
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, eds.

COMPOSABILITY VERIFICATION OF COMPLEX SYSTEMS

 USING COLORED PETRI NETS

ABSTRACT

The discipline of component-based modeling and simulation offers promising gains including reductions
in development cost, time, and system complexity. This paradigm promotes the use and reuse of modular

components for adequate development of complex simulations. Achieving effective and meaningful model
reuse through the composition of components still remains a daunting challenge. “Composability”, an
integral part of this challenge, is the capability to select and assemble model components in various
combinations to satisfy specific user requirements. In this paper, we propose the use of Colored Petri Nets
for component-oriented model development, model composition, and the verification of composed models
using state-space analysis technique. We present a case study of an elevator model as a proof of concept.
Our case study explains the proposed process of developing and composing CPN-based model components
and verifying the composed model using state-space analysis.

1 INTRODUCTION

The Modeling & Simulation(M&S) community continues research on the path for novel methods that can
reduce development cost and time through managing system complexity. M&S development processes are
inherently complicated and resource-intensive. Complex models require a great deal of time and effort to

develop and evaluate. Researchers and practitioners continue exploring theoretical fundamentals, quality
design principles, and supportive methods, techniques, and tools to respond to these challenges. The
practice of model reuse for developing simulation models, supported with advances in software engineering
principles, technologies, and practices, has been successful. However, more research is needed, especially
as multifaceted systems continue to become larger and more complex. The extensive use of reusable models
offers numerous advantages, including reductions in development cost, time, and system complexity, and
allows logical partitioning of complex systems into parts. There is an increasing trend to build simulation
models by reusing and repurposing existing models in support of model composability (Balci et al. 2017;
Davis 2006; Kasputis and Ng 2000).
 Inspired by the discipline of Component-based Software Engineering, models are built using “Model
Components, commonly referred to as building blocks. A model component is an independent element
defined using a concise modeling language with a well-defined interface and encapsulated behavior. A

model component can be independently deployed subject to third-party composition with or without
modification (e.g., (Dahmann et al. 1997; Mahmood 2013)). Model components can be composed if their
interfaces match each other using formal and semi-formal modeling languages. However, it can be difficult

Imran Mahmood Hessam S. Sarjoughian
Syed Hassan Askari

Center for Research in Modeling & Simulation Arizona Center for Integrative Modeling &
School of Electrical Engineering and Computer Simulation

Science School of Computing, Information, and Decision
National University of Sciences and Technology Systems Engineering

H-12 Sector, Islamabad, Pakistan Arizona State University, Tempe, Arizona, USA

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Mahmood, Askari, and Sarjoughian

to claim models are correctly composed to fulfill desired functional requirements without verification and
validation.
 Model Composability is a crucial design characteristic and an essential means toward achieving
reusability. Yet it is a known daunting challenge in the M&S community. System theory can be used to
define discrete time conjunctive, cascade, pure feedback, and mixed to composite model types (Wymore
1993). Other well-known modeling formalisms supporting composition are Automata Theory (Alur 2015;

De Alfaro and Henzinger 2001), DEVS (Zeigler et al. 2000), and Petri nets (Petri and Wolfgang 2008). For
system-of-systems, it is necessary to support the composition of different kinds of models. Model
composition for mixed continuous and discrete models include Hybrid Automata (Henzinger 2000) and
Differential Dynamic Logic (Platzer 2008). For composing other kinds of modeling methods (e.g., Linear
Programming and Composable Cellular Automata the Knowledge Interchange Broker has been developed
(Mayer and Sarjoughian 2009; Sarjoughian 2006). The Linear Temporal Logic (LTL), Computation Tree
Logic (CTL), Metric Temporal Logic (MTL), and others may be used to define requirements. Such formally
specified system requirements can be verified for dynamical models that are developed using different
monolithic or heterogeneous modeling methods.
 Model composability from technology-oriented vantage points can be viewed from syntactic and
semantic compatibility aspects (Dahmann et al. 1997; Mahmood et al. 2012; Moradi et al. 2007; Tolk 2010;
Zhu et al. 2018). Syntax focuses on the composition of models according to their given modeling

language(s). Syntactic composability for monolithic formal modeling methods such as Petri net, unlike
semantic composability, is simple. Semantic composability aims to satisfy the expected behavior of the
whole given the expected behaviors of the parts and their relationships. A common way to satisfy behavioral
composability is to examine and show all possible states and their transitions are satisfied for a given
requirement specification. Behavioral composability among components can only be achieved if the
components are at the right states during their interaction and they possess the required behavior to make
mutual progress. It is also important to structure and behavior for model composition. Structural
composition is simpler as it is focusing on the connections in flat and hierarchical models. Behavioral
composition, in contrast, is not simple as it must account for encapsulated behaviors of individual and
composed model components.

