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ABSTRACT

Data centers have become a large part of our world and infrastructure and now many of them want to
provided information to their customers about the response times of their jobs. To this end, it is important
to be able to predict what the response times of jobs might be when a data center implements a specific
queueing discipline. In this paper, we investigate the feasibility of reliably predicting response times in
real time of the single server shortest remaining processing time queue or the G/G/1/SRPT queue. Our
proposed prediction methodology is to combine stochastic simulation with supervised learning machine
learning algorithms. We consider several forms of state information like the job size or the number of other
jobs in the system at the time of arrival. We hope that our methodology can be replicated for prediction
purposes in other queueing systems.

1 INTRODUCTION

The Big Data revolution has transformed the way we think and process data on a massive scale. Data centers
are widely used for big data analytics, which often involve data-parallel jobs, including query and web
service. A large data center typically has thousands of servers, running jobs that process a massive amount
of data daily. The generators of these jobs are ever-demanding users who have very little patience and even
want information about how long their job will take. With many large players in the data market, it has
never been more important to be able to provide customers with accurate estimates about their processing
times. These estimates help customers decide which platform they will use since they are eager to get their
jobs processed quickly. This fundamental problem of response time prediction for data centers motivates
this work.

In this paper, we analyze the simplest queueing model to understand the effectiveness of prediction
methods on the simplest of queues. More specifically, we analyze the single-server queue operating under
the shortest remaining processing time (SRPT) service discipline. In this G/G/1/SRPT queue, jobs arrive
to the queue according to a general arrival process. Each such job has associated with it a processing time,
which is a random variable that represents the amount of time that the server must spend working on this
job to complete its service. As we care about prediction in this paper, we do not make any assumptions
about the service time distribution other than it is non-negative and has no mass at zero. We allow for even
dependence between the arrival and service distributions.

In an SRPT queue, jobs are served one at a time such that the job with the shortest remaining processing
time is served first. In particular, upon completing the service of a given job, the server then takes into
service the job in system with the shortest remaining processing time. This is done with preemption so
that when a job arrives with a processing time that is smaller than the remaining processing time of the
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job in service, the server places the job in service on hold and begins serving the job that just arrived.
Processing is done in a non-idling fashion so that the server idles only when the system is empty. The
success of SRPT is because of its many optimality properties, see for example Schrage (1968), Smith (1978),
Schrage and Miller (1966), Schassberger (1990). In particular, it is the service discipline that minimizes
queue length across all other service disciplines. However, there are many drawbacks to SRPT since it
has a large memory requirement for implementation since remaining processing times of all jobs in the
queue must be known. Moreover, SRPT is known to cause ”starvation” of large size jobs, see for example
Schreiber (1993), Wierman and Harchol-Balter (2003), Bansal and Harchol-Balter (2001), Harchol-Balter
et al. (2003).

Traditionally, the SRPT policy has been studied mainly in the computer science literature. For example,
Bansal and Harchol-Balter (2001) study fairness for SRPT and Wierman and Harchol-Balter (2003) provides
a framework for comparing policies in the M/G/1 setting. More recently, work by Down et al. (2009b),
Down et al. (2009a), Gromoll et al. (2011), Gromoll and Keutel (2012) study the SRPT queue using
heavy traffic limit theory and derive either fluid limits or diffusion limits for characterizing the sample
path behavior with dynamical systems or Brownian motion type models. Most of the work shows that
the SRPT queue can be described by reflecting Brownian motion in the diffusion limit sense or by simple
fluid models that can be used to construct approximate state-dependent response times of jobs entering
the system. Finally, Nuyens and Zwart (2006), Wierman and Zwart (2012) use large deviations theory to
analyze the SRPT queue to do optimal tail scheduling.

