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ABSTRACT

Planning and deploying reliable Smart Manufacturing Systems (SMSs) is of increasing interest to both
scholars and practitioners. High system reliability goes hand in hand with reduced maintenance costs and
enables optimized repairs and replacements. To leverage the full potential of SMSs and enable data-driven
reliability assessment, data needs should be precisely defined. System integration is a key concept of the
Industry 4.0 initiative and it can aid the extraction of the needed data. In this paper, we study the data
requirements for a novel middleware for SMSs to enable and support data-driven reliability assessment.
We present this middleware architecture and demonstrate its application through a case study, which is
used to generate exemplary data that corresponds to the derived requirements. The data requirements and
the middleware architecture can support researchers in developing novel data-driven reliability assessment
methods, as well as assist practitioners in designing and deploying SMSs in companies.

1 INTRODUCTION

Smart Manufacturing (SM) is a technological concept that aims to turn some of the principles of the Industry
4.0 (I4.0) vision into reality (Kusiak 2018). The implementation of SM involves integration of sensors in
production assets to collect data on their operational status and performance. An asset in this context is
defined as the interface to the machine software, but in general it can be anything that adds value to an I4.0
solution such as machines or other software (Plattform Industrie 4.0 2021a). Thus, Smart Manufacturing
Systems (SMSs) focus on the connection of such assets through networks to monitor all aspects of the
production processes.

Engineers have long made the design and construction of reliable manufacturing systems a high priority
(Chakraborty and Ankiah 1989; Miriyala and Viswanadham 1989). Besides reducing maintenance cost
(Kuo and Kim 1999), proper reliability assessment of manufacturing systems can also be used to optimize
maintenance schedules (Liu et al. 2018). With the advent of new technologies (e.g., system integration,
Internet of Things, simulation, autonomous robots) as part of SM, there is the potential for enhancing,
improving and even developing new methods to enable data-driven assessment of reliability (Lazarova-
Molnar and Mohamed 2019). These new methods must be able to cope with the increase in potential
operational risks that come hand in hand with the increasing complexity of SMSs (Han et al. 2019).

In Friederich and Lazarova-Molnar (2021), we proposed a framework for data-driven reliability assess-
ment. Data, such as condition monitoring data and event data can be used to automatically generate reliability
models (e.g., Fault Trees (Ruijters and Stoelinga 2015) and Reliability Block Diagrams (Čepin 2011)).
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The generated reliability models can be used to run simulations and to calculate reliability measurements
of systems under study. Data requirements of reliability modeling methods vary a lot. While classical
Reliability Block Diagrams rely solely on information about states of individual assets and manufacturing
lines, Fault Trees require detailed semantic information about faults that happened and potentially can
happen. Satisfying these data requirements calls for novel approaches of system design. Asset integration
plays a vital role and enables communication and data gathering across a manufacturing line.

There are few research efforts in data-driven simulation and reliability assessment that focus on
manufacturing systems (Lugaresi and Matta 2020; Khorshidi et al. 2016) as well as other systems
(Lazarova-Molnar et al. 2020). Lugaresi and Matta (2020) propose a method for generating and tuning
discrete-event simulation models for manufacturing applications. A novel data-driven system reliability and
failure behavior modeling method is introduced by Khorshidi et al. (2016). The authors verify their method
using a case study of a manufacturing line and compare it to conventional approaches. In Lazarova-Molnar
et al. (2020), we present an approach for data-driven learning and analysis of Fault Trees of systems with
multi-state components. Based on the extracted Fault Trees, reliability measures of the system under study
can be estimated.

The above-mentioned research efforts propose novel data-driven methods for discrete-event simulation
or specific reliability assessment methods, which rely to a great extent on data that is generated by the
systems under study. However, we have no knowledge of a contribution aiming to define general data
requirements for SMSs in support of these data-driven methods, also relevant for defining the underlying
software architectures. Thus, the research goal of this article is the identification and specification of
data requirements for a novel middleware, the I4.0 Information Backbone (I4.0-IB), so that it can support
data-driven simulation and reliability assessment of SMSs. In short, our main contributions towards this
goal are

• Specification of data requirements for data-driven reliability assessment and simulation of SMSs
• Presentation of a novel middleware architecture for SMSs in support of the defined data requirements
• Illustrative simulation model of a manufacturing line that generates exemplary reliability-relevant

data

The defined data requirements are further categorized based on the structural granularity of the reliability-
relevant data. Based on these categories, we provide a mapping to common reliability assessment methods.

