e-1 6.11e-7 3.87e-6 4.20e-5 4.45e-3

3.5 Gradient Boosted Trees Regression

In this section, we describe the performance of boosted tree regression on predicting the response times of
the processor sharing queue. In Tables 17 - 20, we observe that the performance of boosted tree regression
improves as we scale the arrival rate and service rate (large parameter setting). We also observe that the
performance degrades as we let λ approach µ , which implies that we are in the heavy traffic regime. Similar
to K-NN, we find that boosted tree regression works slightly better under the non-Markovian setting when
compared to the M/M/1 model. Boosted tree regression has very similar performance to linear regression
when the rates are large and the performance is worse than Gaussian processes and deep neural networks in

Pender and Zhang

Table 15: K-Nearest Neighbor Response Time Prediction G/G/1 Queue.

1/µa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/µs 1 1 1 1 10 10 10 10
1/σs 1 1 1 1 10 10 10 10
k = 5 8.03e-2 1.68e-2 5.72e-2 3.43e+2 1.84e-4 1.59e-3 5.07e-2 1.73e-1
k = 10 1.35e-1 3.76e-2 1.32e-1 7.59e+2 4.71e-4 3.71e-3 9.04e-2 3.76e-1
k = 25 2.35e-1 1.39e-1 7.07e-1 1.47e+3 1.37e-3 1.05e-2 1.87e-1 1.10

Table 16: K-Nearest Neighbor Response Time Prediction G/G/1 Queue.

1/µa 50 75 90 99 500 750 900 990
1/σa 50 75 90 99 500 750 900 990
1/µs 100 100 100 100 1000 1000 1000 1000
1/σs 100 100 100 100 1000 1000 1000 1000
k = 5 1.70e-5 6.70e-5 2.08e-3 1.73e-2 1.03e-7 1.00e-6 1.90e-5 9.88e-5
k = 10 3.50e-5 1.66e-4 4.29e-3 3.96e-2 2.20e-7 2.00e-6 3.40e-5 1.86e-3
k = 25 6.00e-5 3.74e-4 7.83e-3 1.01e-1 5.27e-7 5.00e-6 6.3e-5 3.11e-3

the large parameter regime. We compare two different values of the number of estimators (100,1000) and
observe that the performance is similar, but 100 estimators seems to slightly outperform 1000 estimators.

Table 17: Boosted Trees Regression Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

of Estimators = 100 1.39 9.46 2.60e+1 5.89e+2 1.31e-2 5.97e-2 4.26e-1 6.53
of Estimators = 1000 1.80 1.12e+1 3.15e+1 6.21e+2 1.57e-2 7.73e-2 4.97e-1 6.88

Table 18: Boosted Trees Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

of Estimators = 100 1.35e-4 6.88e-4 3.66e-3 5.80e-2 1.69e-6 6.50e-6 2.50e-5 4.07e-4
of Estimators = 1000 1.67e-4 8.54e-4 4.12e-3 5.86e-2 2.00e-6 8.22e-6 2.90e-5 4.42e-4

Table 19: Gradient Boosted Trees Response Time Prediction G/G/1 Queue.

1/µa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
1/µs 1 1 1 1 10 10 10 10
1/σs 1 1 1 1 10 10 10 10

of Estimators = 100 1.23 5.26 2.61e+1 2.09e+3 7.00e-3 5.27e-2 4.92e-1 4.00
of Estimators = 1000 1.45 6.43 3.20e+1 2.14e+3 9.38e-3 6.61e-2 5.63e-1 4.54

Pender and Zhang

Table 20: Gradient Boosted Trees Response Time Prediction G/G/1 Queue.

