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ABSTRACT

In this paper, we attempt to learn the tandem version of Lindley’s recursion directly from data. We
combine stochastic simulation with current machine learning methods such as Gaussian Processes, K-
Nearest Neighbors, Linear Regression, Deep Neural Networks, and Gradient Boosted Trees to learn the
tandem network Lindley recursion. We uncover specific parameter regimes where learning the tandem
network Lindley recursion is easy or hard.

1 INTRODUCTION

Despite the simplicity of the Lindley recursion and its tandem network extension, it has not been extensively
studied in a data driven context. Even though the queueing community has a rich history of using data to
inform stochastic models, there are very few papers that use data to learn the actual stochastic models that
one is using. There are some notable exceptions such as Sutton and Jordan (2011), Bodı́k et al. (2009),
Sutton and Jordan (2010), Wang et al. (2016), Armony et al. (2015) and Palomo and Pender (2020),
Kyritsis and Deriaz (2019), Nii et al. (2020). To this end, our goal is to understand how well current
machine learning methods can recover tandem network Lindley’s recursion from waiting time data of the
tandem version of the M/M/1 queue. To study this problem, we unite stochastic simulation of the tandem
queue with well known machine learning methods for learning or predicting waiting times from previous
data.

Fortunately, in recent years machine learning and more specifically deep learning has seen unprecedented
success in a diverse number of applications. Thus, our idea is to use machine learning methods to learn the
tandem network Lindley recursion. In this paper, we will restrict our study to the single server tandem network
case to understand the simplest of network queues. Our tandem queueing model is relevant for a variety
of applications such as sports, transportation, healthcare, cloud computing, and even telecommunications,
see for example Fu and Whitt (2015), Whitt (2015), Armony et al. (2015), Shah et al. (2019), Pender and
Phung-Duc (2016), Nirenberg et al. (2018), Brown et al. (2005), Koole and Mandelbaum (2002), Novitzky
et al. (2019) and Dunlay Jr and Park (1978).

1.1 Contributions of Our Work

In this paper, we make the following contributions to the literature:

• We aim to understand how well we can learn the tandem network Lindley recursion for the M/M/1
queue.

• We aim to understand under what regimes is it easy or hard to learn the tandem network Lindley
recursion. For example, do current machine learning methods work well when the queue is in light
traffic or heavy traffic?
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• Finally, we aim to understand which machine learning methods are the best at the learning the
tandem network and to understand any insights we can observe from how it learns the tandem
network waiting times.

1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 introduces the Lindley recursion and gives
a brief history of the formula. In Section 3, we compute several conditional moments for the Lindley
recursion and a two dimensional tandem network. We also explain how to construct a new recursion for
the tandem network. In Section 4, we present the results of the machine learning methods we analyze.
Finally, a conclusion and information about future directions is given in Section 5.

2 SINGLE STATION LINDLEY RECURSION

Consider the G/G/1 queueing system model where the customer inter-arrival distribution is general, the
service distribution is general, and there is a single server. For the nth customer to arrive to the queue, we
define Wn to be the waiting time for the nth customer. We also define An to be the inter-arrival time between
the nth and the (n+1)th customers and Sn to be the nth customer’s service time. For the case of an infinite
buffer and a First Come First Served (FCFS) system, Lindley’s recursion was given by (Lindley 1952) is:

Wn+1 = max(Wn +Sn−An,0) . (1)

Previous analysis such as (Prabhu 1974) studies the steady state waiting time of the G/G/1 queue and
shows that the steady state waiting time satisfies an integral equation known as Lindley’s integral equation.
However, these results are in steady state and are not transient in nature. Complementary to the steady
state waiting time, one can also calculate the conditional waiting time of the (n+1)th customer given the
waiting time of the nth customer. This conditional moment is important from a data perspective as it allows
us to predict the waiting time of the next customer using only the current waiting time information of the
previous customer. Moreover, we know that the prediction is optimal in the mean square sense. Thus, in
the M/M/1 setting, we have the following theorem for the conditional mean waiting time.
Theorem 1 For the M/M/1 queue where the arrival rate is equal to λ and the service rate is equal to µ ,
then the conditional mth moment of the waiting time of customer n+1 is equal to

E[W m
n+1|Wn] =

λ µ

λ +µ

(
m

∑
k=0

(
m
k

)
W k

n ·
Γ(m− k+1)

µm−k+1 +
(−1)me−λWn (Γ(m+1,−λWn)−Γ(m+1))

λ m+1

)
.

where

Γ(m,x) =
∫

∞

x
ym−1e−ydy and Γ(m) =

∫
∞

0
ym−1e−ydy

are defined as the incomplete gamma function and the gamma function respectively.
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Proof.