The remainder of this article is structured as follows: We begin by providing background on Industry
4.0 and common approaches for reliability assessment of manufacturing systems in Section 2. In Section
3, we define the data requirements for reliability assessment of Smart Manufacturing Systems. We present
the case study and the novel information backbone in Section 4. In Section 5, we discuss implications of
this work, followed by a summary and outlook in Section 6

2 BACKGROUND

2.1 Industry 4.0

The industry is currently entering the fourth industrial revolution, opening new possibilities through data-
related technologies such as the Internet of Things (IoT), cloud, big data and simulation, as well as operational
technologies such as autonomous robots, augmented reality and additive manufacturing (Lazarova-Molnar
and Mohamed 2019). This plethora of new technologies is continuously driving the development of new
applications aiming to improve manufacturing performance (Dalenogare et al. 2018).

I4.0 is formally defined as the intelligent networking of machines and processes for industry with
the help of information and communication technology (Plattform Industrie 4.0 2021a). Based on this
definition, it can be inferred that software plays a vital role in connecting and supporting information
flows towards an intelligent network. Figure 1 shows the shift from traditional hierarchical manufacturing
to an network-oriented I4.0 approach (Jepsen et al. 2020). The figure supports the I4.0 vision of an
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intelligent network by symbolizing information flows between assets regardless of layers. This opens up
new possibilities for applications to obtain information more effectively that was more cumbersome in
traditional manufacturing.
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Figure 1: Shift from hierarchical manufacturing to an network oriented I4.0 approach (Jepsen et al. 2020).

Based on an intelligent network, new applications in the field of simulation and reliability assessment
of manufacturing systems can be developed. These applications specifically include data-driven solutions
that take advantage of easy access to data. While traditionally developed simulation and reliability models
can quite accurately represent a system at specific points in time, data-driven solutions can more accurately
reflect potential changes to a system that occur as time unfolds (Lugaresi and Matta 2020).

2.2 Reliability Assessment of Manufacturing Systems

Reliability is an important performance metric for any product, system or service and thus also plays a
vital role in planning, deploying and operating contemporary production lines. In relation to manufacturing
systems, reliability refers to the likelihood that the intended function will be performed for a specified
period of time (Lazarova-Molnar et al. 2017). The reliability metric R(t) is mathematically defined as
R(t) =

∫
∞

t f (x)dx where t is the period of time and f (x) is the failure probability density function of a
given distribution. Related metrics are mean time to failure (MTTF) for non-repairable systems, mean time
between failures (MTBF) for repairable systems, mean time to repair (MTTR) and operational availability
A. MTTF is defined by the mean of R(t) as MT T F =

∫
∞

0 R(t)dt and MTBF as MT BF = T (t)
F where

T (t) is the total operating time and F is the number of failures. MTTR is the average time it takes to
restore assets. The operational availability A can, for instance, either be calculated as A = uptime

uptime+downtime

or A = MT BF
MT BF+MT T R .

Over the past few decades, scientists and practitioners have developed many methods to assess reliability
of systems. Typically these methods have a qualitative and a quantitative aspect. Qualitative aspects include
the analysis of the interaction of the components of a system and the derivation of possible events that can
lead to failures. Quantitative aspects comprise the analysis of the failure rates, repair times and, eventually,
calculation of reliability metrics. In the following, we describe in no particular order some of the most
commonly used methods of reliability assessment and highlight their qualitative and quantitative aspects.