Despite all of the beautiful theory about the SRPT queue, there is no work that tries to develop a
data-driven algorithm for predicting response times of the SRPT queue. This is an important problem
because both large and small jobs would like to know when their job will be completed. This is also
especially important as the world is using more cloud computing resources. Since SRPT is known for
starvation of large jobs, it would be very valuable to know when larger jobs could expect to depart the queue
in real time. Moreover, when limited information is available, it is an important question to know whether
response times can be reliably predicted from basic queueing information. Although there is no work in
the SRPT setting, there is one paper by Ward and Whitt (2000) that attempts to predict response times in
the single server processor sharing queue and a few papers in the FCFS setting i.e. Whitt (1999b), Whitt
(1999a), Ibrahim and Whitt (2009), Shah et al. (2019) and Palomo and Pender (2020). All of these papers
are inspired by mathematics instead of being data-driven. It is our intent in this work to be data-driven
and not analytical. Despite that, there are some papers that are similar in spirit to our work like Tanash
et al. (2019), Cunha et al. (2017), Rodrigues et al. (2016), Pasdar et al. (2020) and Duc et al. (2019).

What makes the prediction problem interesting is that unlike the G/G/1/FIFO queue, SPRT response
times are not necessarily known at the time of arrival. This is simply because the response time can depend
on the size of jobs that arrive after a job, there is no simple recursion to calculate the response time at
the time of arrival. This feature of SRPT queues is precisely what makes it interesting to study from a
prediction point of view and is one of the main goals of this work. Thus, our goal is to provide a new
framework for response time prediction in single server queues with the SRPT queueing discipline using
simulation as a data generator and machine learning as a predictive tool. By combining simulation and
machine learning, we are able to develop new ways of predicting response times in SRPT queues and give
incoming job reliable estimates of departure. Finally, our data driven approach does not assume anything
about the dependence of the arrival and service distributions. Much of the theoretical work assumes Poisson
arrivals, however, recent literature shows that arrivals may not be Poisson, see for example Sriram and
Whitt (1986), Daw and Pender (2018b), Koops et al. (2018), Daw and Pender (2018a), Saha et al. (2019),
Daw et al. (2020).

1.1 Contributions of Our Work

By using stochastic simulation for the G/G/1/SRPT queue and leveraging machine learning methods, we
provide new insights to the following questions:
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• How well can we predict response times for the G/G/1/SRPT queue using machine learning?
• What information is most important for predicting the response times for the G/G/1/SRPT queue?
• What machine learning methods work best at predicting the response times of the G/G/1/SRPT

queue?

1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 introduces the SRPT queue and gives a
brief history of how it has been analyzed in the applied probability literature. In Section 3, we present
our simulation and machine learning results for various machine learning methods. We also explain how
various parameters of the queueing model affect the performance of predicting the response times of SRPT
queues. Finally, a conclusion and some future directions of research are given in Section 4.

2 SIMULATING THE SRPT QUEUEING MODEL

Here in this section, we explain how to simulate the SRPT queueing model. First one should start with
an array or vector of arrival and job sizes. The best way to simulate this queue is by constructing a heap
that keeps track of the shortest remaining processing time along with the index of the job. If one does this
then all of the current jobs in the queue are sorted appropriately by their remaining processing times. With
this structure, then it reduces to observing that only two potential events can happen. The first event is an
arrival of a job in which one adds this new job to the heap. If the job is not shorter than the job currently
at the server, then the server continues to process the job in service. However, if the job size is smaller
than the remaining processing time of the job currently in service, then the server switches to the new job
and starts to process it. The second type of event is a departure and in this case the head of the heap is
removed and the next element begins processing if there is one to be processed.

To the authors knowledge, there are no papers that discuss response time prediction for SRPT queues
in real time. Most research explores the use of fluid and diffusion limits or Laplace transforms to construct
an approximate expected response time, see for example Down et al. (2009b), Gromoll and Keutel (2012),
and Gromoll et al. (2011). Moreover, the approximation might only depend on the number in the system
and the job size and not other forms of information. One reason is that it is very difficult if not impossible to
construct analytical estimates for the conditional mean response time given different forms of information
other than the queue length or job size. To this end, we leverage machine learning to understand how
well current machine learning methods can use this additional information in the context of response time
prediction. Hence, we develop the following approach for generating response time predictions for the
G/G/1/PS queue:

1. Construct a discrete-event simulation of the G/G/1/SRPT queue.
2. The discrete-event simulation is then used to generate the following quantities for each arrival, the

job size, the queue length upon arrival, the response time, and the amount of work in the system
upon arrival, relative queue length, and relative work upon arrival.