1.1 Model components and composability

Model composability is fundamental to modeling and simulation. Compositions of models possess precise

structural and behavioral properties in order to fulfill a given requirement specification. The structural and
behavioral parts of model composability are concerned with the accuracy of transforming user requirements
into models that can be verified and validated. A description and methodology for verification, validation
and accreditation with community support provides comprehensive details and nuances for real-world use
(Gholami and Sarjoughian 2017; Pace 2004; Petty 2008; Sargent 2005; SISO 2007). Verification deals with
model correctness – it is concerned with building the model right. This aims to specify a model that is built
according to the constructs of a modeling language and requirements specifications. Verification shows a
system’s desired structure and behavior are correctly specified. Validation is concerned with building the
right model. That is, even though a model is built correctly, it may not be what is needed (the model behaves
in ways that are not asked for or expected). Correctness for verification is showing the model satisfies
certain general properties such as liveness holds true. Correctness for validation shows a collection of
specific behaviors that are observed for individual and composed components of a model.

 We previously proposed a requirement specification template to specify objectives and constraints as
requirement properties in (Mahmood et al. 2012). Thus, a requirement specification is a set of goals (or
objectives) that must be reached by the collective participation of the composed components and property
constraints that must be satisfied by the composed model throughout its execution. The goals (or objectives)
can be defined as reachable “final state(s)” of the composed components or certain desirable combined
output (emergent behavior) which individual components cannot produce. Similarly, the property
constraints are the system properties such as deadlock freedom, live-lock freedom, fairness (Mahmood et

Mahmood, Askari, and Sarjoughian

al. 2011) mutual exclusion or any other scenario specific property that must be satisfied. The proposed
requirement specification template essentially helps the modelers build behavioral specification criteria
used to evaluate the behavioral composability of the composition to ensure correct reuse of model
components in building a complex engineering design. A model checking approach is also used in the
behavioral composability verification (Mahmood et al. 2019).

1.2 Modeling and Analysis using Petri Nets

Petri nets (PN) is a prominent modeling formalism for modeling complex systems. It provides a graphical
notation and a mathematical abstraction for modeling concurrent systems and their behaviors (Petri and
Wolfgang 2008). PN graphs intuitively capture structural and behavioral abstractions of Discrete Event
Systems. PN community consolidates a variety of analysis techniques that have been developed for decades
and are used for reasoning about structural and behavioral properties of PN models. These techniques
include reachability analysis, state-space analysis, and model-checking and ease the task of model
verification (David and Alla 2010).
 Colored Petri Nets (CPN) is an extension of PN characterized by high-level tokens, i.e., places are
marked with structured tokens representing data. CPN is a graphical language for constructing models of
concurrent systems and analyzing their properties. CPN is a general-purpose discrete event language that
combines the capabilities of PN, as a foundation of the graphical notation and a programming language
(CPN ML), which is based on Standard ML functional programming language, that provides the primitives

for the definition of data types and for specifying data manipulation routines (Jensen et al. 2006; Jensen
and Kristensen 2009).
 State-space analysis is one of the prominent approaches for conducting formal verification and
analyzing the behavior of a model. The basic idea in this approach is to calculate all possible system states
and the events which cause the change of states and represent them in the form of a directed graph. When
the graph is completely constructed, different search techniques can be applied to analyze the model. A
similar approach proposes algorithms to generate a finite-vertex graph, called a reachability graph, via
manually translating DEVS model to Time Automata model k (Hwang and Zeigler 2009).
 In this paper, we propose the use of Colored Petri Nets for the component-oriented model development
using CPN Tools (CPN Tools 2017). We present the steps to (i) construct the structure and behavior of a
component using CPN formalism, (ii) specify its input/output interfaces for integration with other
components, and (iii) integrate components to form a composed model. We further discuss our

composability verification approach using state-space analysis technique. We present a case study of an
elevator model as a proof of concept. Our case study explains the process of developing and composing
CPN-based model components, and verifying the composed model using state-space analysis.
 The rest of the paper is organized as follows: Section 2 briefly defines and explains basic concepts and
formalisms used in this paper. Section 3 formulates our methods and approach for model composition and
verification. Section 4 furnishes our case study of an Elevator model to explain our approach and section 5
frames the summary and conclusion.

2 DEFINITIONS AND CONCEPTS

2.1 Colored Petri Nets

CPN allows to define token using data types and complex data manipulation each token has attached a data
value called the token color. The token colors can be investigated and modified by the occurring transitions.
“CPN Tools” is a software package CPN Tools (CPN Tools 2017) for editing, simulation, state-space

analysis, and performance analysis of CPN models. The tool acts as an integrated development environment
(IDE) for the construction of CPN models. The most important feature of CPN tool from our point of view
is the generation and analysis of state-spaces. The analysis of state-space includes various built-in state-
space querying functions and support for creating analysis report which altogether greatly contributes to

Mahmood, Askari, and Sarjoughian

the verification process. Figure 1 illustrates the CPN is formally defined by the tuple (Jensen and Kristensen
2009; Askari et al. 2019).

Figure 1: Colored petri nets tuple.