Fault Tree Analysis (FTA) is a deductive method for modeling failures at component level that
ultimately lead to a system failure (Ruijters and Stoelinga 2015). With respect to manufacturing systems,
FTA can be used to model failure dependencies of the manufacturing system itself or of specific assets
that make up the system (e.g. automated guided vehicles, assembly tracks, collaborative robots). The
qualitative aspect of FTA includes the derivation of the failure events that will lead to the system failure. In
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FTA terminology these events are referred to as minimal cut sets. The quantitative aspect of FTA includes
calculation of reliability metrics such as MTTF, MTTR and operational availability.

Reliability Block Diagram (RBD) is an inductive method to provide a schematic representation
of a system to analyze and assess its reliability (Čepin 2011). Each block in the diagram represents
a component and the corresponding reliability metric. Blocks can be connected in either sequential or
parallel configuration. RBDs help engineers to understand architectures of systems and narrow them down
to discover systems’ weakest links. The qualitative aspect of the RBD method refers to the identification
of the blocks (e.g. assets of a production line) and their dependencies. Calculations of reliabilities of each
block, as well as the reliability of the entire system, make up the quantitative aspect.

Petri Nets (PNs) are a common tool for assessing reliability and safety of complex systems or networks
of systems. PNs that fire transitions after a random delay which is determined by a random variable are
referred to as stochastic PNs (Adamyan and He 2002). By constructing PNs, engineers can assess the
impact of failures and their sequence on reliability as well as analyze combined failure modes and estimate
their probability of occurrence. PNs can also be used for FTA by replacing logic gate functions (Liu and
Chiou 1997). The qualitative aspect of constructing PNs includes determining the different components of
a system (i.e., places, transitions) and their relationships (i.e., arcs). Similar to FTA, calculating reliability
metrics such as MTTF, MTTR and the reliability itself are part of the quantitative aspect of PNs.

Markov Models (MMs) for reliability assessment are based on Markov chains and are commonly
used to represent a system at various stages (i.e., states) at any given time. Transitions connect states and
represent rates or probabilities that a system will change from one state to another. The key feature of MMs
is that they are memoryless (Ali 2019). Memoryless means, that the future state of the system depends
only on information from the current state and not on any information from any states prior to the current
state. Memorylessness imposes an oversimplifying assumption on the reliability models that MMs can
handle. The qualitative aspect of MMs is the derivation of a transition diagram including possible states
and transition probabilities of a system. The quantitative aspect encompasses the calculation of reliability
metrics.

Discrete Event Simulation (DES) is a popular modeling and simulation paradigm. With DES,
simulation progresses in time by processing a sequence of events. Each event is scheduled at a specific
point in time and changes the state of the system when it is executed (Banks et al. 2009). For reliability
assessment of manufacturing systems, DES can be used for the simulation and calculation of reliability
metrics (Kampa et al. 2017). The qualitative aspect of DES includes the identification of possible events
and parameters that influence the state of the system. The quantitative aspect comprises calculation of
reliability metrics such as MTTF, MTTR and reliability.

3 RELIABILITY-RELATED DATA REQUIREMENTS FOR SMART MANUFACTURING
SYSTEMS

In this Section, we define data requirements for supporting data-driven reliability modeling and assessment
for SMSs. The presented work is within the context of developing a novel information backbone for the
smart manufacturing facility in the Industry 4.0 Lab (Farahani 2021) at the University of Southern Denmark.

In Friederich and Lazarova-Molnar (2021), we proposed a framework for data-driven reliability as-
sessment and identified relevant data sources in contemporary manufacturing systems. Building up on this
knowledge, we studied the specific data requirements for some of the most common hardware reliability
assessment methods to transfer them from expert-driven towards data-driven. We found that the data
required can be categorized as either state data, event data or condition monitoring data. All three data
types have in common that they have a time series format and thus each data record consists of a time
stamp (ts) and type-specific data.

Figure 2 displays the identified data types. We, furthermore, provide a mapping in terms of data
requirements of the data types and reliability assessment methods reviewed in Subsection 2.2. The potential
level of detail of the generated reliability models increases when more data is available.
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Figure 2: Proposed requirements for data-driven reliability modeling and simulation of Smart Manufacturing
Systems. For clarification, we provide exemplary data for each data type. On the right, data requirements
of common reliability models are mapped to these data types.