1/µa 50 75 90 99 500 750 900 990
1/σa 50 75 90 99 500 750 900 990
1/µs 100 100 100 100 1000 1000 1000 1000
1/σs 100 100 100 100 1000 1000 1000 1000

of Estimators = 100 1.33e-4 5.90e-4 5.87e-3 5.05e-2 1.13e-6 7.00e-6 3.60e-5 8.77e-4
of Estimators = 1000 1.61e-4 7.39e-4 6.03e-3 5.21e-2 1.43e-6 8.00e-6 4.20e-5 9.04e-4

3.6 Summary of Numerical Results

So far, we have shown that machine learning can do well at predicting the response times of the processor
sharing queue. In summary, we observe that K-Nearest Neighbors works very well at predicting the response
times in both the small parameter and large parameter regimes. We also see that the linear regression
prediction is picking up to some extent, the conditional mean response time given the job size and queue
length information, which is quite remarkable. We notice some variation from the exact formula, but that
could be caused by the randomness of the data. Thus, in all it seems that one can use most machine
learning methods with confidence, however, we recommend K-NN as it is fast and is quite accurate in
many parameter settings.

One important observation we made was that sometimes the AMSE can be misleading since the large
values can be caused by one or two large mistakes in prediction. In an effort to understand this, we plot
the errors of the response times and the predictions via several methods in a histogram for the M/M/1 and
G/G/1 settings in Figures 1 and 2 respectively. We find in our observations that the large mistake rule
does seem to skew the AMSE values for most of the methods except linear regression, K-NN, and the
conditional expectation estimator. Perhaps other performance measures can be used to capture this effect
as it helps us understand the true performance of the method on most of the points.

Figure 1: M/M/1 Queue

Pender and Zhang

Figure 2: G/G/1 Queue

4 CONCLUSION & FUTURE DIRECTIONS

In this work, we propose combining simulation and machine learning for response time prediction for
processor sharing queues. We find that K-Nearest Neighbors is a robust method that performs well for
small and large parameter settings and also performs well in light and heavy traffic. However, all of the
machine learning methods work reasonably well on predicting the response times.

One major future direction would be to extend this analysis to networks of processor sharing queues
since it is clear in many applications that one queue is not enough, see for example Wang et al. (2021)
and Pender and Phung-Duc (2016). In the network setting, it would be great to predict response times of
not only an individual queue, but the entire network, if one knows the path.

Another area for future work is the area of processor sharing queues with time varying rates. There
is one paper by Hampshire et al. (2006) that analyzes the processor sharing queue in the non-stationary
setting. It would be great to compare the results from the Hampshire et al. (2006) to various machine
learning methods that can incorporate time varying behavior.

REFERENCES
Asare, B., and F. Foster. 1983. “Conditional Response Times in the M/G/1 Processor-Sharing System”. Journal of Applied

Probability:910–915.
Daw, A., A. Castellanos, G. B. Yom-Tov, J. Pender, and L. Gruendlinger. 2020. “The Co-Production of Service: Modeling

Service Times in Contact Centers Using Hawkes Processes”. arXiv preprint arXiv:2004.07861.
Daw, A., and J. Pender. 2018a. “An Ephemerally Self-Exciting Point Process”. arXiv preprint arXiv:1811.04282.
Daw, A., and J. Pender. 2018b. “Exact Simulation of the Queue-Hawkes Process”. In Proceedings of the 2018 Winter Simulation

Conference, edited by N. M. A. S. S. J. M. Rabe, A. A. Juan and B. Johansson, 4234–4235. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Daw, A., and J. Pender. 2018c. “Queues Driven by Hawkes Processes”. Stochastic Systems 8(3):192–229.
Hampshire, R. C., M. Harchol-Balter, and W. A. Massey. 2006. “Fluid and Diffusion Limits for Transient Sojourn Times of

Processor Sharing Queues with Time Varying Rates”. Queueing Systems 53(1):19–30.
Ibrahim, R., and W. Whitt. 2009. “Real-time Delay Estimation Based on Delay History”. Manufacturing & Service Operations

Management 11(3):397–415.
Ibrahim, R., and W. Whitt. 2011. “Wait-time Predictors for Customer Service Systems with Time-Varying Demand and Capacity”.

Operations research 59(5):1106–1118.
Kleinrock, L. 1964. “Analysis of a Time-shared Processor”. Naval research logistics quarterly 11(1):59–73.

