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ABSTRACT 

Input data modeling varies according to the modeler's objectives and may be a simple or complex task. 
Despite great advances in data collection techniques, the input data analysis remains a challenge, 
especially when the input data is complex and cannot be modeled by standard solutions offered by 
commercial simulation software. Therefore, this paper focuses on how Generative Adversarial Networks 

(GANs) may support input data modeling, especially when traditional approaches are insufficient or 
inefficient. We evaluate the adoption of GANs for modeling correlated data as well as independent and 
identically distributed data. As results, GAN input models were able to generate highly accurate synthetic 
samples (average accuracies > 97.0%). For univariate distributions, we found no significant difference 
between standard and GAN input models performances. On the other hand, for correlated data, GAN 
input models outperformed standard ones. The most relevant accuracy gain was observed for the bivariate 

normal. 
 

1 INTRODUCTION 

Computer simulation has stood out in recent decades as a powerful tool to support decisions. Law (2014) 

highlights its use in several areas, e.g., manufacturing, financial systems, transport, services, and military 

processes. In this area, Discrete Event Simulation (DES) stands out as the most used computer simulation 

technique (Scheidegger et al. 2018). It remains an outstanding tool, even considering the modern 

decision-making context, the evolution of systems and technologies, and the need for increasingly faster 

and more flexible decisions (Mourtzis 2020). This paper focuses on DES models and from now on it will 

be designated as ‘simulation’. 

 Despite its great applicability, many decision makers have failed to take advantage of simulation. 

One of the main factors that contribute to this difficulty is the high time spent in simulation projects 

(Skoogh et al. 2012). Considering all necessary steps to develop a simulation project, Robertson and 

Perera (2002) highlight that the input data modeling is one of the most time-consuming stage, 

representing about 20% to 50% of the total time. Although Skoogh and Johansson (2009) state that the 

most critical activities are related to data collection, we observe that this activity has been facilitated by 

recent advancements of technologies and solutions. However, input data analysis remains a challenge, 

especially when input data are complex and cannot be modeled by standard solutions offered by 

commercial simulation software. 

. 
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 Previous studies broadly address the use of parametric probability distributions to represent model 

inputs, e.g., process times, entities’ arrival rates, and demands for products and services. However, as 

input data may be highly complex, fitting probability distributions may represent a challenging task (Kuhl 

et al. 2007). For example, available parametric distributions may not capture input data singularities, such 

as multimodalities. In addition, modelers and simulation software usually assume that data are 

independent and identically distributed, even though this assumption does not always hold true (Cen et al. 

2019). As a result, simulation practitioners may develop models that are not able to represent real systems 

with the desired accuracy, hindering decision-making (Robertson and Perera 2002).  

Over the years, studies proposed a range of statistical tools for modeling input data with specific 

characteristics, such as copulas for interdependent data and ARIMA for time series (Leemis 1997). 

However, it is important to highlight that these tools usually require specific knowledge, which limits 

their adoption. In addition, commercial simulation software and their input modeling functionalities do 

not support most of these techniques (Cen et al. 2019). To overcome such limitations, it is necessary to 

develop tools to support input data modeling for complex data. We highlight the potential use of Artificial 

Neural Networks (ANNs) or, more precisely, Generative Adversarial Networks (GANs). According to 

Agnese (2020), GANs comprise a powerful and flexible Artificial Intelligence (AI) technique, which can 

learn complex patterns. Moreover, Goodfellow et al. (2014) highlight that GANs enable representing 

complex probability distributions and generating new synthetic (but realistic) data. This approach is in 

consonance with the conclusion of Ferreira et al. (2020) who highlight the growing tendency to use AI 

techniques in simulation projects. 