3. Partition the data generated from the discrete-event simulation into training and test sets.
4. Train machine learning methods on the training sets and develop a predictive model.
5. Use the predictive model generated from the training data and make predictions on the test data.
6. Evaluate different machine learning methods using the AMSE has a measure of quality.

3 MACHINE LEARNING METHODS FOR THE SRPT QUEUE

3.1 How the Data is Collected and Analyzed

This paper leverages simulation and machine learning together for prediction purposes. In this regard,
we view the simulation part as essential because it is by which we generate the training data used by the
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machine learning methods. Thus, the simulation step should be viewed as a data collection step. Unlike
most data collection situations, via simulation, we can collect whatever data we want as long as it can be
simulated. Before we go into more detail describing the various machine learning methods that we use to
predict the response times, we will describe how we generate the training data via simulation. Moreover,
we outline how we generate the numerical results that follow.

The experiments that follow were all trained on 10,000 simulated response time observations and are
implemented or tested on 10 independent sets for all methods and averaged. All numbers that are reported
are based on the sample average mean squared error (AMSE) for the 10,000 samples i.e.

Average MSE =
1
n

n

∑
i=1

(
Ri − R̂i

)2
.

where
R̂i = f

(
X (1)

i ,X (2)
i ,X (3)

i ,X (4)
i ,X (5)

i

)
for some function f (·) and

• X (1)
i = size of the ith job

• X (2)
i = queue length at time of arrival of the ith job

• X (3)
i = amount of work in system at time of arrival of the ith job

• X (4)
i = relative place in the queue at the time of arrival of the ith job

• X (5)
i = amount of relative work at time of arrival of the ith job

• Ri = the response time of the ith job.

We should also mention that we performed all methods on the same data so the comparison between
different machine learning methods is consistent and comparable. Moreover, we also simulated the
queues using exponential and non-exponential distributions. For the exponential case, we assumed that
the inter-arrival times occurred as exponential random variables with rate parameter λ and the job sizes
were exponential with rate parameter µ . For the non-exponential case, we considered log-normal random
variables for the inter-arrival times and job sizes given by LN(µa,σa) and LN(µs,σs) for the inter-arrivals and
the job sizes respectively. For replication purposes, we specify what parameters we used for the exponential
and non-exponential cases so that readers are able to replicate our results. Finally, all calculations were
done using Python’s sci-kit learn packages.

In our setting, we aim to predict the response time, Ri, of the ith job by using information such as the
job size X (1)

i , the amount of work in the system at the time of arrival of the ith job (X (2
i ), and the queue

length at the time of arrival of the ith job X (3)
i , the relative place in the queue at the time of arrival of the

ith job (X (4)
i ), and the amount of relative work at time of arrival of the ith job (X (5)

i ). As X (4)
i and X (5)

i are
not standard quantities, we mention that X (4)

i measures the place in the queue that the ith job takes upon
arrival when the job sizes are sorted appropriately and X (5)

i measures how much work is ahead of the ith

job takes upon arrival when the job sizes are sorted according to the SRPT discipline.

3.2 Linear Regression

In this section, we aim to understand how well linear regression will perform in predicting response times
for the processor sharing queue. In the linear regression framework our goal is to find the coefficients
(β0,β1,β2,β3,β4,β5), in order to minimize the following loss function

min
β0,β1,β2,β3,β4,β5

n

∑
i=1

(
Ri −β0 −β1X (1)

i −β2X (2)
i −β3X (3)

i −β4X (4)
i −β5X (5)

i

)2
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in terms of the independent variables
(

X (1)
i ,X (2)

i ,X (3)
i ,X (4)

i ,X (5)
i

)
. Linear regression is an attractive prediction

method because it is quite simple and gives a natural interpretation of just weighting the available information
upon arrival to construct a prediction. In fact, if one just receives the queue length as the information i.e
β0 = β1 = β2 = β4 = β5 = 0, then the linear regression can be interpreted as a statistical version of Little’s
law as it relates the queue length to the response time in a linear relationship. In fact, we will see this
intuition that linear regression provides in the sequel of numerical experiments.

