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ABSTRACT 

Fault tree analysis is one of the most popular techniques for dependability analysis of a wide range of 

systems. True fault-related behavior of a system would be more accurately reflected if the system’s fault 

tree is derived from a combination of observational data and expert knowledge, rather than expert 

knowledge alone. The concept of learning fault trees from data becomes more significant when systems 

change their behaviors during their lifetimes. We present an algorithm for learning fault trees of systems 

with missing  information on fault occurrences of basic events. This algorithm extracts repairable fault trees 

from incomplete multinomial time series data, and then uses simulation to estimate the system’s reliability 

measures. Our algorithm is not limited to exponential distributions or binary events. Furthermore, we assess 

the sensitivity of our algorithm to different percentages of missingness and amounts of available data.  

1 INTRODUCTION 

Fault Tree Analysis (FTA) investigates which components influence failures of a system, and, thus, fault 
trees model probabilistic causal chains of events that end in a global system failure (Vesely et al. 1981; Lee 
et al. 1985). Conventional fault trees consider only failure occurrences of basic events. However, in most 

of the real world cases, it is necessary to consider both the occurrence of a basic event (typically a fault in 
a basic component) and its corresponding withdrawal (typically a repair). This means that not only the 
information about failure times of basic components are needed, but it is also necessary to have a proper 
maintenance/repair policy. Repairable fault trees address this issue and consider both faults and repairs 
within a system. 

If the system and its components either completely function or fail, reliability analysis for this system 

has a binary perspective. Nonetheless, there are systems that operate at various levels of performance, which 
usually yield more than two states (Lisnianski and Levitin 2003). Multi-state fault trees have the same 
structure of regular fault trees, but the components or the system may have more than two functioning levels. 
Although many extensions of fault trees have been proposed in the literature, they suffer from a variety of 
shortcomings. In particular, even with the emerging availability of data through Internet of Thing (IoT) 
devices and all existing software tools, fault tree analysis requires a lot of manual effort and expert 

knowledge.   
The issue of missing data may arise in almost all studies and time series data of faults are not an 

exception. Missing data are defined as questions without answers or variables without observations. By far 
the most common approach to missing data is to simply omit those cases with the missing data and analyze 
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the remaining data (Rubin 1976; Little and Rubin 2019). This approach is known as the complete case (or 
available case) analysis or listwise deletion. Removing entries with missing values can cause bias in the 
estimation of model parameters and more importantly it can reduce the representativeness of the samples 

from the population of interest. Imputation, as another approach to cope with missing data, is the process 
of replacing missing data with estimated values. Instead of omitting entries with missing values, this 
approach preserves all cases by replacing missing data with probable values estimated by other available 
information. Once all missing values are imputed and the data set is complete, standard techniques can be 
applied to analyze the data. 

 In this paper, we extend DDFTA (Data-Driven Fault Tree Analysis) algorithm introduced by Lazarova-

Molnar et al. (2020) to be able to learn fault trees of a system with missing information on fault occurrences 
of basic events. Extended DDFTA (DDFTAe) algorithm extracts repairable multi-state fault trees from 
incomplete multinomial time series data, and then analyzes the results to estimate the system’s reliability 
measures. Deriving reliability models from data can be more insightful than utilizing solely expert 
knowledge as it is capable of capturing the true behavior of a system, after the system has been put in use. 
The data-driven models can, however, very well be supplemented by expert knowledge for validation and 

approval of extracted models. 
The rest of the paper is organized as follows: Section 2 presents background and related work, Section 

3 provides the methodology where DDFTAe is described in detail. In Section 4, three case studies are 
demonstrated, and finally, in Section 5 we conclude the paper. 

2 BACKGROUND AND RELATED WORK 

Over the past two decades, research has focused on simplifying dependability analysis by looking at how 

fault trees can be automatically derived from data. This has led to the field of model-based dependability 
analysis (MBDA) (Kabir 2017; Joshi et al. 2006). Many of MBDA techniques such as Hierarchically 
Performed Hazard Origin & Propagation Studies (HiP-HOPS) (Papadopoulos and McDermid 1999) and 
AltaRica (Arnold et al. 2000), use fault tree analysis as their primary means of system dependability analysis 
and automate the fault tree generation process. 