Therefore, considering the issues related to the input data modeling phase, this paper focuses on how 

GANs may support input data modeling, especially when traditional approaches are insufficient or 

inefficient. We evaluate the adoption of GANs for modeling correlated data as well as independent and 

identically distributed data. Moreover, to demonstrate the applicability of the proposed approach, we test 

it in theoretical cases and in a real study object. The rest of the paper is organized as follows: section 2 

gives the background on this work (input data modeling in simulation projects and GANs). The proposed 

approach is described in section 3. Section 4 is dedicated to the results and discussions. Finally, section 5 

presents conclusion and directions for future studies. 

2 RELATED LITERATURE 

2.1 Input data modeling 

The main goal of input data modeling is to represent random inputs of the studied system, based on real 
data, capturing their main characteristics (Biller and Gunes 2010). Banks et al. (2010) state that input data 
modeling varies according to the modeler's objectives and may be a simple or complex task. Furthermore, 

input data modeling plays an important role in simulation projects since it affects its validation and 
subsequent decision making (Sargent 2013). 

Input data modeling may represent a barrier to simulation adoption for its time consumption. 

Robinson (2004) reports that, depending on the research field, simulation projects may be planned and 

executed for months, while Bokrants et al. (2015) highlight that projects applied in the daily business 

need greater agility. In this case, considering studies in companies from the different sectors, Barlas and 

Heavey (2016) add that there is a need for changes and developments that allow faster and, consequently, 

cheaper simulation projects. As input data modeling usually consumes a considerable part of the time 

spent in simulation projects (Skoogh and Johansson 2009), we consider it as a promising research field. 

Skoogh and Johansson (2008) highlight that the main activities considered in this stage include the 

identification, collection, modeling, and validation of input data models. Data identification consists of 

defining relevant parameters for the simulation model and the desired level of detail, while data collection 
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comprises the choice and use of an appropriate and available collection method (Skoogh and Johansson 

2008).  After that, in the modeling phase, data are converted into empirical or statistical representations, 

which portray the real behaviors. Biller and Gunes (2010) divided data modeling into three steps: (i) 

select one or more statistical distributions that fit the data; (ii) determine its parameters; and (iii) 

verification of the adjustment quality via tests and graphical analyzes. Finally, it is desirable to validate 

the input data model. According to Sargent (2013), there are not many procedures available for that 

purpose, and the most common is qualitative validation. 

 Data collection presents some recurring issues, such as limitations on data availability (Bokrants et 

al. 2015) and data quality (Robertson e Perera 2002). However, recent technological solutions may 

substantially mitigate them. Data collected by sensors, smart devices, and automated systems are 

becoming a reality, leading to faster and more reliable data collection (Skoogh et al. 2012, Barlas and 

Heavey 2016). In this sense, several approaches have emerged in recent years to make data collection 

more efficient, such as Data-driven Simulation (Sormaz and Malik 2018), Real-time Simulation (Saez et 

al. 2018), Simulation as a Cyber-physical System (Montevechi et al. 2020), and Online Simulation 

(Scholl et al. 2010). 

On the other hand, data modeling still must overcome some challenges, especially regarding to data 

complexity (Kuhl et al. 2008, Cen et al. 2019). Data complexity directly affects simulation models’ 

accuracy since its results depend on how precisely the input data model represents the real systems 

(Robertson e Perera 2002). Although several standard statistical distributions are available to modelers, 

there are cases where none of them is a good fit (Biller and Gunes 2010). The author state that, in these 

cases, DES practitioners may adopt empirical distributions for representing the input uncertainty. 

Nevertheless, simulation platforms usually support only univariate empirical distributions.  

 If the project presents input data with behaviors that cannot be represented by standard statistical 

distributions or even empirical ones, it is necessary to use techniques capable of capturing these 

behaviors, such as multivariate distributions, Markov chains and processes, ARMA and ARIMA models 

and homogeneous or non-homogeneous Poisson processes (Leemis 1997). However, as also stated by 

Rodič (2017), we recognize the need for friendly tools and models, which need little knowledge on the 

part of the decision-maker. Finally, although there are several data characteristics that require specific 

solutions for data modeling, in this study we only address the multivariate problem.  