Table 1: Linear Regression Response Time Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Linear (AMSE) 1.32 13.72 131.79 8919.57 7.36e-3 .16 .85 224.72
β0 -.62 -.52 -4.79 2.89 -.034 -.076 -.15 -1.23
β1 1.59 2.75 5.64 20.20 1.48 2.84 5.23 23.76
β2 .27 .53 0.97 1.02 .022 .05 .10 .26
β3 -7.6e-3 -.050 -.16 -.084 -.024 -0.063 -.16 -.30
β4 -.43 -1.67 -7.28 -187.57 -0.037 -.17 -.51 -24.41
β5 1.86 3.83 11.12 214.33 1.74 3.71 8.07 297.40

Table 2: Linear Regression Response Time Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Linear (AMSE) 1.18e-4 .014 1.24e-3 .96 9.39e-6 1.80e-5 5.05e-3 .022
β0 -8.03e-3 .018 -.02 -.18 -2.11e-4 -1.43e-3 -3.53e-3 -5.41e-3
β1 1.56 2.62 2.60 28.50 1.48 2.85 6.00 22.90
β2 2.47e-3 4.52e-3 4.71e-3 0.018 2.71e-4 5.68e-3 9.55e-4 1.61e-3
β3 -.017 -.028 -0.033 -.29 -.037 -0.054 -.10 -.21
β4 -3.39e-3 -.019 -.019 -1.82 -4.93e-4 -2.05e-3 -.012 -.19
β5 1.74 4.23 4.20 193.76 2.04 4.50 17.84 204.93

Table 3: Linear Regression Response Time Prediction G/G/1 Queue.

µa 1 1 1 1 10 10 10 10
σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
µs 1 1 1 1 10 10 10 10
σs 0.5 0.75 0.9 .99 5 7.5 9 9.9

Linear (AMSE) 0.134 0.407 3.388 393.608 0.003 0.028 0.089 12.306
β0 -0.112 -0.769 -1.867 -6.532 -0.030 -0.122 -0.210 -0.691
β1 1.229 1.550 6.975 14.270 1.393 2.837 3.396 9.136
β2 0.142 0.814 3.270 -0.185 0.028 0.008 0.024 0.075
β3 -0.038 -0.163 0.447 -0.002 0.013 0.017 0.045 -0.093
β4 -0.210 -3.749 -1.124 -43.23 -0.051 -0.061 -0.226 22.858
β5 1.437 10.195 2.126 1.635 1.065 1.803 4.847 13.008
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Table 4: Linear Regression Response Time Prediction G/G/1 Queue.

µa 100 100 100 100 1000 1000 1000 1000
σa 50 75 90 99 500 750 900 990
µs 100 100 100 100 1000 1000 1000 1000
σs 50 75 90 99 500 750 900 990

Linear (AMSE) 0.0002 0.0001 0.034 5.081 2.766 1.879 0.0002 0.305
β0 -0.010 -0.004 -0.075 -0.201 -0.0002 -0.001 -0.004 -0.073
β1 2.025 1.717 11.708 22.381 1.286 2.334 5.535 71.014
β2 0.010 -0.0003 -0.004 -0.003 0.0001 0.0002 0.00005 -0.009
β3 -0.110 0.098 0.111 0.013 0.065 0.046 0.017 1.560
β4 -0.013 -0.008 -0.083 -1.008 -0.0002 -0.0004 -0.013 -0.791
β5 2.691 2.928 -2.140 329.02 1.717 1.864 25.898 511.717