E[W m
n+1|Wn] = E[(Wn−An +Sn)

+m|Wn]

=
∫

∞

−∞

(Wn + x)+m λ µ

λ +µ
e−µmax(x,0)−λmax(−x,0)dx

=
λ µ

λ +µ

(∫
∞

0
(Wn + x)+me−µxdx+

∫ 0

−∞

(Wn + x)+meλxdx
)

=
λ µ

λ +µ

(∫
∞

0
(Wn + x)m · e−µxdx+

∫ 0

−Wn

(Wn + x)m · eλxdx
)

=
λ µ

λ +µ

(∫
∞

0

(
m

∑
k=0

(
m
k

)
W k

n xm−k

)
· e−µxdx+

∫ Wn

0
ym · eλ (y−Wn)dy

)

=
λ µ

λ +µ

(
m

∑
k=0

(
m
k

)
W k

n ·
Γ(m− k+1)

µm−k+1 +
(−1)me−λWn (Γ(m+1,−λWn)−Γ(m+1))

λ m+1

)

Corollary 2 For the M/M/1 queue where the arrival rate is equal to λ and the service rate is equal to µ ,
then the conditional mean and variance of the waiting time of customer n+1 is equal to

E[Wn+1|Wn] = Wn +
λ −µ

λ µ
+

µe−λWn

λ (λ +µ)

Var[Wn+1|Wn] = W 2
n α1(Wn) · (1−α1(Wn))+2Wnα2(Wn) · (1−α1(Wn))−α

2
2 (Wn)+α3(Wn).

where

α1(Wn) = 1− µ

λ +µ
e−λWn

α2(Wn) =
µ

λ (λ +µ)
e−λWn(1+λWn)−

1
λ
+

1
µ

α3(Wn) =
µ

λ 2(λ +µ)
e−λWn

(
2λWn−λ

2W 2
n −2

)
−

2
(

λ

µ
−1
)

λ 2 +
2

µ2 .

2.1 H`/Hn/1 Queue

In the case where the arrival and service distributions are given by a hyper-exponential distribution, then
we can even generalize the conditional waiting time formulas for the mth moment. We prove this result in
the following theorem.
Theorem 3 For the H`/Hn/1 queue where the arrival rate vector and its associated probability vector is
equal to (~λ , ~pa) and the service rate vector and its associated probability vector is equal to (~µ, ~ps) , then
the conditional mth moment of the waiting time of customer n+1 is equal to

E[W m
n+1|Wn]

=
`

∑
i=1

n

∑
j=1

p(a,i) · p(s, j)

[
λiµ j

λi +µ j

(
m

∑
k=0

(
m
k

)
W k

n ·
Γ(m− k+1)

µ
m−k+1
j

+
(−1)me−λiWn (Γ(m+1,−λiWn)−Γ(m+1))

λ
m+1
i

)]
.

Proof. The proof follows easily from conditioning on the state of the arrival rate and service rate. Then,
we use the formula for the M/M/1 queue given in Theorem 1.
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3 TANDEM NETWORK LINDLEY RECURSION

Tandem queues occur when the departing units from one system become the new arrivals to a downstream
system. To be more precise a tandem queue is a sequence of queues where the customers arrive to the first
queue and once served in the first move on to the second and so forth until finishing service in every queue
in the network. In a precise sense, the tandem network is the simplest queueing network one can have of a
given size. An example of a tandem queue is given in Figure 1. In practice tandem queues can be observed
in many applications. One of these applications is the health-care industry. In many health-care systems
the service is set-up in sequence. In many of these systems before the primary health-care provider is seen
it is necessary to first see the receptionist to fill out necessary paperwork, then it may be necessary to see
the nurse to grab vital signs and information that the doctor may need. Another application of tandem
network queues is transportation. In this application, the queues can be viewed as passenger stops, such
as bus systems and train systems. In this case the entities we call ’customers’ would represent a buses or
trains. Each queue in the network represents a different stop, see Figure 2.

Figure 1: A tandem queue is a series of queues.

Figure 2: A train line is an example of a tandem queue, where the objects that are customers in the canonical
model are the trains.

In this paper, we concentrate on a tandem queue where each station has one server. In the case of a
tandem queue with single server stations the waiting time of a customer to receive service from the next
server is given by the Lindley recursion for tandem queues. It is similar to Equation 1 except the variables
are updated to display which queue the customer is waiting at. So the waiting time of the nth customer at
the kth queue is given by:

W (k)
n+1 = max

(
W (k)

n +S(k)n −A(k)
n ,0

)
. (2)
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where A(k)
n is the inter-arrival time between the nth and (n+1)st customer at the kth queue and S(k)n is the

service time of the nth customer at the kth queue. A natural question that arises when analyzing a tandem
queue is whether there is a way to make predictions for the waiting times of customer in the kth queue by
incorporating information from any of the first, second, ..., or (k-1)st queue. The answer to that question
is that there is a way and it is given in Proposition 1. The equation of interest the waiting time of the n
th customer in the kth queue written as function of the difference in departure times between the nth and
n+1st customers