State data provides a record of the different states of the individual assets of a SMS, as well as the
SMS itself. The record could consist of the up- and down-times or, adding more detail, working, idle and
failed states. On the one hand, this data can be considered as a very low-level source of information as
no explanations are provided about what is happening in the system and why assets and the system are
failing. On the other hand, the lack of detail reduces the effort involved in providing this type of data.
When designing and developing middleware for SMS, it must be decided whether the asset state data is
propagated by the asset itself or if the middleware requests the state in regular time intervals.

Event data provides a record of discrete events generated by the assets and the system. In this context,
discrete events mark the beginning and ending of activities in the production that are relevant to a given
simulation study. These activities could be, for instance, the preparation of raw material in a warehouse,
the transport of material or operations at assembly cells. For each event record, a case identifier should be
provided. The case identifier is used to group events that belong to the same case, i.e., a trace of events
about the production of one product instance. On the one hand, event data provides valuable insights about
what is happening in the manufacturing system and, thus, supports the generation of more realistic and
accurate reliability and simulation models. On the other hand, the effort involved in providing this type of
data increases as more detailed data needs to be extracted from the assets. This implies interfacing with
assets from potentially different manufacturers. Furthermore, in case assets themselves can not provide
event data, sensors have to be installed for the generation of such.

Condition monitoring data provide a record of relevant health data of a SMS. This includes data
from sensors that are either built into the individual assets (e.g., torque sensors in collaborative robots)
or installed at critical locations along the production line. The sensors used could include, for example,
pressure and vibration sensors that provide continuous data, as well as image and spatial sensors. The
condition monitoring data itself already increases the level of detail of derived reliability and simulation
models. However, performing event or fault detection based on sensor data enables deeper insights in the
system at hand and, for example, generation of detailed fault models.
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RBDs and MMs focus on representing the structure and states a system can have respectively. Thus,
they require solely state data. Very simplistic versions of DES models and PNs can also be constructed
from state data since state changes of systems can also be represented as discrete events. However, event
data is required in order to unfold the full modeling potential of these methods. State data and condition
monitoring data, as well as detected events and faults, can contribute to a higher model detail. FTA requires
data about faults that happen in a system. Therefore, data on detected faults based on condition monitoring
data are required for this method.

4 CASE STUDY AND INFORMATION BACKBONE

This Section is structured as follows: We, first, describe the Industry 4.0 laboratory at the University of
Southern Denmark, the drone production line and the assets involved in the production sequence. Second,
we present the I4.0 Information Backbone (I4.0-IB) with a high-level overview of the architecture and
the concept of asset integration to enable communication between the I4.0-IB and the software of the
assets. Thirdly, we introduce a simulation model of the Industry 4.0 lab and present data output matching
the previously defined requirements. The knowledge gained during the development of the I4.0-IB is
continuously used as input to further improve and refine both the simulation model and the I4.0-IB.

4.1 Industry 4.0 Laboratory

The I4.0 lab at the University of Southern Denmark is a strategic initiative that targets the support of
research, industry collaboration, innovation, and education in the latest I4.0 technologies. Furthermore, the
lab is a demonstration window for industries working to adapt I4.0 technologies into their own production.
The lab is currently in its initiating phase, in which an infrastructure of hardware and software is built,
and experience with the different assets is being gained. The I4.0 lab integrates knowledge from different
parts of the university as well as assets from different technology vendors. The research areas from the
university are robotics, operations management, software, mechanics, etc. and the technology vendors are
robot manufacturers, magnetic track manufacturers, warehouse manufacturers, automated guided vehicle
(AGV) manufacturers, software vendors, etc.

An ongoing iterative project has been started to gain knowledge and experience with the assets. The
goal is to produce a simplified drone in a production sequence. One of the ideas is building a middleware
infrastructure (I4.0-IB) that facilitates information flow between the different assets. Doing so gains
experience and knowledge with the overall middleware architecture, the asset technologies, data design,
and interface design needed to integrate to the assets. Figure 3 illustrates an excerpt of the assets involved
in the production sequence, which we describe in detail in the following.