3.2.1 Discussion of Linear Regression Results

In this section, we summarize the performance of linear regression in the task of predicting response times
in SRPT queues. In Tables 1 - 4, we observe that the performance of linear regression improves as we
scale the arrival rate and service rate (large parameter setting) and we find that the performance degrades as
we let λ approach µ or as we approach the heavy traffic regime. In all of the simulation experiments, we
observe that the intercept i.e. β0 is always negative. Moreover, as we increase the magnitude of the arrival
and service rate parameters, the the value of β0 approaches zero. We also observe that the coefficient β1
is positive and is increasing as the offered load increases. This implies that as the job size increases, the
response time increases significantly. The coefficient β2, which measures the impact of the queue in the
system upon arrival, is also positive, however, doesn’t seem to impact the prediction as much as the job
size. This is especially true as the arrival rate and service rate parameters are increased. The coefficient β3
is pretty consistent in all parameter regimes and is also pretty small. The coefficient β4 is mostly negative
and seems to increase as the offered load increases. It also decreases as the rate parameters are increased as
well. Finally, the coefficient β5 is mostly positive, and seems to be quite helpful in prediciting the response
times. Since it measures the relative work upon arrival, this is the minimum amount of time it would take
for the job to finish, thus it is not surprising that that the coefficient is positive and takes values around in
the interval [1,2] for most of the experiments.

3.3 Gaussian Processes

Table 5: Gaussian Processes Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

Squared Exponential 7.02 18.43 158.35 1244.62 .058 .24 0.94 521.46
Matern 5/2 7.01 18.42 158.37 1244.62 0.058 0.23 0.94 521.46

Rational Quadratic 1.58 6.01 107.20 983.00 8.47e-3 0.086 0.47 511.41
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Table 6: Gaussian Processes Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

Squared Exponential .067 .013 .021 2.45 5.94e-3 8.34e-4 2.47e-4 .013
Matern 5/2 1.17e-3 4.41e-3 .021 2.44 3.54e-4 5.39e-5 2.09 .011

Rational Quadratic 2.18e-4 1.54e-3 .014 2.28 1.25e-6 1.21e-5 1.27e-4 .010

Table 7: Gaussian Processes Prediction G/G/1 Queue.

µa 1 1 1 1 10 10 10 10
σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
µs 1 1 1 1 10 10 10 10
σs 0.5 0.75 0.9 .99 5 7.5 9 9.9

Squared Exponential 6.07 31.88 140.11 4582.71 .067 .29 2.15 1650.54
Matern 5/2 5.85 31.77 140.00 4582.70 .060 .28 2.15 1650.05

Rational Quadratic 1.19 16.35 99.01 3634.69 0.011 0.13 1.46 1629.85

Table 8: Gaussian Processes Prediction G/G/1 Queue.

µa 100 100 100 100 1000 1000 1000 1000
σa 50 75 90 99 500 750 900 990
µs 100 100 100 100 1000 1000 1000 1000
σs 50 75 90 99 500 750 900 990

Squared Exponential .25 .11 .17 24.20 .15 1.22e-3 .50 .083
Matern 5/2 6.86e-4 2.39e-3 .17 23.85 8.13e-6 2.76e-5 3.89e-4 .081

Rational Quadratic 6.73e-5 6.75e-4 .16 22.10 1.43e-6 1.14e-5 3.48e-4 .10

3.3.1 Discussion of Gaussian Processes Results

Here we summarize the performance of Gaussian processes on predicting the response times of the SRPT
queue. In Tables 5 - 8, we observe that as we increase the arrival rate and service rate, Gaussian process
regression performs much better. This is to be expected and was also observed in other methods. Moreover,
we also observe that the performance gets worse as λ approaches µ and we approach the heavy traffic
regime. We compare three different kernels using the default settings (squared exponential, Matern 5/2,
rational quadratic) and observe that the rational quadratic performed uniformly better than the other kernels.
Finally, we do not observe any significant difference in the results between the M/M/1 queue and the G/G/1
queue with log-normal random variables.

