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ABSTRACT  

The discipline of component-based modeling and simulation offers promising gains including reductions 
in development cost, time, and system complexity. This paradigm promotes the use and reuse of modular 

components for adequate development of complex simulations. Achieving effective and meaningful model 
reuse through the composition of components still remains a daunting challenge. “Composability”, an 
integral part of this challenge, is the capability to select and assemble model components in various 
combinations to satisfy specific user requirements. In this paper, we propose the use of Colored Petri Nets 
for component-oriented model development, model composition, and the verification of composed models 
using state-space analysis technique. We present a case study of an elevator model as a proof of concept. 
Our case study explains the proposed process of developing and composing CPN-based model components 
and verifying the composed model using state-space analysis. 

1 INTRODUCTION 

The Modeling & Simulation(M&S) community continues research on the path for novel methods that can 
reduce development cost and time through managing system complexity. M&S development processes are 
inherently complicated and resource-intensive. Complex models require a great deal of time and effort to 

develop and evaluate. Researchers and practitioners continue exploring theoretical fundamentals, quality 
design principles, and supportive methods, techniques, and tools to respond to these challenges. The 
practice of model reuse for developing simulation models, supported with advances in software engineering 
principles, technologies, and practices, has been successful. However, more research is needed, especially 
as multifaceted systems continue to become larger and more complex. The extensive use of reusable models 
offers numerous advantages, including reductions in development cost, time, and system complexity, and 
allows logical partitioning of complex systems into parts. There is an increasing trend to build simulation 
models by reusing and repurposing existing models in support of model composability (Balci et al. 2017; 
Davis 2006; Kasputis and Ng 2000). 
 Inspired by the discipline of Component-based Software Engineering, models are built using “Model 
Components, commonly referred to as building blocks. A model component is an independent element 
defined using a concise modeling language with a well-defined interface and encapsulated behavior. A 

model component can be independently deployed subject to third-party composition with or without 
modification (e.g., (Dahmann et al. 1997; Mahmood 2013)). Model components can be composed if their 
interfaces match each other using formal and semi-formal modeling languages. However, it can be difficult 
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to claim models are correctly composed to fulfill desired functional requirements without verification and 
validation. 
 Model Composability is a crucial design characteristic and an essential means toward achieving 
reusability. Yet it is a known daunting challenge in the M&S community. System theory can be used to 
define discrete time conjunctive, cascade, pure feedback, and mixed to composite model types (Wymore 
1993). Other well-known modeling formalisms supporting composition are Automata Theory (Alur 2015; 

De Alfaro and Henzinger 2001), DEVS (Zeigler et al. 2000), and Petri nets (Petri and Wolfgang 2008). For 
system-of-systems, it is necessary to support the composition of different kinds of models. Model 
composition for mixed continuous and discrete models include Hybrid Automata (Henzinger 2000) and 
Differential Dynamic Logic (Platzer 2008). For composing other kinds of modeling methods (e.g., Linear 
Programming and Composable Cellular Automata the Knowledge Interchange Broker has been developed 
(Mayer and Sarjoughian 2009; Sarjoughian 2006). The Linear Temporal Logic (LTL), Computation Tree 
Logic (CTL), Metric Temporal Logic (MTL), and others may be used to define requirements. Such formally 
specified system requirements can be verified for dynamical models that are developed using different 
monolithic or heterogeneous modeling methods. 
 Model composability from technology-oriented vantage points can be viewed from syntactic and 
semantic compatibility aspects (Dahmann et al. 1997; Mahmood et al. 2012; Moradi et al. 2007; Tolk 2010; 
Zhu et al. 2018). Syntax focuses on the composition of models according to their given modeling 

language(s). Syntactic composability for monolithic formal modeling methods such as Petri net, unlike 
semantic composability, is simple. Semantic composability aims to satisfy the expected behavior of the 
whole given the expected behaviors of the parts and their relationships. A common way to satisfy behavioral 
composability is to examine and show all possible states and their transitions are satisfied for a given 
requirement specification. Behavioral composability among components can only be achieved if the 
components are at the right states during their interaction and they possess the required behavior to make 
mutual progress. It is also important to structure and behavior for model composition. Structural 
composition is simpler as it is focusing on the connections in flat and hierarchical models. Behavioral 
composition, in contrast, is not simple as it must account for encapsulated behaviors of individual and 
composed model components. 