Figure 3: Assets in the I4.0 lab. Left) the AGV picks up drone parts from the opening at the warehouse,
middle) the magnetic track that transports the drone parts using the shuttles, and right) the production cell
assembles landing gear on drone motor.
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ERP (Enterprise Resource Planning). The ERP system is a planning system that, among others,
contains purchasing-, inventory-, and order management. The order management contains incoming
customer orders.

AGV (Automated guided vehicle). The AGV, consists of an autonomous mobile robot with a robotic
arm. The AGV is able to load and unload objects, as well as transport objects from one place to another
(Enabled Robotics 2021).

Magnetic track. The magnetic track is a high-speed transport system with precision positioning. The
magnetic track has exchangeable shuttles (transport devices) that are attached magnetically to the track. An
object can be mounted on each of the shuttles (i.e., shuttles are equipped with boxes that can hold drone
parts). The magnetic track is highly configurable to support different production flows (B&R Automation
A/S 2021).

Production cell. The production cell contains two collaborative robotic arms capable of carrying out
a specific task. In the presented case study, the production cell performs partial drone assembly. The
production cell is highly configurable, depending on the task it performs (Universal Robots A/S 2021).

Warehouse. The warehouses are automated storage units that have efficient order picking rates of up
to 250 boxes per hour (Effimat A/S 2021; Kardex Remstar 2021).

Based on the assets mentioned above, the production sequence is as follows:

1. Production order triggers the I4.0-IB from the ERP
2. Warehouse 1 prepares the parts for the order
3. AGV picks the parts from the Warehouse 1 and transports the parts to the Magnetic track
4. Magnetic track transports the parts to the Production cell 1
5. Production cell 1 executes an assembly step
6. Magnetic track transports the semi-assembled parts to the Production cell 2
7. Production cell 2 executes an assembly step
8. Warehouse 2 puts the product into storage

4.2 Industry 4.0 Information Backbone

In the following, we provide a description of the I4.0-IB, a high-level overview of the architecture, as well
as an elaboration of the asset integration between the I4.0-IB and the machine software.

The Industry 4.0 Information Backbone. I4.0-IB is a middleware (Sommer et al. 2018) that enables
information exchange between the assets (e.g. production floor machine and sensors) and corresponding
enterprise applications. Therefore asset high-level interfaces must be available to asset lower-level operations
(e.g. control signals to mechanical parts) from an I4.0 middleware perspective. Figure 4 illustrates a simplified
sequence diagram and high-level operations that are invoked on assets seen from an I4.0-IB perspective.
Recall in Section 1 that an asset is defined as anything that adds value to an I4.0 solution. The I4.0-IB will
not only be limited to integrate assets such as machines and sensors on the production floor, but also be
able to integrate other information sources that add value e.g. product development related data (Plattform
Industrie 4.0 2021b).

I4.0-IB Architecture. Figure 5 illustrates the production floor layout with the assets and an evolving
architecture for the I4.0-IB. Note how enterprise applications access the middleware regardless of the tradi-
tional hierarchical structure. The architecture supports a variety of integration technologies that are needed
to support heterogeneous assets. Heterogeneous assets vary on different parameters, such as integration
technologies and communication patterns, e.g., push-pull information and information frequency. The
I4.0-IB architecture is based on a distributed event-driven approach, where services use a publish-subscribe
communication pattern through message bus technology (Sommer et al. 2018). The distributed event-
driven approach supports both different asset integration technologies, as well as different communication
patterns. In addition, the event-driven approach supports the collection of data that meet the requirements
for data-driven reliability modeling and simulation, as defined in Section 3.
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Figure 4: The I4.0-IB invokes high-level operations (e.g., assemble landing gear on a motor) on assets,
after which the assets are responsible for invoking lower-level operations internally (e.g., control signals
to mechanical parts).