2.2 Generative Adversarial Networks (GANs) 

Synthetic contents generated through deep learning are popularly defined as “deep fake”. The term came 
up in 2017, after a Reddit platform user, called “deep fakes”, claimed to have developed a Machine 
Learning (ML) algorithm that could replace faces in adult content videos with the faces of celebrities. In 
the following years, “deep fake” contents were used for other harmful purposes, such as fake news and 
financial fraud, causing considerable concern on authorities around the world (Tolosana et al. 2020). 

  However, there are also positive uses of synthetic contents, especially in the healthcare area. Sorin et 
al. (2020) review studies that aim to generate realistic medical imaging results. Since synthetic images are 
not real, they do not violate patient confidentiality and data protection requirements. The images may be 
used for academic purposes and for training other ML models. The authors also highlight the use of "deep 
fake" to complete or refine existing medical images. It would be possible to improve radiography image 
quality even reducing radiation doses. Thereby, these exams could be carried out more frequently without 

compromising patients' health.  
 GANs, an AI technique proposed by Goodfellow et al. (2014), can be used for generating “deep fake” 
content, i.e., synthetic data close to real data. This purpose is in line with that of input data modeling: to 
generate realistic (but usually not the same) input data. Based on game theory, GANs comprise two 
adversarial ANNs, which are trained iteratively and compete against each other: the data Generator (G) 
and the data Discriminator (D) (Pan et al. 2019). G is a differentiable ANN (of parameters θg) that learns 
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to generate synthetic samples pg by mapping a latent input variable z (a noise, with no practical meaning) 

to the real data space G(z,θg ). D(x,θd) is also a differentiable ANN (of parameter θd) which outputs a 
single scaler  representing the probability that an observation x will originate from the real data and not 
from pg (Goodfellow et al. 2014). 
 According to the authors, D is trained with access to real data and synthetic observations generated by 
G. Therefore, its training aims to maximize the probability of classifying both synthetic and real 
observations correctly. On the other hand, training G aims to minimize the probability of D classifying 

synthetic data as false, minimizing log (1 – D (G (z, θg ), θd ). Thus, the greater the probability resulting 
from D (which indicates that the observation is genuine) the closer to zero will be the logarithm value. 
For a more stable learning, GAN training is performed iteratively, with only one ANN learning at a time. 
  After some iterations, G starts to produce synthetic samples similar to the real ones and the 
discriminator D finds it more difficult to differentiate them (Brownlee 2020). Thus, Pan et al. (2019) 
conclude that the generator was able to achieve its goal and learned the real data distribution. Figure 1 

shows how the GANs' training is performed for image generation.  
 

 

 

 

 
 

 

 

 

 

 

 

Figure 1: GANs’ architecture. (Adapted from Cai et al. (2020)) 

  Yi, Walia, and Babyn (2019) claim that GANs have been successful in several areas and have grown 
fast, being used to synthesize medical images and increase sample sizes (mitigating the problems of data 
shortages and overfitting). In general, GANs have positively impacted the computer vision area (Sorin et 
al. 2020). However, despite receiving more attention for image, video, and sound processing, GANs are 

not limited to these data. Goodfellow et al. (2014) argue that, regardless of the application, GANs are able 
to learn complex distributions that represent the behavior of a population and can generate new coherent 
samples with the same behavior.  

3 PROPOSED APPROACH 

Some steps should be carried out to build input models using GANs. We propose the following 
framework to guide this process, as presented in Figure 2. 

Data reading means retrieving input data from the source database. The developed algorithm requires 

structured tabular datasets, such as worksheets. Each observation should be recorded as a row while 

columns should contain observation attributes. From a simulation perspective, observation attributes 

examples are process cycle times, inter arrival times, and entities’ characteristics. 