Classical FTA is primarily knowledge-driven rather than data-driven. With evolving system designs, 

model building based on experts’ knowledge becomes outdated. Ruijters and Stoelinga (2015) present a 
survey on standard fault tree analysis and its extensions, covering technical details of different types of fault 
trees and their analyses approaches. A literature review on different model based dependability analysis 
approaches is available in Sharvia et al. (2016) and Aizpurua and Muxika (2013). Kabir (2017) reviews the 
standard FTA,  FTA’s different extensions and describes its limitations. He also reviews different MBDA 
approaches where fault trees are used as an analysis technique.  

Nauta et al. (2018) introduced LIFT (Learning Fault Trees) to learn the structure of static fault trees 
from untimed data bases with Boolean event variables. Linard et al. (2019) applied an evolutionary 
algorithm to learn fault trees from untimed Boolean basic event variables. Instead of the independence test 
in the LIFT algorithm, they used a score-based algorithm to extract fault trees. Also, their databases did not 
need any information about intermediate events. Furthermore, Mukherjee and Chakraborty (2007) describe 
a technique to automatically generate fault trees using historical maintenance data in text form. Their 

technique relies on domain knowledge and linguistic analysis.  
The above-mentioned techniques also use data to construct fault trees, however, they do not use time 

series data nor do they consider the multi-state systems. Our method differs from those in the literature 
since we consider incomplete timed data for components with more than two states and provide a complete 
solution to calculate reliability measures from observational data following distributions other than 
exponential distribution. 
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2.1 Repairable Multi-State Fault Trees 

A fault tree is a directed acyclic graph (DAG) whose leaves are the basic events (typically basic faults), and 
the root represents the top event, which is typically a system failure. The gates in a fault tree represent the 

propagation of failure through the tree (Ruijters and Stoelinga 2015). Multi-state fault trees have the same 
structure as regular fault trees, except that the components or the system may have more than two 
functioning levels. In other words, the state space of the system and its components may be represented by 
{0,1, … , 𝑀}, where 0 indicates the completely failed state, M indicates the perfectly working state, and the 
others are degraded states. 

Repairable fault trees consider both faults and repairs within a system. Hence, for each basic event that 

is typically associated with a fault, there are probability distributions that describe the fault's occurrences 
and repair times. Time series data of a system consists of a sequence of status change times for each basic 
event and the system state. 

There are two essential analysis techniques for fault trees, qualitative analysis and quantitative analysis. 
Qualitative analysis considers the structure of the fault tree, while the quantitative analysis computes failure 
probabilities, reliability, etc. of the fault tree. The first step towards computing reliability of a system is to 

extract the structure of the system's underlying fault tree. When the structure of the fault tree is known, 
using the probability distribution functions of the basic events, we can calculate the reliability of the system, 
the likelihood of a top event occurrence, as well as those of the basic events that have caused the occurrence 
of the top event. The results of quantitative analysis give analysts an indication about system reliability and 
also help to determine which components or parts of the system are more critical so analysts can put more 
emphasis on the critical components or parts by taking necessary steps, e.g., including redundant 

components in the system model (Kabir 2017).  

2.2 Regression Modelling of Binary/Multinomial Time Series Data 

Consider a binary time series {Yt} taking the values 0 or 1 (i.e., working, failure), and related covariate or 
auxiliary stochastic data represented by a column vector{Z1,t, Z2,t, …, Zm,t}, t = 1, 2, 3, …, T, where T is the 
total time. The time-dependent random covariate vector process may include discrete or continuous 
variables that influence the evolution of the primary series of interest {Yt}. Logistic regression is a statistical 

model that in its basic form uses a logistic function to model a binary dependent variable, although many 
more complex extensions exist (Cox and Snell 1989; Diggle et al. 2002; Fahrmeir and Kaufmann 1987). 
Suppose 𝜋𝑡 = 𝑃(𝑌𝑡 = 1), then the generalized linear model that links the predictor variables to 𝜋𝑡 is as 
follows:   