1.1 Model components and composability 

Model composability is fundamental to modeling and simulation. Compositions of models possess precise 

structural and behavioral properties in order to fulfill a given requirement specification. The structural and 
behavioral parts of model composability are concerned with the accuracy of transforming user requirements 
into models that can be verified and validated. A description and methodology for verification, validation 
and accreditation with community support provides comprehensive details and nuances for real-world use 
(Gholami and Sarjoughian 2017; Pace 2004; Petty 2008; Sargent 2005; SISO 2007). Verification deals with 
model correctness – it is concerned with building the model right. This aims to specify a model that is built 
according to the constructs of a modeling language and requirements specifications. Verification shows a 
system’s desired structure and behavior are correctly specified. Validation is concerned with building the 
right model. That is, even though a model is built correctly, it may not be what is needed (the model behaves 
in ways that are not asked for or expected). Correctness for verification is showing the model satisfies 
certain general properties such as liveness holds true. Correctness for validation shows a collection of 
specific behaviors that are observed for individual and composed components of a model.  

 We previously proposed a requirement specification template to specify objectives and constraints as 
requirement properties in (Mahmood et al. 2012). Thus, a requirement specification is a set of goals (or 
objectives) that must be reached by the collective participation of the composed components and property 
constraints that must be satisfied by the composed model throughout its execution. The goals (or objectives) 
can be defined as reachable “final state(s)” of the composed components or certain desirable combined 
output (emergent behavior) which individual components cannot produce. Similarly, the property 
constraints are the system properties such as deadlock freedom, live-lock freedom, fairness (Mahmood et 
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al. 2011) mutual exclusion or any other scenario specific property that must be satisfied. The proposed 
requirement specification template essentially helps the modelers build behavioral specification criteria 
used to evaluate the behavioral composability of the composition to ensure correct reuse of model 
components in building a complex engineering design. A model checking approach is also used in the 
behavioral composability verification (Mahmood et al. 2019). 

1.2 Modeling and Analysis using Petri Nets 

Petri nets (PN) is a prominent modeling formalism for modeling complex systems. It provides a graphical 
notation and a mathematical abstraction for modeling concurrent systems and their behaviors (Petri and 
Wolfgang 2008). PN graphs intuitively capture structural and behavioral abstractions of Discrete Event 
Systems. PN community consolidates a variety of analysis techniques that have been developed for decades 
and are used for reasoning about structural and behavioral properties of PN models. These techniques 
include reachability analysis, state-space analysis, and model-checking and ease the task of model 
verification (David and Alla 2010). 
 Colored Petri Nets (CPN) is an extension of PN characterized by high-level tokens, i.e., places are 
marked with structured tokens representing data. CPN is a graphical language for constructing models of 
concurrent systems and analyzing their properties. CPN is a general-purpose discrete event language that 
combines the capabilities of PN, as a foundation of the graphical notation and a programming language 
(CPN ML), which is based on Standard ML functional programming language, that provides the primitives 

for the definition of data types and for specifying data manipulation routines (Jensen et al. 2006; Jensen 
and Kristensen 2009).  
 State-space analysis is one of the prominent approaches for conducting formal verification and 
analyzing the behavior of a model. The basic idea in this approach is to calculate all possible system states 
and the events which cause the change of states and represent them in the form of a directed graph. When 
the graph is completely constructed, different search techniques can be applied to analyze the model. A 
similar approach proposes algorithms to generate a finite-vertex graph, called a reachability graph, via 
manually translating DEVS model to Time Automata model k (Hwang and Zeigler 2009).  
 In this paper, we propose the use of Colored Petri Nets for the component-oriented model development 
using CPN Tools (CPN Tools 2017). We present the steps to (i) construct the structure and behavior of a 
component using CPN formalism, (ii) specify its input/output interfaces for integration with other 
components, and (iii) integrate components to form a composed model. We further discuss our 

composability verification approach using state-space analysis technique. We present a case study of an 
elevator model as a proof of concept. Our case study explains the process of developing and composing 
CPN-based model components, and verifying the composed model using state-space analysis.  
 The rest of the paper is organized as follows: Section 2 briefly defines and explains basic concepts and 
formalisms used in this paper. Section 3 formulates our methods and approach for model composition and 
verification. Section 4 furnishes our case study of an Elevator model to explain our approach and section 5 
frames the summary and conclusion. 