W (k)
n = max(0,S(k)n−1 +W (k)

n−1− (D(k−1)
n −D(k−1)

n−1 )) (3)

where D is simply the service completion time. How we get Equation 3 is that the arrival time of the nth

customer at the kth queue is equal to the departure time of the nth customer at the (k-1)st queue. The new
formula can be thought of in terms of the original Lindley Recursion where instead of the arrival time we
have the difference of service completion times between consecutive customers.
Proposition 1 The tandem network Lindley recursion is the solution to the following expression:

W (k)
n+1 =

(
W (k)

n +S(k)n −
((

W (k−1)
n +S(k−1)

n −A(k−1)
n

)+
−W (k−1)

n +A(k−1)
n

))+

.

Proof.

W (k)
n+1 =

(
W (k)

n +S(k)n −A(k)
n

)+
=

(
W (k)

n +S(k)n −
(

D(k−1)
n+1 −D(k−1)

n

))+
=

(
W (k)

n +S(k)n −

(
W (k−1)

n+1 +
n

∑
i=1

A(k−1)
i −W (k−1)

n −
n−1

∑
i=1

A(k−1)
i

))+

=
(

W (k)
n +S(k)n −

(
W (k−1)

n+1 −W (k−1)
n +A(k−1)

n

))+
=

(
W (k)

n +S(k)n −
((

W (k−1)
n +S(k−1)

n −A(k−1)
n

)+
−W (k−1)

n +A(k−1)
n

))+

.

Through subsequent use of the difference of service completion times we can further incorporate
previous waiting time information into the current waiting time formula in the case of a tandem queue with
more than 2 queues. This brings us to our first theorem concerning tandem queues. It gives the waiting time
of the current customer in the (k+1)st queue as function of the waiting times of the previous customer in the
kth and (k+1)st queue. The input of the every node in the system but the first is the output of the previous
node. In order to find the arrival rate of one of these nodes it is necessary to find the departure rate from
the previous node. In an M/M/1/∞ queue the inter-departure time distribution is equal to the inter-arrival
time distribution.This simplifies our analysis quite a bit and also has some interesting consequences.
Theorem 4 For the M/M/1 tandem queue where the arrival rate is equal to λ1 and the service rate vector is
equal to (µ1,µ2) , then the conditional expectation of the waiting time of customer n+1 given the waiting
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time information of customer n is equal to

E
[
W (k+1)

n+1 |W
(k)
n ,W (k+1)

n

]
=

µ2e−λ1(W
(k)
n +W (k+1)

n )

λ1(µ2 +λ1)
− e−λ1W (k)

n ((1−W (k+1)
n λ1)µ2−λ1)

λ1µ2

− λ1µ2eµ1W (k)
n −(λ1+µ1)(W

(k)
n +W (k+1)

n )

(λ1 +µ1)2(λ1 +µ1 +µ2)

+
λ1eµ1W (k)

n −(λ1+µ1)W
(k)
n ((1−W (k+1)

n (λ1 +µ1))µ2− (λ1 +µ1))

(λ1 +µ1)2µ2

+
(1− e−λ1W (k)

n )µ2e−µ1W (k+1)
n

µ1(µ1 +µ2)

− (1− e−λ1W (k)
n )((1−W (k+1)

n µ1)µ2−µ1)

µ1µ2
− µ1µ2e−λ1W (k)

n −(λ1+µ1)W
(k+1)
n

(λ1 +µ1)2(λ1 +µ1 +µ2)

+
e−λ1W (k)

n µ1((1− (λ1 +µ1)W
(k+1)
n )µ2− (λ1 +µ1)

(λ1 +µ1)2µ2
+

e−λ1W (k)
n −µ1W (k+1)

n µ2

µ1(µ1 +µ2)

− e−λ1W (k)
n ((1−W (k+1)

n µ1)µ2−µ1)

µ1µ2
.

Proof.

E
[
W (k+1)

n+1 |W
(k)
n ,W (k+1)

n

]
= E

[(
W (k+1)

n +S(k+1)
n −

((
W (k)

n +S(k)n −A(k)
n

)+
−W (k)

n +A(k)
n

))+ ∣∣∣∣W (k)
n ,W (k+1)

n

]
=

∫
∞

0

∫
∞

0

∫
∞

0
(W (k+1)

n + x− ((W (k)
n +u− v)+−W (k)

n + v))+ f
S(k+1)

n
(x) f

S(k)n
(u) f

A(k)
n
(v)dxdudv

=
∫

∞

0

∫
∞

0

∫ v−W (k)
n

0
(W (k+1)

n + x− (W (k)
n + v))+ f

S(k+1)
n

(x) f
S(k)n

(u) f
A(k)

n
(v)dudvdx

+
∫

∞

0

∫
∞

0

∫
∞

v−W (k)
n

(W (k+1)
n + x−u)+ f

S(k+1)
n

(x) f
S(k)n

(u) f
A(k)

n
(v)dudvdx.