Asset Integration. The I4.0-IB supports integration to SOAP (Leitão et al. 2015), REST (Cavalieri
et al. 2019), OPC UA (Cavalieri et al. 2019), and MQTT (Sommer et al. 2018) technologies, as seen in
Figure 5 and they will be continuously expanded with new integration technologies. The service structure
contains, among others, an Outer Interface which contains implementation-specific asset integration code
(e.g. SOAP). The implementation also contains primitive ping functionality to detect reachability of
machines. The service has a structure for representing available operations callable from other services.
The structure is a guideline for integrating new assets in the middleware and, at the same time, supports
consistent generation of data for the simulation when when new assets are added. The Inner Interface
includes components for how to receive and create messages from other services.

Listing 1 is an example of a service request. The code shows how a JavaScript Object Notation (JSON)
file is passed to the Warehouse1 service invoking the prepareMaterialStart operation on the asset, after
which the warehouse fetches the box with productId 1008. The id is a globally unique identifier (GUID)
that makes the message unique, the type indicates the message type, the aasOriginId indicates the sender
of the message, the aasTargetId is the reciever of message, the orderId indicates the order id which the
message is part of, the operation is the operation invoked on the asset, and the parameters are optionally
parameters needed for a given operation.

Listing 1: Service request
Topic: "Storage"
{
"@id":"d11972cc-247a-4107-b899-5e2e29ab4257",
"@type":"operation",
"aasOriginId":"i4.sdu.dk/Middleware/Orchestrator",
"aasTargetId":"i4.sdu.dk/Storage/Warehouse1",
"orderId":"123456789",
"operation":"prepareMaterialStart",
"parameters":

{
"productId":"1008"

}
}

Listing 2: Service response
Topic: "Storage"
{

"@id":"ee8c0d1f-c652-4cfb-acf8-677e35e47381",
"@type":"response",
"operationId":"d11972cc-247a-4107-b899-5e2e29ab4257",
"aasOriginId":"i4.sdu.dk/Storage/Warehouse1",
"aasTargetId":"i4.sdu.dk/Middleware/Orchestrator",
"response":
{

"effimatReferenceId":"1250125",
"carrierSlot":2,
"success":true

}
}

Listing 2 is an example of service response. The JSON file contains the data for successfully invoking
the GetParts on the Warehouse1 service. Service requests and responses are linked through @id and
operationId. The data is structured as a linked list of events that mark beginnings and completions of
activities.
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Figure 5: Production floor layout with assets, and a high-level overview of the I4.0-IB architecture. Numbers
indicate production sequence for a simplified drone (Jepsen et al. 2021).

State-, event- and condition monitoring data. The state data of the assets is made available by
the ping functionality of the services. Table 1 illustrates event data extracted from a service request and
response. Supporting additional sensor data would require extending the JSON structure or adding new
services that integrate with new assets. In general, the architectural design and data design of the I4.0-IB
supports different application scenarios that aim to leverage or analyze the information flow for an improved
production flow.

OrderId Sender Reciever Asset Event

1 Orchestrator Warehouse1Service Warehouse1 prepareMaterialStart
1 Orchestrator Warehouse1Service Warehouse1 prepareMaterialEnd
1 Orchestrator AGVService AGV transportToTrackStart
1 Orchestrator AGVService AGV transportToTrackEnd

Table 1: Event data extracted from linked data messages. Each activity is started and ended by an event.

The experiences and the development of I4.0-IB is an iterative process maturing I4.0-IB functionality,
I4.0-IB software architecture as well applications using the I4.0-IB. The functionality for applications
integrating directly to the I4.0-IB is under development. The next Section 4.3 will, therefore, elaborate on
a simulation model emulating parts of the behavior (e.g., extraction of data) of the I4.0-IB described in this
section, supporting the data requirements, presented in Section 3, for reliability assessment and simulation
of manufacturing systems.

4.3 Case Study Simulation and Exemplary Data Output

We developed a simulation of the case study introduced in Section 4.1 using the discrete-event simulation
framework SimPy (SimPy 2021). The simulation emulates the behavior of the production system in the lab
and is able to generate synthetic state and event data. By doing so, the data requirements for data-driven
reliability assessment became more apparent and graspable, which helps us in further development of the
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previously presented I4.0-IB. The implementation of the simulation can be found on GitHub (Friederich
2021).