3.4 Deep Neural Networks

Table 9: Deep Neural Network Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ 0.5 0.75 0.9 .99 5 7.5 9 9.9

ReLU 1.07835 1.92975 94.384 4943.8563 0.00679 0.1329 0.62111 5.1323
Tanh 0.41415 4.18596 20.515 534.5432 0.00395 0.6777 0.29138 9.4126

Sigmoid 0.18006 21.65124 22.668 83.7669 0.01354 0.1506 0.35792 12.4945
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Table 10: Deep Neural Network Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

ReLU 0.00012 0.00109 0.0215 0.6805 0.00000190 0.000024 0.00028 0.0121
Tanh 0.00036 0.00380 0.0086 0.0257 0.00023908 0.0005236 0.00013 0.03375

Sigmoid 0.00098 0.00137 0.0261 0.0027 0.00162247 0.001627 0.00240 0.0016

Table 11: Deep Neural Network Prediction G/G/1 Queue.

µa 1 1 1 1 10 10 10 10
σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
µs 1 1 1 1 10 10 10 10
σs 0.5 0.75 0.9 .99 5 7.5 9 9.9

ReLU 0.59 5.17 3.59 594.38 0.017 0.042 0.28 0.54
Tanh 0.88 4.79 5.28 565.34 0.010 0.044 0.27 0.77

Sigmoid 0.43 1.79 4.23 584.34 0.046 0.078 0.41 0.74

Table 12: Deep Neural Network Prediction G/G/1 Queue.

µa 100 100 100 100 1000 1000 1000 1000
σa 50 75 90 99 500 750 900 990
µs 100 100 100 100 1000 1000 1000 1000
σs 50 75 90 99 500 750 900 990

ReLU 6.01e-4 1.74e-3 9.87e-3 .084 8.79e-4 4.14e-4 5.59e-4 .022
Tanh 3.40e-4 1.07e-3 .011 .087 1.23e-4 5.00e-4 1.61e-4 0.023

Sigmoid 9.28e-4 1.84e-3 0.010 0.087 1.61e-3 1.61e-3 1.70e-3 0.025

3.4.1 Discussion of Deep Neural Networks Results

Here we summarize the performance of deep neural networks on predicting the response times of the SRPT
queue. In our deep neural network example we used 100 layers and 5 nodes for each experiment. Our
results are given in the Tables 9 - 12 and we observe that the large parameter setting is easier to predict
reliably. We also observe that the performance decreases significantly as we let λ approach µ . We also
see that the performance is not significantly different for the M/M/1 queue vs. the G/G/1 queue. We
compare three different activation functions (ReLU, Sigmoid, Tanh) and observe that ReLu very slightly
outperforms Sigmoid and Tanh.

3.5 K-Nearest Neighbors

The K-nearest neighbors approach is well known in the machine learning community, however, we want to
stress here to the readers that it has important significance in the context of prediction for queueing systems
and other stochastic processes. The first important thing to note is that the KNN has an interpretation as
a conditional expectation. In some sense, KNN is finding the situation that is most similar to the current
situation and averages around those points. From a queueing perspective, it is trying to find situations
that are the most similar to the job at hand. Thus, it allows us to use the data to compute an approximate
conditional expectation given the job input characteristics. We will show in the sequel that this is a powerful
prediction technique.
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Table 13: K-Nearest Neighbor Prediction M/M/1 Queue.

µ 1 1 1 1 10 10 10 10
λ .5 .75 .9 .99 5 7.5 9 9.9

k = 5 1.34 7.21 119.35 4212.19 7.34e-3 .22 .55 163.45
k = 10 1.28 6.94 110.14 4695.73 7.22e-3 .21 .49 179.79
k = 25 1.28 6.93 112.95 5107.14 7.28e-3 .22 .56 190.99

Table 14: K-Nearest Neighbor Prediction M/M/1 Queue.

µ 100 100 100 100 1000 1000 1000 1000
λ 50 75 90 99 500 750 900 990

k = 5 1.48e-4 8.48e-4 8.27e-3 .46 1.04e-6 1.62e-4 6.55e-4 .013
k = 10 1.39e-4 8.16e-4 7.99e-3 .60 9.61e-7 1.50e-5 5.95e-5 .013
k = 25 1.41e-4 8.45e-4 8.25e-3 .74 9.88e-7 1.54e-5 6.13e-5 .015

Table 15: K-Nearest Neighbor Response Time Prediction G/G/1 Queue.