The remaining integrals can be computed via integration by parts and is omitted due to length considerations.

This result is useful for two reasons. First, it gives us the smallest mean squared error (MSE) among
all predictors that incorporate solely the waiting time information. This can be seen with the bias-variance
decomposition of the variance of the waiting times of queue k+1. Second, it incorporates previous waiting
time information for the prediction of the waiting time of the current customer.

In what follows, we are interested in learning a function f (·) such that

Ŵ k
n+1 = f̂ (W k

n ,A
k
n+1,S

k
n)≈max

(
W k

n +Sk
n−Ak

n+1,0
)

for all of the queues in the tandem network. This question is what we pursue in the remainder of the paper
by combining simulation and machine learning together.
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4 NUMERICAL RESULTS

This section contains the numerical results for the different methods we used tot try to learn the Lindley
recursion, We employed linear regression, Gaussian processes, k-nearest neighbors, deep neural networks,
and boosted tree regression. We simulated a network of 10 M/M/1 queues, with arrival rate λ and service
rate µ for each of the 10 servers. The experiment was run with 10,000 customer waiting times for each queue
in the network. The data was split into a training set and test set where the training set was three-quarters
of the data set and the test set was the remaining quarter of the data set. We ran the experiment doing a
10 fold cross validation and calculated the average mean squared error (AMSE) for each fold and reported
the average of the 10 AMSEs i.e.

AMSE =
1
10

10

∑
j=1

(
1
n

n

∑
i=1

(
Wi j−Ŵi j

)2

)
.

The results are given in scientific notation because almost each AMSE is relatively close to 0 so what
really matters is by how many orders of magnitude is AMSE close to 0.

4.1 Linear Regression

The first machine learning method we tried was linear regression. Linear regression is a natural choice
for learning the the tandem Lindley recursion because it is function of a linear term. We observed that
the error of the linear regression decreases as the server utilization increases. This occurs for the fact that
as few customers have a 0 wait time the more points fall on the f (x,y,z) = x+ y− z hyper-surface. The
hyper-surface f (x,y,z) is a plane and linear regression can learn to predict the output for points on this
surface exactly. Along with the error the intercept also increases. The intercept can be thought of as a
correction factor. The more points that fall in the hyper-surface f (x,y,z) the less there is a need to correct
the sum Wn−1+Sn−1−An for a random customer because most points are that sum exactly. While if fewer
points are on the hyper-surface f (x,y,z) the greater the need to add something extra to correct the fact that
the waiting time is not exactly Wn−1 +Sn−1−An. As the server utilization increases the coefficients move
farther away from 1.

Table 1: Results for the Linear Regression

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

Q1 AMSE 4.69e-01 3.64e-01 2.10e-01 4.27e-02 5.24e-03 3.28e-03 1.41e-05 7.64e-05
Q2 AMSE 4.59e-01 3.66e-01 2.15e-01 5.21e-02 5.32e-03 3.46e-03 1.69e-04 9.35e-05
Q3 AMSE 4.26e-01 3.66e-01 2.01e-01 8.01e-02 5.05e-03 3.77e-03 4.01e-04 3.63e-04
Q4 AMSE 4.53e-01 3.52e-01 2.12e-01 9.24e-02 4.93e-03 3.58e-03 4.91e-04 3.10e-04
Q5 AMSE 4.62e-01 3.66e-01 2.39e-01 4.66e-02 5.19e-03 3.87e-03 1.05e-03 6.31e-04
Q6 AMSE 5.13e-01 3.82e-01 2.11e-01 9.69e-02 4.66e-03 3.97e-03 5.21e-04 7.52e-04
Q7 AMSE 4.72e-01 3.54e-01 2.03e-01 1.00e-01 4.84e-03 3.76e-03 1.22e-03 6.17e-04
Q8 AMSE 4.95e-01 3.65e-01 2.40e-01 1.08e-01 4.60e-03 3.90e-03 6.34e-04 1.29e-03
Q9 AMSE 4.70e-01 3.98e-01 2.07e-01 1.20e-01 4.66e-03 3.46e-03 1.00e-03 7.58e-04
Q10 AMSE 5.11e-01 3.96e-01 2.04e-01 1.71e-01 5.01e-03 3.52e-03 6.92e-04 1.29e-03