𝑙𝑜𝑔𝑖𝑡(𝜋𝑡) = ln (
𝜋𝑡

1 − 𝜋𝑡
) = 𝛽0 + 𝛽1𝑍1,𝑡 + 𝛽2𝑍2,𝑡 + ⋯ + 𝛽𝑚𝑍𝑚,𝑡 (1) 

In this paper, to model binary basic events (typically associated with faults in basic components), we 

consider the logistic regression, where the predictor variables are times of status changes, system failure or 

other basic events. For multi-state systems where we have more than two states for components or the 

system, we apply the methods of multinomial logistic regression. Assume that Yt has M functioning states 

such as 𝜋𝑡,𝑐 = 𝑃(𝑌𝑡 = 𝑐), 𝑐 = 1, 2, … , 𝑀, and ∑ 𝜋𝑡,𝑐 = 1𝑀
𝑐=1 , then we have: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑡,𝑐) = ln (
𝜋𝑡,𝑐

1 − 𝜋𝑡,𝑐
) = 𝛽0,𝑐 + 𝛽1,𝑐𝑍1,𝑡 + 𝛽2,𝑐𝑍2,𝑡 + ⋯ + 𝛽𝑚,𝑐𝑍𝑚,𝑡 (2) 

The logistic regression models the probability of output, here the probability of failure of a component, 
in terms of inputs. Hence, logistic regression can only predict the probability of failure and does not 
perform statistical classification. Though by choosing a cutoff value and classifying inputs with probability 

https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Statistical_classification
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greater than the cutoff as one class, below the cutoff as the other it can be used to make predictions on the 
response variable. 

2.3 Proxel-Based Simulation 

Proxel-based simulation is a state space-based simulation method to compute transient solutions for discrete 
stochastic systems. It relies on a user-definable discrete time step and computes the probability of all 
possible single state changes (and the case that no change happens at all) during a time step. The target 
states along with their probabilities are stored as so-called proxels (short for probability elements). To 
account for aging (i.e. non-Markovian) transitions, proxels contain supplementary variables that keep track 
of the ages of all active and all race-age transitions. For each proxel created, the algorithm iteratively 

computes all successors for each time step. This results in a tree of proxels where all proxels having the 
same distance from the tree root belong to the same time step and all leaf proxels represent the possible 
states being reached at the end of the simulation.  

Proxel-based simulation explores all possible future developments of the system each with a determined 
computable probability, based on the distribution functions which describe the events, as well as the time 
they have been pending, in discrete time steps. It determines all possible follow-up states and the rendering 

probability of the corresponding state transitions. The proxel-based simulation is well-known for its ability 
to cope with stiff models, as fault models are typically (Lazarova-Molnar and Horton 2003; Lazarova-
Molnar 2005).  

3 METHODOLOGY FOR DATA-DRIVEN LEARNING OF REPAIRABLE FAULT TREES 

In this section, we describe the methods and techniques that we developed to enable the data-based 
reliability modelling and analysis. DDFTA (as described in Algorithm 1) comprises of two main steps 

(Lazarova-Molnar et al. 2020): 1) structure learning, or the qualitative analysis part, and 2) quantitative 
analysis based on the output of the first step. In the structure learning step, we extract the minimal cut sets 
(MCS) from the time series data set, and then use Boolean algebra to build a fault tree that aims to be 
mathematically identical to the true fault tree of the system. In the second step, the distribution functions of 
the basic events are approximated from the time series data. These reliability and repair distribution 
functions of the basic events, along with the fault tree structure, are inputs to the proxel-based simulation, 

which is then used to calculate system's reliability measures, in form of transient complete solutions. This 
algorithm consists of three functions: STRUCTURE (lines 1-6) returns the skeleton of the fault tree, MCS 
(lines 7-20) which extracts the minimal cut sets is a sub function here, RELIABILITY function (lines 21-
36) applies the output of the STRUCTURE function and returns the reliability measures of the system. 
The process workflow of DDFTAe, the extended data-driven fault tree analysis (DDFTA) algorithm that 
can cope with incomplete time series data of faults is shown in Figure 1. We can see that DDFTAe  uses 

time series data from faults' occurrences and the time it takes for them to be repaired, although we may 
miss some of the records. 