The assets Warehouse 1 (wh1), Cell 1 (cell1), Cell 2 (cell2) and Warehouse 2 (wh2) are implemented
as classes which include all the logic needed to simulate their respective behavior. The AGV (agv) and the
magnetic track (track) are implemented as SimPy resources with variable capacity. To model and simulate
the processes inherent in the aforementioned assets, we used Python generator functions as prescribed by
SimPy. We also provide a configuration file allowing the user of the simulation program to adjust parameters
such as the simulation runtime, whether the simulation should run in real time, asset operation times, and
asset break and repair times.

Tables 2 and 3 show excerpts of exemplary event and state logs that were generated by the simulation
program. For simplifying reasons, for this example, each operation was set to take one time unit. The event
log shows the generated events, the corresponding assets, the case identifier and a timestamp (ts). Note
that multiple events occur at the same time and new production runs (cases) are initiated while previous
runs have not yet been finished. The state log has been generated based on the same simulation run as
the event log. The state log provides the asset states for each time unit. The states of the AGV and the
magnetic track are not included in the table for reasons of simplicity. Note that at time 5, Warehouse 1
fails and resumes operation at time 10. Cell 1 still assembles the first three production orders and then
remains idle due to the lack of new raw material.

ts case asset event

0 case 0 wh1 prepareMaterialStart
1 case 0 wh1 prepareMaterialEnd
1 case 0 agv transportToTrackStart
2 case 0 agv transportToTrackEnd
2 case 0 track transportToCell1Start
2 case 1 wh1 prepareMaterialStart
3 case 0 track transportToCell1End
3 case 0 cell1 assemblyStart
3 case 1 agv transportToTrackStart
3 case 1 wh1 prepareMaterialEnd
4 case 2 wh1 prepareMaterialStart

Table 2: Exemplary event log.

ts wh1 cell1 cell2 wh2

0 working idle idle idle
1 idle idle idle idle
2 working idle idle idle
3 idle working idle idle
4 working idle idle idle
5 failed working working idle
6 failed idle idle working
7 failed working working idle
8 failed idle idle working
9 failed idle working idle
10 working idle idle working

Table 3: Exemplary state log.

The simulation program, which emulates the production line described in Section 4.1 is able to generate
state and event data. Some parameters of the simulation can be adjusted in order to run experiments and to
generate custom synthetic datasets. This data can be used to aid the development of data-driven methods
for reliability assessment and simulation.

5 SUMMARY AND OUTLOOK

We substantiated and defined data requirements for a novel middleware for Smart Manufacturing Systems,
in support of data-driven reliability modeling and simulation. We further categorized the data requirements
by the model level of detail (i.e., state data, event data, condition monitoring data) and matched them to
the popular reliability modeling approaches. Meeting this data requirements for a SMS would imply that
new applications for data-driven reliability and simulation can be enabled. We, furthermore, provided a
case study within the I4.0 lab at the University of Southern Denmark and presented an novel middleware
architecture focusing on asset integration and how the architecture supports state, event, and conditional
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data requirements. Within the case study, we developed a simulation program of the behavior of the drone
production line in the I4.0 lab to generate synthetic data matching the formulated data requirements.

In future, we intend to develop novel methods for data-driven reliability assessment and simulation
(e.g., data-driven RBDs, FTA, PNs). Data generated by the simulation program supports this process.
The simulation program is continuously developed further to generate more detailed data, e.g. synthetic
condition monitoring data. The further development of the simulation model will continue in line with
the progress of the I4.0-IB, ensuring that the simulation model reflects the production line in the I4.0 lab.
In addition, we will develop and test novel methods for data-driven reliability assessment and simulation
using real data provided by the I4.0-IB. The research of the I4.0-IB architecture, among others, will in
future work focus on the quality attributes (i.e. reconfiguration, modifiability, availability) requirements
for the infrastructure supporting different enterprise applications needs.
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