
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, eds.

A COLLABORATIVE TEST AND DATA-DRIVEN SIMULATION SOLUTION

German Reyes, Ph.D.
Michael Allen

Dayana Cope, Ph.D.

Engineering USA

55 W Monroe Street
Suite 2575

Chicago, IL 60603, USA

ABSTRACT

A strategic design approach during simulation model development is an increasingly important requirement
to support large-scale simulation development. In this case study, we present the importance of adopting
two design approaches during the development of simulation models; namely, test-driven development,
and data-driven modeling. In addition, in a multi-developer setting, the model architecture played an
integral role in enabling collaboration by separating model components while ensuring appropriate
interoperability between components and minimized redundancy. A modular design made it possible for

developers to focus on specific behavioral aspects of the simulation model, test model behavior in a test
environment and integrate all of the architectural pieces into the main master model. The model is
automatically generated from data stored in an external database. This modeling approach has proven
extremely useful in a setting where multiple developers worked on different model functionalities
asynchronously.

1 PROBLEM STATEMENT

When multiple developers are working asynchronously within one large-scale simulation model, there is a
need for an improved development methodology that is efficient and seamless. This need can be resolved
by defining a model architecture where separation of concerns is established, thus allowing each developer
to work on their model components in isolation. However, this development methodology brings a new
challenge: how can we ensure a module (hereafter referred to as ‘manager’) is able to provide the intended
functionality once it is merged with the main simulation model? This challenge is addressed by

incorporating a test-driven development approach where test suites are created that test the functionality of
the manager, including all identified edge cases. Lastly, one of the lingering challenges in this type of
development has to do with the automatic creation of the full simulation model. Since the managers already
provide the functionality and control the behavior of the simulation objects (entities, resources, etc.),
adopting a data-driven approach has provided us with the capability of creating the simulation objects that
encompass the full simulation model.

2 MODEL ARCHITECTURE

We developed a robust model architecture in which model features can be broken down into smaller
managers that are decoupled by design and provide for asynchronous development of manager libraries.
Managers have been designed to communicate with other managers via interface methods, similar to APIs.
In addition, managers can update their states based on events published by other managers. In other words,
managers can also be configured to be publishers, subscribers or both in a Pub/Sub design pattern

Reyes, Allen, and Cope

implementation. This level of decoupling allows the managers to be individually and independently tested
by the use of test suites.

3 TEST-DRIVEN DEVELOPMENT / AUTOMATED MODEL VERIFICATION

Significant time can be spent in debugging simulation models, either due to bugs identified in the code base
or due to logical errors. Developers may spend countless hours trying to replicate bugs reported by the
integration engineers before they can be addressed and released as bug fixes. Having a test suite prevents

many of these issues. In this case study, we present the development and use of a test suite that involves the
creation of mock managers that mimic the behavior of other managers at a basic level; notably, the mock
managers can be as complex as necessary. Under this type of development, engineers write the tests that
need to be passed for a given functionality; then, the feature is developed for that specific manager, and
tests are run against it to ensure that all tests pass. Passing all tests defined in the test suite is a pre-requisite
before new manager libraries can be released and integrated with the main model. A further benefit is the
automation of model verification, ensuring changes and updates do not break existing functionality and
assuring the quality of the finished model.

4 DATA-DRIVEN MODEL

A data-driven model is an effective way to automatically generate a new model configuration by simply
changing parameters in an external database. This is of critical importance in large-scale models, where it
may be of interest to assess the impact of local changes to the entire system. For example, in a

manufacturing site, we may consider changes such as moving work centers or shops to new locations and/or
replacing aging equipment with new equipment that has different capabilities. These types of experiments
require additional manual development when performed using a conventional model development approach.
In addition, experimentation may increase the difficulty of maintaining these models. A data-driven
approach removes much of the complexity and allows for greater flexibility when creating a new
configuration of the model.
 A critical benefit gained from a data-driven approach is the ability of storing the model data in an
external database rather than the model itself. A database can more effectively handle tests on the data and
prevents modelers from loading incorrect data into the model that may result in errors during a simulation
run. Typical tests include checking to see if data types are correct, that there is no missing data, and that
data conforms to specific rules. For example, when dealing with probabilities, the sum of the probabilities
in a given group cannot exceed 1, or that there are no negative probability values. Performing these sanity

checks while the data is in the database allows modelers to diagnose any potential issues that may affect
the simulation run. Once all sanity checks have been satisfied, the data is ready to be consumed by the
model, and the simulation model is then capable of self-configuration upon initialization.

5 DATABASE USER INTERFACE AND SCHEMA CHANGES

As modelers gain more knowledge about the processes being simulated, it becomes necessary to have a
means of updating the schema, constraints, or other key aspects of the database. It is often required to add
or drop fields from existing tables, or even to create or delete tables in the database. Although these changes
can be easily done manually, it becomes increasingly difficult to track what changes have been applied. In
this case study, we present the use of a web-based UI framework (such as the Play framework) that has
proved to be an excellent solution when managing automatic schema changes from a web UI via evolution
scripts. Having a web UI not only provides the aforementioned capability but also provides users with
enhanced views of the database contents without the need to continually write queries. Furthermore, a web

UI enables end users to not only view the information contained in the database, but removes the need-to-
know SQL to perform complex queries. The web UI can be used to edit or add new data to the database
either by the use of editing forms, or the use of bulk processing. Lastly, view pages can be easily configured
to display KPIs of interest for simulation results that are written back to the database after each simulation
run.