One advantage of using GANs for input data modeling is to be able to model joint distributions, i.e., 

probability distributions for two or more random variables (Du et al. 2021). In these situations, the joint 

distribution allows capturing relationships between input variables. For example, in healthcare 

environments there may be correlated patient cycle times due to individual patient characteristics, such as 
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age and health condition. To model a joint distribution, all observation attributes in a row must be related 

to the same observation, e.g., same item or patient.  

 

 

 

 

 

 

 

 

 

Figure 2: Proposed framework for using GANs to input data modeling.  

The next step comprises the following data activities: 

 

1. Remove observations with missing values. 

2. Remove non-numeric columns. 

3. Rescale input data. 

 

This study assumes that the data intrinsic quality (Bokrants et al. 2015) is sufficient and, for this 

reason, no activities such as cleaning and outlier detection are necessary. Simulation researchers and 

practitioners should consider adopting other preparation activities if this assumption does not hold. 

Data rescaling is an important step of data preparation and usually leads to more effective ML (Feng 

2021). Generally, ML methods are more effective if data attributes have the same scale. This process will 

be helpful to speed up GAN training and to enhance the input model quality evaluation algorithm, a k-

nearest neighbors (k-NN) classifier. 

Several rescaling techniques can be adopted, such as min-max normalization and robust scaling (Raju 

et al. 2020). Min-max normalization rescales the dataset to a new limited range (e.g. [0, 1]). However, it 

will also limit the new generated data to the original data range, which may lead to input models with 

poor tail representation. In addition, min-max normalization is very sensitive to the presence of outliers. 

For these reasons, this study adopted the robust scaler. This technique removes the median and scales the 

data according to the interquartile range. 

After data preparation, it is necessary to build the GAN components. Generator and discriminator 

were coded in Python using TensorFlow and Keras libraries. Our approach considers a “good” set of 

hyperparameters reported in the literature (Kurach et al. 2018). Among the defined GAN parameters, the 

following stand out, as presented in Table 1. 

Once the GAN is set up, the training process starts. Batches of synthetic data (i.e., data generated by 

the generator) and real data are available to the discriminator, which focuses on learning to separate them 

(i.e., minimize its classification loss). Then, the generator is also trained, but with a different purpose: to 

generate batches of synthetic data that confuses the discriminator (i.e., maximize the discriminator 

classification loss). This iterative adversarial learning process is repeated until there are no remaining 

batches of real data, completing a learning epoch. Generally, GAN training requires several epochs until 

the generator reaches a suitable performance. For the present study, the number of epochs was set at 

1,000. 
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Table 1: Main GAN parameters. 

Parameter Description Adopted values 

Latent space size 
Number of noise 

dimensions 

3 * number of dataset 

variables 

Number of hidden layers 
Number of layers between 

input and output layers 
2 

Hidden layers’ density 
Number of neurons per 

layer 

8 * number of dataset 

variables 

Hidden layers’ activation 

function 
The function in an artificial 

neuron that delivers an 

output based on its inputs 

Leaky rectified linear unit (He 

et al. 2015)  

Output layers’ activation 

function 

Linear for generator, and 

sigmoid for discriminator 

Optimization algorithm for 

training and its learning rate 

Algorithm used to 

iteratively optimize GAN 

weights to reduce losses 

Adam (Kingma and Ba 2015). 

Learning rates: 1e-5 for the 

generator and 1e-4 for the 

discriminator 

 

The final generator performance should be measured to evaluate the input model accuracy. For this 

purpose, we adopted k-NN classifiers (Cover and Hart 1967), as proposed by Lopez-Paz and Oquab 

(2017). The classifier receives a dataset containing synthetic data and (all) real observations, in the same 

proportions, and tries to separate them. If synthetic data are perfectly realistic, the best decision the k-NN 

algorithm can make is to classify each observation at random. In this case, the classifier accuracy remains 

around chance level (50%). On the other hand, if synthetic data are not realistic at all, the classifier can 

easily separate real and synthetic observations, reaching accuracies of near 100%. In other words, a 

classifier accuracy of 50% can be interpreted as a 100% input model accuracy, while a 100% classifier 

accuracy can be interpreted as a 0% input model accuracy.  