µa 1 1 1 1 10 10 10 10
σa 0.5 0.75 0.9 .99 5 7.5 9 9.9
µs 1 1 1 1 10 10 10 10
σs 0.5 0.75 0.9 .99 5 7.5 9 9.9

k = 5 .83 10.06 75.54 1723.58 8.94e-3 .082 0.69 601.30
k = 10 .82 9.77 76.28 1885.97 8.53e-3 .082 0.75 772.98
k = 25 .89 10.42 80.88 2143.26 9.05e-3 .092 0.78 895.03

Table 16: K-Nearest Neighbor Response Time Prediction G/G/1 Queue.

µa 100 100 100 100 1000 1000 1000 1000
σa 50 75 90 99 500 750 900 990
µs 100 100 100 100 1000 1000 1000 1000
σs 50 75 90 99 500 750 900 990

k = 5 5.43e-5 5.54e-4 0.069 4.11 6.52e-7 8.29e-6 1.311e-4 0.018
k = 10 5.43e-5 5.13e-4 0.067 5.55 6.60e-7 8.21e-6 1.388e-4 0.021
k = 25 6.12e-5 5.23e-4 0.068 7.64 7.25e-7 8.84e-6 1.52e-4 0.023

3.5.1 Discussion of K-Nearest Neighbor Results

Here we describe the performance of K-nearest neighbors on predicting the response times of the processor
sharing queue. In Tables 13 - 16, we observe that the performance of K-nearest neighbors improves as we
increase the arrival rate and service rate. We also observe that the performance becomes worse as we let
λ approach µ . In contrast to the other methods, KNN also appears to work well in the small parameter
regime setting. This is mostly because, KNN has a conditional expectation interpretation and we are finding
the closest representatives to our test points. KNN also outperforms the linear regression when the rates
are large and the performance is comparable to Gaussian processes and deep neural networks in the large
parameter regime. We compared three different values of K (5,10,25) and observed that the performance
is similar, but K = 5 is the best of the values we chose.
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3.6 Summary of Numerical Results

In this work, we have illustrated that combining stochastic simulation as a data generator for machine
learning can help predict the response times of the SRPT queue. In summary, we observe that K-Nearest
Neighbors works very well at predicting the response times in both the small parameter and large parameter
regimes. It appears to be the most robust method and given that it can be viewed as a conditional expectation,
this is not surprising. Thus, in all it seems that one can use most machine learning methods with confidence,
however, we recommend KNN as it is very fast and is quite accurate in many parameter settings.

One important observation we made was that sometimes the AMSE can be misleading since the large
values can be caused by one or two large mistakes in prediction. This seems to be the case especially for
Gaussian processes and deep neural networks. Perhaps it might be important to develop other performance
measures where if the majority of the errors are close to zero, then the total discrepancy is close to zero.
This would help us understand the true performance of the method on most of the points and not just a
small few.

4 CONCLUSION & FUTURE DIRECTIONS

In this work, we propose leveraging the power of stochastic simulation and machine learning for response
time prediction for SRPT queues. We find that K-nearest neighbors is a robust method that performs well
for small and large parameter settings and also performs well in light and heavy traffic. However, all of the
machine learning methods work reasonably well on predicting the response times. Although not pictured
here for space considerations, we find that even the machine learning methods with high AMSE’s actually
do well on a large percentage of the data. It turns that a small few of the test points do very poorly and
skew the data. Thus, we can have high confidence that for a large majority of the data points, the prediction
will work quite well.

We hope to continue to do research in this particular domain and one future direction would be to
extend this analysis to multi-server SRPT queues and networks of SRPT queues since it is clear in many
applications that one server and one queue is not enough, see for example Grosof et al. (2018), Mailach
and Down (2017) and Pender and Phung-Duc (2016). In the multi-server setting, it would be great to
predict response times while incorporating the impact of many servers. Finally, another area for future
work is the area of SRPT queues with time varying rates. Non-stationary queues are more realistic than
their stationary counterparts and it is important to explore the impact of non-stationarity on the machine
learning predictions.
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