4.2 Gaussian Processes

We also used Gaussian Process regression with the squared exponential kernel to learn the Lindley Recursion.
As observed from Tables 3 and 4 Gaussian processes performed the best across values of λ and µ . Unlike
the other methods there is not a stark contrast in AMSE between the different arrival rates. This is because
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Table 2: Results for Linear Regression 2

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Q1 AMSE 4.79e-05 3.68e-05 1.76e-05 2.81e-06 4.88e-07 3.69e-07 1.72e-07 3.56e-08
Q2 AMSE 4.88e-05 3.67e-05 1.76e-05 4.40e-06 5.00e-07 3.65e-07 1.82e-07 5.15e-08
Q3 AMSE 4.70e-05 3.73e-05 1.62e-05 4.00e-06 4.75e-07 3.55e-07 1.77e-07 6.20e-08
Q4 AMSE 4.72e-05 3.60e-05 1.77e-05 5.59e-06 4.82e-07 3.77e-07 1.83e-07 7.05e-08
Q5 AMSE 4.81e-05 3.53e-05 1.97e-05 7.03e-06 4.87e-07 3.76e-07 1.83e-07 7.38e-08
Q6 AMSE 4.99e-05 3.65e-05 1.76e-05 6.05e-06 4.87e-07 3.64e-07 1.84e-07 9.21e-08
Q7 AMSE 4.86e-05 3.65e-05 1.83e-05 7.60e-06 5.00e-07 3.64e-07 1.85e-07 8.77e-08
Q8 AMSE 4.87e-05 3.78e-05 1.85e-05 8.65e-06 4.95e-07 3.66e-07 1.81e-07 9.10e-08
Q9 AMSE 4.91e-05 3.70e-05 1.99e-05 9.31e-06 4.91e-07 3.63e-07 1.92e-07 9.78e-08
Q10 AMSE 5.05e-05 3.68e-05 1.83e-05 8.56e-06 4.90e-07 3.78e-07 1.91e-07 1.08e-07

Gaussian processes do not depend on the shape of the test surface for prediction. Predictions are made
with local information as weighted by the squared exponential kernel.

Table 3: Results for Gaussian Processes.

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

Q1 AMSE 1.81e-02 7.08e-03 6.78e-03 1.38e-03 4.62e-04 4.71e-05 1.41e-05 5.19e-05
Q2 AMSE 1.67e-02 2.46e-03 1.43e-03 1.76e-03 3.16e-04 4.40e-05 2.70e-05 9.35e-05
Q3 AMSE 6.66e-03 2.55e-03 9.34e-03 1.65e-03 2.28e-04 1.01e-05 7.98e-05 2.12e-05
Q4 AMSE 1.63e-02 7.91e-03 1.99e-03 2.78e-03 3.39e-04 5.40e-05 2.81e-05 2.34e-05
Q5 AMSE 1.17e-02 2.39e-03 6.49e-03 1.56e-03 3.50e-04 3.85e-05 1.30e-05 3.09e-05
Q6 AMSE 7.37e-03 4.82e-03 1.28e-03 1.70e-03 2.46e-04 4.71e-05 1.29e-05 6.47e-05
Q7 AMSE 2.02e-02 3.65e-03 1.53e-03 2.09e-03 2.57e-04 2.18e-04 2.43e-05 4.48e-05
Q8 AMSE 1.92e-02 7.16e-03 1.56e-03 1.65e-03 1.60e-04 1.10e-04 2.73e-05 1.99e-05
Q9 AMSE 1.77e-02 1.03e-03 1.46e-03 1.83e-03 1.64e-04 4.25e-04 4.54e-05 3.29e-05
Q10 AMSE 3.46e-02 5.91e-03 2.09e-03 1.03e-02 1.81e-04 1.12e-04 5.84e-05 5.41e-05

Table 4: Results for Gaussian Processes 2 .

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Q1 AMSE 5.46e-07 3.82e-07 4.14e-07 4.03e-07 1.51e-08 1.47e-08 1.01e-08 2.97e-08
Q2 AMSE 5.70e-07 4.72e-07 2.38e-07 3.36e-07 1.46e-08 1.36e-08 1.07e-08 3.34e-08
Q3 AMSE 5.00e-07 6.11e-07 1.64e-07 2.53e-07 1.37e-08 1.42e-08 1.09e-08 4.00e-08
Q4 AMSE 6.79e-07 4.48e-07 2.41e-07 3.23e-07 1.50e-08 1.20e-08 1.06e-08 1.76e-08
Q5 AMSE 5.23e-07 3.98e-07 3.95e-07 3.68e-07 1.42e-08 1.30e-08 1.16e-08 1.74e-08
Q6 AMSE 7.30e-07 3.26e-07 1.90e-07 3.38e-07 1.51e-08 1.29e-08 1.04e-08 2.20e-08
Q7 AMSE 5.69e-07 3.58e-07 2.24e-07 4.63e-07 1.64e-08 1.15e-08 1.11e-08 1.92e-08
Q8 AMSE 5.32e-07 3.48e-07 3.26e-07 3.21e-07 1.45e-08 1.20e-08 1.09e-08 1.31e-08
Q9 AMSE 4.32e-07 5.71e-07 2.18e-07 2.81e-07 1.45e-08 1.22e-08 1.24e-08 1.35e-08
Q10 AMSE 9.16e-07 8.44e-07 3.89e-07 3.56e-07 1.42e-08 1.24e-08 1.12e-08 1.19e-08
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4.3 K-Nearest Neighbors