 Finally, it is necessary to translate the input model to the language used by the adopted simulation 

software. Our algorithm has the capability to save generator network equations in a format compatible 

with FlexSim®. 

4 RESULTS AND DISCUSSIONS 

We evaluated the proposed method performance for four different distributions. Three of them comprise 

theoretical distributions, while one distribution is a real sample of cycle times in a Brazilian emergency 
department, as shown in Table 2. In the real case, patients arrive in the hospital; they are registered and go 
to triage. In the triage, they are classified according to their risk. After the registration, they are attended 
by a doctor and can be discharged or follow to further diagnosis and treatment. For this case, we 
considered triage and examination cycle times. 
 For each distribution, we carried out 10 replicates of the input modeling process. Each replicate was 

based on a different sample of the original distribution (sample sizes = 5,000). As an input model quality 
measure, we evaluated the input model accuracy (Lopez-Paz and Oquab 2017). In addition, based on the 
same samples, we built standard input models using ExpertFit®, a distribution fitting software, and 
compared the results with the GAN input model accuracy. As ExpertFit® only supports univariate 
distributions, variables in bivariate datasets were modeled independently. 
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Table 2: Distributions adopted for the method performance evaluation 

Distribution 
Number of 

variables 
Parameters 

Total 

sample size 

Sample size for 

input modeling 

Normal 1 
Mean = 100 

Std. dev. = 3 
- 

5,000 

Exponential 1 Scale = 1 - 

Bivariate normal 2 

Mean = [100, 100] 

Cov = [[3, 2.4], 

[2.4, 3]] 

- 

Real case: triage and 

examination cycle times 
2 - 101,531 

 
In the data preparation stage, observations of the real case dataset with missing data were removed. 

Moreover, all datasets were scaled using Robust Scaler. Then, for each replicate, the algorithm built GAN 
components (generator and discriminator) following parameters presented in Table 1. Figure 3 shows an 
example of these components’ structures (layers and their input and output shapes). 

 
 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 3: Generator network 

 

 For this study, generators include: 
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● 2 input layers: one for the latent variables and one optional layer for the desired data class 

definition (e.g., computer models may require conditional distributions, according to an entity 

characteristic). For more information on conditional GANs (cGANs), please refer to Mirza and 

Osindero (2014). 

● 1 layer to concatenate both input layers. 

● 3 dense layers: these layers are regular deeply connected neural network layers. They apply the 

activation function on the input and return the output. 

● 1 output (dense) layer: this layer outputs synthetic samples.  

 

 On the other hand, discriminators comprise: 

 

● 2 input layers: the discriminator receives as input both the real or synthetic sample and the 

observation classes. 

● 1 layer to concatenate both input layers. 

● 3 dense layers: similar to the generator. 

● 1 output (dense layer): this layer outputs binary classification scores between 0 and 1. The larger 

the output, the greater the probability the evaluated observation is real. 

 

 In all cases, the number of epochs used to train GANs were set at 1,000. Generator performance (i.e., 

input model accuracy measured by k-NN classifier) was evaluated and tracked every 50 epochs. These 

checkpoints also saved model current parameters. As GAN results tend to oscillate during training, we 

selected the best tracked epoch and its model weights to use as input model rather than using the 

parameters of the last model checkpoint. Using histograms and scatterplots, Figures 4 and 5 show real 

(green) and synthetic (orange) distribution comparisons for the bivariate normal and real case 

distributions.  

Figure 4: Real and synthetic bivariate normal distributions 
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Figure 5: Real and synthetic real case distributions 

 

 These graphs visually indicate that input models developed using GANs can learn distributions 

characteristics such as shape and correlation. 