2 DEFINITIONS AND CONCEPTS 

2.1 Colored Petri Nets 

CPN allows to define token using data types and complex data manipulation each token has attached a data 
value called the token color. The token colors can be investigated and modified by the occurring transitions. 
“CPN Tools” is a software package CPN Tools (CPN Tools 2017) for editing, simulation, state-space 

analysis, and performance analysis of CPN models. The tool acts as an integrated development environment 
(IDE) for the construction of CPN models. The most important feature of CPN tool from our point of view 
is the generation and analysis of state-spaces. The analysis of state-space includes various built-in state-
space querying functions and support for creating analysis report which altogether greatly contributes to 
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the verification process. Figure 1 illustrates the CPN is formally defined by the tuple (Jensen and Kristensen 
2009; Askari et al. 2019). 

 

Figure 1: Colored petri nets tuple. 

2.1.1 Hierarchical CPN 

CPN model can be organized as a set of modules. Each module can be seen as black boxes which make it 
possible to work at different abstraction levels, concentrating on one at a time. We consider these modules 

as Model Components. They can be connected to each other with ports and sockets. A socket connects a 
component at its upper or lower hierarchical level. A port is a place within the body of a component, marked 
with one of the port-type tags: (i) In (ii) Out or (iii) In/Out and is bound with a socket in the upper level. 
This relationship is used to define how a component should be connected with the other components. 

2.2 State-Space Analysis 

State-space analysis is one of the prominent approaches for conducting formal analysis and verification. In 
contrast to algebraic techniques, it is relatively simpler approach for analyzing the behavior of a model. The 
basic idea in this approach is to calculate all possible system states in a directed graph where vertices 
represent the state of a system at a particular instance and the edges represent the transitions that cause the 
change of state. When the graph is completely constructed, different search techniques can be applied to 
analyze the model. In PN terms, this method is also commonly known as Reachability graph analysis. The 
state-space analysis of a PN model is performed by exhaustively generating all the states, also called 

markings. A marking is the number of tokens on the individual places which together represent the state of 
the system. When the state-space is generated, then reasoning about the PN properties of the model is done 
by examining the structure of the reachability graph. A constructed state space can help in answering a large 
set of analytical questions concerning the structure and behavior of the model such as verifying deadlock 
freedom, absence of live-locks; presence of liveness, the possibility of being able to reach good states, and 
impossibility of reaching bad states and the guarantee of fulfilling the objectives. For details, readers are 
referred to (Jensen et al. 2006). 

3 COMPOSABILITY VERIFICATION PROCESS 

In this section we discuss our proposed process of model components development, model composition and 
the composability verification using state-space analysis technique. Our proposed verification process 
consist of the following steps: 

CPN = (P, T, A, Σ, V, C, G, E, I) 

Where:  

P is a finite set of places  
T is a finite set of transitions such that: P  T =   

A ⊆ P×T ∪ T×P is a set of directed arcs.  
Σ is a finite set of non-empty color sets.  
V is a finite set of typed variables such that: Type [v] ∈ Σ for all variables v ∈ V  

C: P→Σ is a color set function that assigns a color set to each place.  
G: T → Expression is a guard function that assigns a guard to each transition t  
E: A→ Expression is an arc expression function that assigns an arc expression to each arc a  
I: P → Expression is an initialization function that assigns an initialization expression to each place p 
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3.1 Requirement Specification 

Figure 2 illustrates the modeler gathers the information and formulates the requirement specifications using 
our proposed template: 

 

Figure 2: Requirement specification. 

3.1.1 Objectives 

In modeling terms, an objective oi ∈ O is defined to represent certain “Reachable final state(s)” of the 
components within a composition, an aggregated desirable output or an emergent effect produced by the 
composed model which cannot be produced by individual components. In software engineering terms, an 
objective represents a functional requirement of the composed system. 