We also implemented the K-nearest neighbors (K-NN) algorithm on the tandem network with k = 5. Here
we see that unlike linear regression K-NN performs worst when arrival rate approaches the service rate,
in other words as more waiting times are 0 the better K-NN performs. This is due to the fact that given a
test point with a 0 label it is easier for K-NN to accurately predict that point the greater the proportion of
0 waiting times. As the arrival rate moves away from the service rate toward 0, the larger the proportion
of customers with 0 waiting time.

Table 5: Results for the K-Nearest Neighbors Regression.

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

Q1 AMSE 2.10e-02 3.02e-02 4.98e-02 1.10e-01 2.86e-04 4.54e-04 9.50e-03 1.72e-03
Q2 AMSE 1.78e-02 2.77e-02 5.09e-02 1.15e-01 2.30e-04 4.05e-04 1.53e-03 2.35e-03
Q3 AMSE 1.30e-02 2.66e-02 6.50e-02 9.64e-02 1.95e-04 2.59e-04 2.24e-03 1.24e-03
Q4 AMSE 1.63e-02 3.44e-02 7.68e-02 1.48e-01 2.51e-04 5.22e-04 1.41e-03 1.40e-03
Q5 AMSE 2.13e-02 3.38e-02 5.98e-02 1.02e-01 4.64e-04 3.92e-04 7.03e-04 1.58e-03
Q6 AMSE 1.95e-02 3.83e-02 3.82e-02 9.61e-02 1.34e-04 3.53e-04 1.13e-03 2.00e-03
Q7 AMSE 2.64e-02 3.21e-02 7.65e-02 8.80e-02 2.32e-04 4.25e-04 1.27e-03 1.65e-03
Q8 AMSE 3.25e-02 3.42e-02 5.57e-02 9.06e-02 1.70e-04 3.85e-04 1.33e-03 9.20e-04
Q9 AMSE 2.42e-02 2.84e-02 5.92e-02 9.44e-02 2.28e-04 4.80e-04 1.47e-03 1.66e-03
Q10 AMSE 3.10e-02 3.57e-02 6.77e-02 1.13e-01 2.16e-04 2.97e-04 2.43e-03 9.55e-04

Table 6: Results for the K-Nearest Neighbors Regression 2 .

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Q1 AMSE 2.87e-06 3.99e-06 7.05e-06 1.45e-05 2.25e-08 3.56e-08 6.90e-08 1.99e-07
Q2 AMSE 2.45e-06 3.72e-06 6.23e-06 1.32e-05 2.80e-08 3.81e-08 6.93e-08 1.42e-07
Q3 AMSE 2.17e-06 3.59e-06 6.05e-06 1.37e-05 2.46e-08 3.76e-08 8.55e-08 1.42e-07
Q4 AMSE 2.57e-06 3.92e-06 6.62e-06 1.32e-05 2.27e-08 3.91e-08 6.69e-08 1.16e-07
Q5 AMSE 2.37e-06 3.63e-06 6.62e-06 1.41e-05 2.34e-08 3.86e-08 7.30e-08 1.24e-07
Q6 AMSE 2.72e-06 3.77e-06 7.21e-06 1.39e-05 2.79e-08 3.52e-08 6.54e-08 1.13e-07
Q7 AMSE 2.63e-06 4.21e-06 7.05e-06 1.34e-05 2.76e-08 3.73e-08 5.76e-08 1.19e-07
Q8 AMSE 2.52e-06 3.83e-06 6.67e-06 1.11e-05 2.55e-08 4.18e-08 6.14e-08 1.06e-07
Q9 AMSE 2.13e-06 3.92e-06 6.74e-06 1.02e-05 2.49e-08 3.91e-08 6.53e-08 1.10e-07
Q10 AMSE 3.14e-06 3.35e-06 7.31e-06 1.28e-05 2.15e-08 3.78e-08 7.03e-08 1.03e-07

4.4 Deep Neural Networks

The neural network implementation we used was Google’s Tensorflow. As for the model itself, it had two
hidden layers each with 10 nodes and ReLU activation functions. The layers were densely connected. We
used the RMSprop optimization function. We ran the fitting of the model for 20 epochs.