 Finally, the algorithm saved generator equations translated to the programming language used by 

FlexSim®, including latent space sampling, activation functions, and scaling. 

We repeated the process for 10 replicates, to compare standard fitting and GAN fitting performances. 

For standard fitting of theoretical distributions, we estimated the probability distribution parameters 

according to each replicate input sample (e.g., mean and standard deviation for the normal distribution). 

For the real case, using ExpertFit®, we have chosen the best ranked probability distribution and its 

parameters. In all cases, the k-NN classifier was adopted to separate synthetic data and original data, 

returning input model accuracies. Figure 6 and Table 3 present the observed results. 
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Figure 6: 95% confidence intervals for standard fitting and GAN fitting accuracies  

Table 3: Distributions adopted for the method performance evaluation 

 Input model accuracy (%)1 

Distribution Standard fitting GAN fitting 

Normal 99.6 (99.4 - 99.9) 99.3 (98.8 - 99.8)2 
Exponential 99.3 (99.0 - 99.6) 97.9 (96.2 - 99.7)2 

Bivariate normal 70.9 (70.6 - 71.3) 99.8 (99.5 - 100.0)3 
Real case 96.8 (96.4 - 97.2) 98.2 (97.0 - 99.4)3 

 

1. Average accuracy and 95% confidence interval for 10 replicates. 2. No significant difference (2-sample t-test, p-value > 0.05). 

3. GAN fitting accuracy significantly greater than standard fitting (2-sample t-test, p-value < 0.05) 

 

 GAN fitting achieved high average input model accuracies for all evaluated cases (average accuracies 

> 97.0%). For the normal and exponential distributions, there was no evidence of significant difference 

between standard and GAN fitting accuracy means. Nevertheless, it can be noted that GAN fitting 

accuracies presented larger variances. This may indicate that more than 1,000 epochs would be necessary 

for training. Further studies may evaluate and propose training stop criteria. 

For the bivariate normal and real case distributions, there was evidence that GAN fitting may 

outperform standard fitting, especially considering the first one (+28.9 pp). These two cases have a 

special feature: data dependency. While the real case dataset presented a 0.153 Pearson’s correlation 

coefficient, the bivariate normal distribution correlation was set at 0.800. This corroborates that GAN 

fitting may be a suitable option for modeling multivariate input data. 

5 CONCLUSIONS 

One of the main challenges to use simulation is the high time spent in its projects. Among all necessary 
steps to develop a simulation project, studies indicate that input data modeling is one of the most time-
consuming. Although in this phase the main critical activities are related to data collection, we observe 
that this activity has been (and will be even more) facilitated with the advancement of technologies and 
solutions related to the new industry context. However, input data analysis will continue to consume 
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simulation practitioners’ time and effort, especially considering digital twins that will require periodic 

revision. In this sense, we address a solution for complex data modeling, e.g., data with dependencies or 
incompatible with probability distributions offered by input modeling software. As already proven by 
previous studies, not considering data dependencies, or choosing an inaccurate input model may lead to 
unreliable conclusions. 
 Our study highlights how GANs may support input data modeling in simulation projects, especially 
in cases where traditional approaches are insufficient or inefficient. GAN input models were able to 

generate highly accurate synthetic samples (average accuracies > 97.0%). For univariate theoretical 
distributions, we found no significant difference between standard and GAN input models performances. 
On the other hand, for the real case distribution and the bivariate normal distribution, GAN input models 
outperformed standard ones. The most relevant accuracy gain was observed for the bivariate normal 
(+28.9 pp). It demonstrates that one of the main advantages of input modeling through GANs is the 
possibility of modeling joint distributions. 

 Future research may test other real cases and theoretical distributions, including different data types, 
such as integer and categorical. Moreover, further studies may compare GAN results with other fitting 
strategies (e.g., copula fitting and variational autoencoders). Finally, we suggest the evaluation of training 
stop criteria, different GAN architectures, including cGAN, and their parameter optimization. 
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