3.1 DDFTAe Algorithm 

DDFTAe algorithm (Figure 1) comprises of four main steps: 1) converting time series data of faults to a 
truth table with time steps, 2) regression fitting on the observed part and predicting/imputing missing values, 
3) learning the structure and the parameters of the fault tree and 4) estimating reliability measures. The last 

two steps are the basic components of the DDFTAe algorithm. In this section, the regression modelling part 
is described in detail and for the last two parts we refer the reader to Lazarova-Molnar et al. (2020).  

Suppose we have an incomplete truth table with time steps like in Figure 2. In order to apply the method 
of Algorithm 1, this truth table needs to be completed, or in other words, imputed. The imputation process 
fills in the missing values for each basic event until the data sets contains no more missing values. Assume 
we want to impute the missing values for the binary basic event BE1.   



Niloofar and Lazarova-Molnar 
 

 

 

 

 Figure 1: The process work flow of the DDFTAe algorithm. 
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Figure 2: Incomplete truth table of a fault tree with five basic events. 

Following the logistic regression model of Equation (1), BE1 is the response variable and all the other 
basic components along with time and the top event TE are the predictors in this model. This means that if 

 𝜋 = 𝑃(𝐵𝐸1 = 1), then: 

𝑙𝑜𝑔𝑖𝑡(𝜋) = ln (
𝜋

1 − 𝜋
) = 𝛽0 + 𝛽2𝐵𝐸2 + 𝛽3𝐵𝐸3 + 𝛽4𝐵𝐸4 + 𝛽5𝐵𝐸5 + 𝛽6𝑇𝐸 + 𝛽7𝑡𝑖𝑚𝑒 

 
All the records where the response variable BE1 is observed are used to fit the model and estimate the 

model parameters βi. Statistically insignificant (p-values > 0.05) predictors will be removed from the model 
and the best fitted model will be applied to make predictions for the records where we have no observation 

for BE1. The same process is utilized to complete all binary events. In Figure 2, we can see that BE5 is a 
multi-state event with {0, 0.5, 1} as its functioning levels. To fill in multi-state events, Equation (2) is the 
right model to choose for model fitting and making predictions. The standard glm function and nnet R 
package (Ripley et al. 2016) are used for fitting logistic regression and multinomial logistic regression 
models, respectively.  

3.2 Performance Evaluation 

To measure the performance of DDFTAe algorithm in depicting a system’s behavior, we assume that the 
true behavior of that system follows a repairable fault tree with a set of reliability and maintainability 
distributions as its parameters. We call this fault tree the original fault tree, and in the first simulation step, 
time series data are fabricated from this model. In the second step, the generated data set is artificially 
perturbed with different percentages of missingness. Since DDFTAe first imputes the data set, then learns 
the structure and finally computes the unavailability of the system,  its performance needs to be evaluated 

in regards to these three aspects: imputation evaluation, structure learning evaluation, evaluation of 
reliability measures estimation.  

3.2.1 Imputation Evaluation 

To fill in the missing values for each basic event, first the data is divided into a train set (observed records) 
and a test set (unobserved or the records with missing values). Then a regression model is fitted to the train 
set and the best fitted model is applied to make predictions on the test set. Since the response variable is 

categorical,  this is in fact a classification task that we evaluate like any other classifier. Classification 
accuracy (ACC) is a metric that summarizes the performance of a classification model as the number of 
correct predictions divided by the total number of predictions. In this paper ACC is calculated for both train 
and test sets.  