Like with k-nearest neighbors we see that deep neural networks do better when more points fall away
from the f (x,y,z) = x+ y− z hyper-surface. This is because it is easier for a deep neural network with
ReLU activation functions to learn a max-plus function than it is for it to learn a linear function. This
follows from the nature of ReLU activation function, it is itself a max-plus function. With two dense layers
there is more than enough capacity for deep neural network to learn the linear mapping f (x,y,z) = x+y−z,
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in fact it can be done with one hidden layer. As the arrival rate approaches the service rate more points
fall on the f (x,y,z) = x+ y− z hyper-surface, making the test surface more linear.

Table 7: Results for the Deep Neural Networks Regression 1 .

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

Q1 AMSE 3.47e+02 2.83e+01 1.04e+01 8.28e-02 2.37e-05 5.54e-05 9.39e-02 2.59e-03
Q2 AMSE 6.70e-01 6.17e-01 1.82e-01 7.81e-02 1.59e-05 8.10e-05 6.00e-03 9.11e+
Q3 AMSE 3.94e-01 1.25e-01 7.94e-02 4.49e-02 5.66e-05 4.32e-05 1.79e-04 1.20e-03
Q4 AMSE 3.59e-01 5.62e-02 5.78e-02 1.67e-02 2.75e-05 2.49e-05 7.51e-04 3.88e-04
Q5 AMSE 1.35e-01 1.58e-01 1.11e-02 7.84e-02 2.17e-05 3.87e-05 3.33e-04 5.85e-04
Q6 AMSE 2.80e-01 1.17e-01 2.73e-02 8.91e-02 1.76e-05 2.84e-05 7.24e-04 2.44e-04
Q7 AMSE 2.50e-01 5.21e-02 1.01e-01 6.62e-02 1.15e-05 5.04e-05 1.34e-03 7.05e-02
Q8 AMSE 5.69e-03 5.30e-02 5.12e-02 6.00e-02 2.24e-05 4.41e-05 3.75e-04 2.84e-04
Q9 AMSE 1.02e-01 1.05e-02 1.61e-02 9.16e-03 1.70e-05 2.72e-05 4.19e-04 2.69e-04
Q10 AMSE 1.71e+02 4.47e-02 1.39e-02 1.60e-02 3.94e-05 4.72e-05 8.75e-04 1.21e-04

Table 8: Results for the Deep Neural Networks Regression 2 .

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Q1 AMSE 4.88e-06 8.69e-06 1.28e-05 2.95e-05 9.89e-07 5.02e-07 2.09e-06 6.30e-06
Q2 AMSE 4.29e-06 6.19e-06 1.46e-05 5.38e-05 1.62e-06 1.33e-06 2.10e-06 4.99e-06
Q3 AMSE 3.02e-06 8.69e-06 1.09e-05 2.58e-05 1.39e-06 7.73e-07 4.14e-06 6.05e-06
Q4 AMSE 2.61e-06 9.63e-06 1.54e-05 2.75e-05 1.30e-06 1.38e-06 2.34e-06 5.99e-06
Q5 AMSE 4.87e-06 1.02e-05 2.42e-05 1.87e-05 1.02e-06 1.06e-06 3.18e-06 3.63e-06
Q6 AMSE 3.69e-06 7.49e-06 1.54e-05 2.68e-05 1.06e-06 1.67e-06 2.30e-06 4.40e-06
Q7 AMSE 4.96e-06 7.81e-06 1.31e-05 1.20e-05 1.17e-06 2.00e-06 2.19e-06 4.15e-06
Q8 AMSE 5.87e-06 8.59e-06 1.26e-05 2.85e-05 1.10e-06 1.78e-06 2.59e-06 3.09e-06
Q9 AMSE 3.89e-06 9.92e-06 1.33e-05 2.82e-05 1.78e-06 8.24e-07 3.43e-06 4.03e-06
Q10 AMSE 3.45e-06 9.73e-06 1.68e-05 2.20e-05 1.39e-06 1.45e-06 1.66e-06 2.82e-06

4.5 Boosted Tree Regression

To implement Boosted Tree Regression, we used 500 weak learners with a maximum depth of 4 depth of
levels. Boosted tree regression did fairly well and outperformed deep neural networks in some occasions.
However, it was not as good as Gaussian Processes.

4.6 Summary of Numerical Results

In this section, we summarize our numerical results. We are able to learn the Lindley recursion quite well
under every parameter regime using of Linear Regression, Gaussian Processes, K-Nearest Neighbors, Deep
Neural Networks, and Boosted Tree Regression. As observed from the above tables, Gaussian processes
performed the best as it achieved the lowest AMSE across all parameters regimes among all of the other
machine learning models. Boosted tree regression and deep neural networks performed the worst. We also
observed that these methods were worst is because of a small amount of data, which performed poorly.
This poorly predicted data points tended to skew the performance metrics to seem very poor.
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Table 9: Results for the Boosted Tree Regression 1.