Pender and Zhang

Kleinrock, L. 1967. “Time-shared Systems: A Theoretical Treatment”. Journal of the ACM (JACM) 14(2):242–261.
Kleinrock, L. 1970. “A Continuum of Time-sharing Scheduling Algorithms”. In Proceedings of the May 5-7, 1970, spring joint

computer conference, 453–458.
Kleinrock, L., and R. R. Muntz. 1972. “Processor Sharing Queueing Models of Mixed Scheduling Disciplines for Time Shared

System”. Journal of the ACM (JACM) 19(3):464–482.
Kleinrock, L., R. R. Muntz, and E. Rodemich. 1971. “The Processor-sharing Queueing Model for Time-shared Systems with

Bulk Arrivals”. Networks 1(1):1–13.
Koops, D. T., M. Saxena, O. J. Boxma, and M. Mandjes. 2018. “Infinite-Server Queues with Hawkes Input”. Journal of Applied

Probability 55(3):920–943.
Pender, J., and T. Phung-Duc. 2016. “A Law of Large Numbers for M/M/c/Delayoff-Setup Queues with Nonstationary Arrivals”.

In International conference on analytical and stochastic modeling techniques and applications, 253–268. Springer.
Ramanan, K., M. I. Reiman et al. 2003. “Fluid and heavy traffic diffusion limits for a generalized processor sharing model”.

The Annals of Applied Probability 13(1):100–139.
Saha, A., N. Ganguly, S. Chakraborty, and A. De. 2019. “Learning Network Traffic Dynamics Using Temporal Point Process”.

In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, 1927–1935. IEEE.
Shah, A., A. Wikum, and J. Pender. 2019. “Using Simulation to Study the Last to Enter Service Delay Announcement in

Multiserver Queues with Abandonment”. In Proceedings of the 2019 Winter Simulation Conference, edited by N. Mustafee,
K.-H. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, 2595–2605. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

Sriram, K., and W. Whitt. 1986. “Characterizing Superposition Arrival Processes in Packet Multiplexers for Voice and Data”.
IEEE journal on selected areas in communications 4(6):833–846.

Wang, W., Q. Xie, and M. Harchol-Balter. 2021. “Zero Queueing for Multi-Server Jobs”. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 5(1):1–25.

Ward, A., and W. Whitt. 2000. “Predicting Response Times in Processor-Sharing Queues”. Analysis of Communication Networks:
Call Centres, Traffic, and Performance 28:1.

Whitt, W. 1999a. “Improving Service by Informing Customers About Anticipated Delays”. Management science 45(2):192–207.
Whitt, W. 1999b. “Predicting Queueing Delays”. Management Science 45(6):870–888.
Zhang, J., J. Dai, B. Zwart et al. 2011. “Diffusion Limits of Limited Processor Sharing Queues”. Annals of Applied

Probability 21(2):745–799.

AUTHOR BIOGRAPHIES
JAMOL PENDER is an assistant professor in Operations Research and Information Engineering (ORIE) at Cornell University.
He earned his PhD in the Department of Operations Research and Financial Engineering (ORFE) at Princeton University. His
research interests include queueing theory, stochastic simulation, dynamical systems and applied probability. His e-mail address
is jjp274@cornell.edu. His website is https://blogs.cornell.edu/jamolpender/.

ELENA ZHANG is a second-year undergraduate student in Operations Research and Information Engineering at Cornell
University. Her research interests are in operations research, machine learning and applied probability and statistics. Her e-mail
address is eyz5@cornell.edu.

mailto://jjp274@cornell.edu
https://blogs.cornell.edu/jamolpender/
mailto://eyz5@cornell.edu

	INTRODUCTION
	Contributions of Our Work
	Organization of the Paper

	THE PROCESSOR SHARING QUEUE
	How the Data is Collected and Analyzed
	Arrival and Service Distributions

	MACHINE LEARNING METHODS FOR THE PROCESSOR SHARING QUEUE
	Linear Regression
	Gaussian Processes
	Deep Neural Networks
	K-Nearest Neighbors
	Gradient Boosted Trees Regression
	Summary of Numerical Results

	CONCLUSION & FUTURE DIRECTIONS