3.2.2 Structure Learning Evaluation 

To compare the reconstructed fault tree with the original fault tree, we use the 2*2 confusion matrix of 

Table 1, that depicts all four possible outcomes. 
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Table 1: 2*2 confusion matrix that depicts all four possible outcomes in predictions 

Reconstructed fault tree 

True fault tree 

Identified Not identified 

Identified True positive (TP) False positive (FP) 

Not identified False negative (FN) True negative (TN) 
 

In this confusion matrix, true positive is the number of sets both in the MCS of the reconstructed fault 
tree and the true fault tree (correctly identified sets). False positive is the number of sets in the MCS of the 
predicted fault tree which are not in the MCS of the true fault tree (incorrectly identified sets). False negative 
is the number of incorrectly rejected sets and finally, true negative is the number of correctly rejected sets. 
Using the confusion matrix, we calculate the sensitivity, specificity, accuracy (ACC) and F-measure: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, 𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =

2𝑇𝑃

2𝑇𝑃 + FP + 𝐹𝑁
 

 

Larger values of above mentioned measures indicate higher performance in structure learning. 

3.2.3 Reliability Measures Estimation  

When the structure of the fault tree is extracted from the imputed data set, the unavailability of the system 
can be calculated using proxel-based simulation. Since unavailabilities are calculated as transient solutions 
for each time step, we have a vector of instantaneous unavailabilities calculated for the extracted fault tree 

{�̂�𝑖}, 𝑖 = 1, 2, … , 𝑛, where n is the total number of time steps. For the original fault tree, there is also 

associated a vector of instantaneous unavailabilities: {𝑈𝑖}, 𝑖 = 1, 2, … , 𝑛. Root Mean Square Error (RMSE) 
is used to compare these vectors of unavailabilities:  

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑈𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
 

 
(3) 

 

 
Better estimation of unavailability leads to a smaller distance between {�̂�𝑖} and {𝑈𝑖}, hence smaller 

values of RMSE. We also report �̂�𝑛 and 𝑈𝑛 as the final stable unavailability values. 

4 CASE STUDIES  

We assess the performance of our algorithm using three repairable fault trees: 1) A simple fault tree with 
five basic events and three types of gates shown in Figure 3; 2) A multi-state repairable fault tree illustrated 
in Figure 5; and 3) Radio Block Center (RBC) fault tree of Figure 7 explained in Galileo textual format 
(Sullivan and Dugan 1996). The general steps in the experiments are as follows: 

 
1. Generate times series data from the basic events of each original fault tree. 
2. Build the truth tables based on each generated time series. 
3. Randomly perturb the data with 5%, 15% and 40% percentages of missing values, each 100 times. 
4. Use the methods of Section 2.2 to impute missing values. 
5. Learn the fault trees from the imputed truth tables using Algorithm 1. 

6. Compare the MCS of the reconstructed fault tree with that of the original fault tree using sensitivity, 
specificity, accuracy (ACC), F-measure.  

7. Use the reconstructed fault tree and the reliability and maintainability distributions to obtain the 
reliability measures of the top event as well as those of the basic events. 
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8. Report the evaluation measures in terms of 95% confidence intervals. 

4.1 A Simple Fault Tree 

In the fault tree configuration shown in Figure 3, we use abbreviations BEn and TE to denote Basic Event 

n and the Top Event, respectively. Time series data are generated from this fault tree with the reliability 
and maintainability distributions shown in Table 2. 

Figure 3: A simple fault tree with 5 basic events and 3 types of gates. 
 

Table 2: Reliability and maintainability distribution functions of the basic events in Figure 3 

Basic 

events 

Reliability 

distribution 

Maintainability 
distribution 

BE1 N(4, 0.1) Exp(1) 

BE2 Exp(0.1) N(2, 1) 

BE3 N(10, 1) LogN(0.5, 1) 

BE4 Exp(0.1) Weibull(5, 1) 

BE5 LogN(2, 0.1) Exp(2) 

 

True unavailability values calculated using proxel-based simulation for the basic events and the system (top 
event) are illustrated in Figure 4, and the system unavailability (Un) is 0.0216. Results of DDFTAe 
algorithm for the fault tree of Figure 3 considering 5%, 15% and 40% missingness percentages are shown 
in Table 3. As the percentages of missing values increase and less data are available, ACC on train sets 
become closer to those of the test sets, due to the model becoming overfit. As we lose more data points, 
unavailability and RMSE values deviate more from the true value 0.0216 and the ideal value 0, respectively. 