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

Q1 AMSE 3.76e+02 4.42e+01 7.10e+ 3.61e-01 4.55e-04 6.46e-04 7.24e-02 3.82e-03
Q2 AMSE 2.02e+ 8.99e-01 5.98e-01 3.81e-01 4.13e-04 6.87e-04 6.86e-03 4.18e-03
Q3 AMSE 1.39e+ 6.17e-01 4.03e-01 3.28e-01 4.20e-04 6.74e-04 4.52e-03 3.14e-03
Q4 AMSE 1.25e+ 5.55e-01 3.08e-01 2.72e-01 4.11e-04 6.75e-04 3.64e-03 2.35e-03
Q5 AMSE 1.26e+ 5.63e-01 3.36e-01 2.61e-01 4.43e-04 6.96e-04 2.88e-03 2.56e-03
Q6 AMSE 1.32e+ 5.85e-01 3.49e-01 3.37e-01 4.52e-04 7.28e-04 3.22e-03 2.42e-03
Q7 AMSE 1.29e+ 5.75e-01 3.53e-01 2.67e-01 4.05e-04 7.20e-04 3.33e-03 2.32e-03
Q8 AMSE 9.67e-01 4.29e-01 3.10e-01 2.04e-01 3.98e-04 6.66e-04 3.18e-03 2.50e-03
Q9 AMSE 9.01e-01 4.01e-01 3.34e-01 2.31e-01 4.37e-04 6.69e-04 2.93e-03 2.48e-03
Q10 AMSE 1.10e+ 4.89e-01 2.59e-01 2.72e-01 4.83e-04 7.03e-04 3.05e-03 2.15e-03

Table 10: Results for the Boosted Tree Regression 2 .

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Q1 AMSE 4.08e-06 6.75e-06 1.29e-05 3.45e-05 3.82e-08 7.10e-08 1.23e-07 4.76e-07
Q2 AMSE 4.40e-06 7.00e-06 1.16e-05 3.01e-05 4.48e-08 6.71e-08 1.31e-07 3.56e-07
Q3 AMSE 4.33e-06 7.42e-06 1.14e-05 2.73e-05 4.31e-08 6.90e-08 1.26e-07 2.83e-07
Q4 AMSE 4.10e-06 6.59e-06 1.22e-05 2.69e-05 4.04e-08 7.07e-08 1.21e-07 2.20e-07
Q5 AMSE 4.44e-06 7.02e-06 1.32e-05 2.86e-05 4.46e-08 7.22e-08 1.28e-07 2.42e-07
Q6 AMSE 4.09e-06 6.26e-06 1.40e-05 3.04e-05 4.55e-08 6.93e-08 1.12e-07 2.46e-07
Q7 AMSE 4.30e-06 6.48e-06 1.15e-05 2.96e-05 3.86e-08 7.24e-08 1.11e-07 2.51e-07
Q8 AMSE 5.17e-06 7.13e-06 1.23e-05 2.37e-05 4.29e-08 6.97e-08 1.11e-07 2.20e-07
Q9 AMSE 3.87e-06 7.46e-06 1.19e-05 2.11e-05 4.38e-08 7.34e-08 1.28e-07 2.37e-07
Q10 AMSE 4.44e-06 6.97e-06 1.26e-05 2.63e-05 4.11e-08 7.43e-08 1.11e-07 2.03e-07

In addition to which methods performed the best, we also observed some important trends in the
numerical experiments. First, we observed that in of the all machine learning methods we implemented,
the AMSE decreases by a few orders of magnitude as the we increase the order of µ and λ i.e. we scale
up the parameters. Second, we observe that as λ approaches µ (heavy traffic) there is either an increase
or decrease in AMSE, depending on how the machine learning model is trained and makes predictions.
So not all machine learning methods are better in heavy traffic. Linear regression and Gaussian processes
do particularly better in the heavy traffic regime, while K-NN, deep neural networks, and boosted tree
regression do the worst.

5 CONCLUSION

In this paper, we show the power of current machine learning methods to approximate the Lindley recursion
for tandem queues. We show in this work that the best method for approximating the Lindley recursion is
Gaussian processes. This might be because deep neural networks converge to a Gaussian process as one
lets the number of layers tend to infinity. We show that deep neural network methods work the second
best, especially with the ReLU activation function. The ReLU activation function is especially relevant
as it is a max-plus function just like the Lindley recursion, thus is is not a surprise that it works well in
approximating the Lindley recursion. Despite our analysis in showing that the machine learning methods
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work extremely well at approximating the Lindley recursion, there remain many interesting questions that
need to be explored in this domain.
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