3.1.2 Constraints 

In modeling terms, a system constraint sj ∈ S is defined as a property that must be satisfied; for instance a 
desirable state which must be reached or an undesirable state which must never be reached during the 
execution. System constraints can be defined in terms of general system properties such as deadlock 
freedom, fairness etc. or scenario specific properties. The notions of constraints are different from the 
Objectives because they are the kind of requirements that are not the ultimate goals of the system model 
but are necessary conditions to achieve the desirable goals. They can be considered as non-functional 
requirements from the software engineering point of view. 

3.2 Development & Composition of Model Components 

In this step, modelers develop individual components using CPN Tools. A CPN component includes: (i) 
places defined by primitive or structured data-types called colors; (ii) tokens representing instances of 
colors of different places; (iii) transitions which consist of events, actions, and time delays; (iv) arcs with 

arc variables to transport tokens from one element to another; and communicating ports used to expose the 
In/Out interfaces of the component. All these are packaged together to form a functional Model Component. 
These components are composed of other components using communicating ports. Section 4 illustrates an 
example of components of an Elevator model and their composition.  

3.3 Verification of the Composed Modeling using State-Space Analysis 

In the next step, the Composed CPN model is verified using state-space analysis. At first, the state-space 
of the model is generated using CPN state-space calculation tool. When the state-space is successfully 
generated, different query functions can be executed to explore the state-space graph for various verification 
questions.  
 A query function is like an algorithm that explores the state-space graph. These algorithms are based 
on theoretical concepts of Petri Nets state-space analysis and are used to verify PN properties. Therefore 
we translate a system property given in the requirement specification into a suitable PN property. There 

have been a lot of contributions in the PN literature in specifying PN properties and methods of reasoning 
of their satisfaction or violation. Figure 3 illustrates the state-space analysis of a composed CPN model 
using a query function. While writing a query function (algorithm) a modeler is usually searching for one 
or many suitable marking(s) in the state-space that represent the goal state of the composed model. Similarly, 
a query function for a constraint maybe the absence of certain marking(s) in the entire state-space. We 

RS = 〈O, S〉 
where: O = {o1, o2, o3 …, on} is a set of objectives  
            S = {s1, s2, s3 …, sn} is a set of constraints 
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illustrate both cases in our case study, later in this paper. When all the goal states are verified and when all 
the constraints are fulfilled, we say that the composability of the given set of components is verified at the 
behavioral level. 

 

Figure 3: State-Space analysis process. 

We can also analyze the state space by means of a Computation Tree Logic. It is possible to formulate 
queries about states, and the state changes (e.g., the occurrence of certain transitions). Strongly connected 
components are used to make the model checking for Hierarchical Colored Petri Nets more efficient (Xia 
et al. 2013). 

4 CASE STUDY: COMPOSABILITY VERIFICATION OF AN ELEVATOR MODEL 

In this section, we provide the details of the case study of an elevator model. We assume the elevator which 
servers 6 floors. For the sake of simplicity and reduced space, we initialize each floor with 3-4 passengers 
(though the actual model is capable of taking a large number of incoming passengers). The following steps 
demonstrate the composability verification process of the elevator model. 

4.1 Requirement Specification 

We define RS = 〈O1, S1〉 where, objective O1 = {All the arrived passengers must reach their destination 

floor} and Constraint S1 = {The door should never be opened when the elevator is moving}. 

4.2  Model Components 

The four basic components developed for the construction of an elevator model are briefly described next. 
 
• Panel: It is the button panel that is installed on each floor outside the elevator door. When the 

passengers arrive, they press the panel buttons to call the elevator at their current floor. It takes the 
passenger tokens as input in their respective floors, processes them in a FIFO queue, constructs a 
list of trips and passes on the passenger tokens to the output. System Property State-Space CPN 
Translation Composed CPN Model Query function (Algorithm) Function Library Satisfied 
Violated.  

• Door: The door opens and closes on arriving at each floor and allows the passengers to enter the 
cabin according to the capacity. The place ‘current floor’ represents the current floor. The place 

‘Load’ represents the current load in the cabin. Only those passengers can enter which are at the 
current floor. The door closes when there are no more passengers or the maximum capacity has 
been reached.  

• Cabin: It is the carriage for a maximum of 10 passengers. When the passengers enter the cabin, 
they wait until their desired floor has arrived. When the passengers enter the cabin, their desired 

System Property 

 

State Space 
CPN Translation 

Composed CPN Model 

Query function 

(Algorithm) 
Function 

Library 

Violated Satisfied 
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floor is selected and a list of trips is created after removing the duplicates. The passengers wait until 
the elevator arrives at their desired destination. 