And naturally, the best structure learning performance belongs to 5% missingness and worsens as the 
missingness percentages increase. 

 
 

Figure 4: Instantaneous unavailability for the fault tree of Figure 3 
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Table 3: Results of the DDFTAe algorithm for the fault tree of Figure 3 considering different percentages 
of missingness 

  Percentages of missingness 

  5% 15% 40% 

Structure learning  
measures 

Sensitivity 0.7441 ±0.0426 0.4980±0.0411 0.4383±0.0332 

Specificity 0.9576 ±0.0065 0.9167±0.0057 0.9096±0.0061 

ACC 0.9162 ±0.0129 0.8357±0.0114 0.8184±0.0104 

F-measure 0.7659 ±0.0375 0.5285±0.0354 0.4777±0.0312 

Reliability measures 
Unavailability 0.0274 ±0.0011 0.0344±0.0012 0.0383±0.0012 

RMSE 0.0067 ±0.0012 0.0142±0.0012 0.0185±0.0011 

Imputation measures 
Train set ACC  0.8131 ±0.0086 0.8133±0.0086 0.8136±0.0087 

Test set ACC 0.8111±0.0092 0.8125±0.0088 0.8136±0.0086 

 

4.2 Multi-State Fault Tree  

Our second case study is a multi-state repairable system (Figure 5) to assess the performance of the 
DDFTAe algorithm in learning multistate repairable fault trees from incomplete data sets. Basic event A 
consists of two pumps working in parallel, hence A is fully functioning if two pumps are working (OK), it 

is in an intermediate state (IS) if one of the pumps fails, and A fails completely (F) if both of the pumps 
fail. Basic events B and C have two functioning states, and C is not repairable. Figure 6 shows the system 
unavailability along with those of the basic evens. System unavailability equals 1.3492e-04. Performance 
evaluation measures are reported in Table 4. Although most of the measures indicate lower performances 
for higher percentages of missingness, they are not dramatically worsened. 

 

(a) (b) 

Figure 5: (a) A multi-state fault tree, and (b) State changes diagrams. 

 

Figure 6: Unavailability of the basic events and the top event of the fault tree in Figure 5 
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Table 4: Results of the DDFTAe algorithm for the fault tree of Figure 5 considering different percentages 
of missingness 

  Percentages of missingness 

  5% 15% 40% 

Structure learning  
measures 

Sensitivity 0.9096±0.0379 0.8269±0.0469 0.6071±0.0558 

Specificity 0.9745±0.0132 0.9513±0.0169 0.8571±0.0246 

ACC 0.9559±0.0188 0.9157±0.0232 0.7857±0.0320 

F-measure 0.9181±0.0342 0.8432±0.0419 0.6190±0.0553 

Reliability measures 
Unavailability 0.0155±0.0093 0.0265±0.0111 0.0415±0.0169 

RMSE 0.0130±0.0084 0.0234±0.0099 0.0374±0.0149 

Imputation measures 
Train set ACC  0.7558±0.0359 0.7558±0.0359 0.7562±0.0480 

Test set ACC 0.7540±0.0368 0.7554±0.0362 0.7548±0.0483 

4.3 Radio Block Center 

Radio Block Center (RBC) is the most important subsystem of The European Railway Traffic 
Management System / European Train Control System (Flammini et al. 2005). It is responsible for 
guaranteeing a safe outdistancing between trains by managing the information received from the onboard 
subsystem and from the interlocking subsystem. In the RBC fault tree illustrated in Figure 7, “BUS1” 

lambda=4.4444e-6 repair=4 means that the reliability and maintainability distribution of the basic event 
“BUS1” are exponential with a failure rate of 4.4444e-6 and a repair rate of 4, respectively. Estimated 
unavailability of the system is 6.8699e-12 and the instantaneous unavailabilities are illustrated in Figure 8. 
Results shown in Table 5, demonstrate that this fault tree has been affected by loss of data more than other 
two examples, which we suspect the reason is that the events are rare and the system is highly reliable.  
 

toplevel “System”; 

“System” or “Power” “WANinterface” “SystemBUS” “GSMRinterface” “TMR”; 

“Power” and “PowerSupply1” “PowerSupply2” “PowerSupply3”; 

“WANinterface” and “WANcard1” “WANcard2”; 

“SystemBUS” and “BUS1” “BUS2”; 

“GSMRinterface” and “GSMRCard1” “GSMRCard2”; 

“TMR” or “CPUcore” “voter”; 

“CPUcore” 2of3 “CPUboard1” “CPUboard2” “CPUboard3”; 

“voter” and “FPGA1” “FPGA2”; 

“BUS1” lambda=4.4444e-6 repair=4; 

“BUS2” lambda=4.4444e-6 repair=4; 

“FPGA1” lambda=3.003e-9 repair=4; 

“FPGA2” lambda=3.003e-9 repair=4; 

“PowerSupply1” lambda=1.8182e-5 repair=6; 

“PowerSupply2” lambda=1.8182e-5 repair=6; 

“PowerSupply3” lambda=1.8182e-5 repair=6; 

“WANcard1” lambda=2.5e-6 repair=6; 

“WANcard2” lambda=2.5e-6 repair=6; 

“GSMRCard1” lambda=5.7078e-6 repair=6; 

“GSMRCard2” lambda=5.7078e-6 repair=6; 

“CPUboard1” lambda=7.4074e-6 repair=6; 

“CPUboard2” lambda=7.4074e-6 repair=6; 

“CPUboard3” lambda=7.4074e-6 repair=6; 

Figure 7: Radio Block Center fault tree 
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Figure 8: Unavailability values for the RBC fault tree of Figure 7 
 

Table 5: Results of the DDFTAe algorithm for the RBC fault tree considering different percentages of 
missingness 

  Percentages of missingness 

  5% 15% 40% 

Structure  
learning  
measures 

Sensitivity 0.7137±0.0153 0.5662±0.0275 0.2740±0.0029 

Specificity 0.9999±0.0000 0.9999±0.0000 0.9998±0.0000 

ACC 0.9998±0.0000 0.9997±0.0000 0.9995±0.0000 

F-measure 0.8061±0.0173 0.6386±0.0287 0.3266±0.0313 

Reliability 
measures 

Unavailability 1.79e-07±8.96e-08 1.06e-07±1.84e-07 2.60e-06±3.29e-07 

RMSE 1.75e-07±8.74e-08 1.03e-06±1.80e-07 2.24e-06±3.40e-07 

Imputation 
measures 

Train set ACC  0.9631±0.0003 0.9631±0.0003 0.9632±0.0003 

Test set ACC 0.9631±0.0010 0.9630±0.0006 0.9630±0.0004 

5 CONCLUSION 

We have presented DDFTAe algorithm, an efficient and novel algorithm for extracting repairable fault trees 

from incomplete multinomial time series data, that analyses the results to estimate the system’s reliability 

measures. We followed the work of (Lazarova-Molnar et al. 2020) providing flexibility and extensibility to 

address the issue of missing values in fault occurrences of basic events. We have demonstrated through 

three case studies that our approach has clear benefits: DDFTAe can extract and analyze multi-state 

repairable fault trees, compute reliability metrics for distributions other than the usual exponential 

distribution and handles incomplete binary/multinomial time series data of faults. As future work, we intend 

to extend the tool to predict the future failure times of the basic components as well as the system, allowing 

the reliability analysis of systems beyond the historical or real time data sets. 
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