• Motor: It takes a list of trips as input from the cabin (the internal button panel selection for the 
desired floor) or from the floors (outer panel) and moves the motor right to go upwards or left to 
go downwards. The motor has brakes, which are applied when the desired floor is reached. This 
component is responsible to change the ‘current floor’. The model files, detailed description and 

the step-by-step tutorial on how to execute and verify the elevator model is available at: 
https://github.com/imahmood786/CPN. 

4.3 Model composition 

All the components are composed together to form an elevator model as shown in Figure 4. 

 

Figure 4: Elevator composed model. 

4.4 Model Execution 

Figure 5 illustrates the initial state and the final state of the model execution. The tokens in the initial state 
represent passengers as a tuple: {Passenger ID, Current Floor, Desired Floor}. Note that in the final state, 
all the passengers reach their desired floor. 

 

(a) Initial state                                                            (b) Final state 

Figure 5: State of the model execution. 
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4.5  Composability Verification  

In this step, we perform the state-space analysis. After generating the state-space of the composed model, 
we visualize it in Gephi tool as shown in Figure 6(a). In the state-space, Node 1 is the initial node and Node 
223 is the goal state. The shortest path to reach the goal state is shown in red color. We develop and perform 
the query functions, shown in Figure 6(b) to prove that the goal state is reachable and ensure that all the 
passengers arrive at their desired floors. The constraint is to ensure that the door will never be opened when 

the elevator is moving. We prove that if there are tokens in ‘Entered’ place of any floor, meaning the door 
is opened, then the ‘RotatingLeft’ or ‘RotatingRight’ place is empty and vice versa. The satisfaction of 
goals and constraints assert that all the components are consistent and their behavioral composability is 
verified as per the given requirement specification. 
 

 

(a) Goal state reachability query 

 

 (b) Constraint unreachability query. 

Figure 6: State-space analysis results. 

4.6 Reusability of Model Components 

We create another scenario of the Elevator Model where two elevators are used to show the reuse of model 
components. Figure 7(a) shows the initial step of the simulation after reuse and Figure 7(b) show the final 
step. The reuse of the elevator component renders the same results, it however improves the overall 
efficiency of the system as the passengers randomly select either elevator and reach their final destination 
in lesser time. When we apply our composability verification process the goal state is reached and the safety 
property is satisfied. Thus, we can say that a verified composed model satisfies its requirement specification 
and that successful composability verification is an important characteristic of model reuse. 
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 (a) Initial step                                                          (b) Final step. 

Figure 7: Model reuse. 

4.7 State-Space Reduction Technique 

In order to deal with the scalability of the proposed approach and to deal with the state-space explosion we 
propose a state-space reduction technique. The main idea of this technique is to only consider the places in 
the composed model and ignore all the places of the underlying components, as we treat them as black 
boxes. The inputs and outputs of each component can be observed using the flow of Tokens and the data 
they carry. Therefore in the state-space graph we only keep the markings in which any token is present in 
the Main model (i.e., any of the place in the main model has at least one token) and delete all other nodes 
in the state-space graph. The resultant graph will be a reduced form of the actual graph and only considers 
those markings that reflect a compositional state-space.  

5 SUMMARY AND CONCLUSION 

In this paper, we presented composability verification and proposed the use of Colored Petri Nets for 
component-oriented model development and the verification of composed models using state-space 
analysis technique. We presented the proposed process using our case study of an elevator model as a proof 
of concept. A verified composed model ensures consistent structure and compatible behavior of the 
composites to guarantee or not the satisfaction of its objectives and required constraints provided in the 
requirement specifications. Verification helps in rectifying knowable defects in the model design of a 
complex system before it is actually implemented to serve its purpose and thus helps save a significant 
amount of time and cost while also achieving design robustness. Moreover, this process supports reusability 
as the entire process can systematically be repeated to compose existing components for different scenarios 
with varied configurations or with different requirement specifications. In the future, we intend to deploy 
the composability verification framework in different application areas, particularly in safety-critical 
systems, to evaluate its potential and use its valuable features in the verification of complex system design 

and its correctness analysis. We also aim to extend our approach for heterogeneous model composability. 
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