2.1.1 Hierarchical CPN

CPN model can be organized as a set of modules. Each module can be seen as black boxes which make it
possible to work at different abstraction levels, concentrating on one at a time. We consider these modules

as Model Components. They can be connected to each other with ports and sockets. A socket connects a
component at its upper or lower hierarchical level. A port is a place within the body of a component, marked
with one of the port-type tags: (i) In (ii) Out or (iii) In/Out and is bound with a socket in the upper level.
This relationship is used to define how a component should be connected with the other components.

2.2 State-Space Analysis

State-space analysis is one of the prominent approaches for conducting formal analysis and verification. In
contrast to algebraic techniques, it is relatively simpler approach for analyzing the behavior of a model. The
basic idea in this approach is to calculate all possible system states in a directed graph where vertices
represent the state of a system at a particular instance and the edges represent the transitions that cause the
change of state. When the graph is completely constructed, different search techniques can be applied to
analyze the model. In PN terms, this method is also commonly known as Reachability graph analysis. The
state-space analysis of a PN model is performed by exhaustively generating all the states, also called

markings. A marking is the number of tokens on the individual places which together represent the state of
the system. When the state-space is generated, then reasoning about the PN properties of the model is done
by examining the structure of the reachability graph. A constructed state space can help in answering a large
set of analytical questions concerning the structure and behavior of the model such as verifying deadlock
freedom, absence of live-locks; presence of liveness, the possibility of being able to reach good states, and
impossibility of reaching bad states and the guarantee of fulfilling the objectives. For details, readers are
referred to (Jensen et al. 2006).

3 COMPOSABILITY VERIFICATION PROCESS

In this section we discuss our proposed process of model components development, model composition and
the composability verification using state-space analysis technique. Our proposed verification process
consist of the following steps:

CPN = (P, T, A, Σ, V, C, G, E, I)

Where:

P is a finite set of places
T is a finite set of transitions such that: P  T = 

A ⊆ P×T ∪ T×P is a set of directed arcs.
Σ is a finite set of non-empty color sets.
V is a finite set of typed variables such that: Type [v] ∈ Σ for all variables v ∈ V

C: P→Σ is a color set function that assigns a color set to each place.
G: T → Expression is a guard function that assigns a guard to each transition t
E: A→ Expression is an arc expression function that assigns an arc expression to each arc a
I: P → Expression is an initialization function that assigns an initialization expression to each place p

Mahmood, Askari, and Sarjoughian

3.1 Requirement Specification

Figure 2 illustrates the modeler gathers the information and formulates the requirement specifications using
our proposed template:

Figure 2: Requirement specification.

3.1.1 Objectives

In modeling terms, an objective oi ∈ O is defined to represent certain “Reachable final state(s)” of the
components within a composition, an aggregated desirable output or an emergent effect produced by the
composed model which cannot be produced by individual components. In software engineering terms, an
objective represents a functional requirement of the composed system.

3.1.2 Constraints

In modeling terms, a system constraint sj ∈ S is defined as a property that must be satisfied; for instance a
desirable state which must be reached or an undesirable state which must never be reached during the
execution. System constraints can be defined in terms of general system properties such as deadlock
freedom, fairness etc. or scenario specific properties. The notions of constraints are different from the
Objectives because they are the kind of requirements that are not the ultimate goals of the system model
but are necessary conditions to achieve the desirable goals. They can be considered as non-functional
requirements from the software engineering point of view.

3.2 Development & Composition of Model Components

In this step, modelers develop individual components using CPN Tools. A CPN component includes: (i)
places defined by primitive or structured data-types called colors; (ii) tokens representing instances of
colors of different places; (iii) transitions which consist of events, actions, and time delays; (iv) arcs with

arc variables to transport tokens from one element to another; and communicating ports used to expose the
In/Out interfaces of the component. All these are packaged together to form a functional Model Component.
These components are composed of other components using communicating ports. Section 4 illustrates an
example of components of an Elevator model and their composition.

3.3 Verification of the Composed Modeling using State-Space Analysis

In the next step, the Composed CPN model is verified using state-space analysis. At first, the state-space
of the model is generated using CPN state-space calculation tool. When the state-space is successfully
generated, different query functions can be executed to explore the state-space graph for various verification
questions.
 A query function is like an algorithm that explores the state-space graph. These algorithms are based
on theoretical concepts of Petri Nets state-space analysis and are used to verify PN properties. Therefore
we translate a system property given in the requirement specification into a suitable PN property. There

have been a lot of contributions in the PN literature in specifying PN properties and methods of reasoning
of their satisfaction or violation. Figure 3 illustrates the state-space analysis of a composed CPN model
using a query function. While writing a query function (algorithm) a modeler is usually searching for one
or many suitable marking(s) in the state-space that represent the goal state of the composed model. Similarly,
a query function for a constraint maybe the absence of certain marking(s) in the entire state-space. We

RS = 〈O, S〉
where: O = {o1, o2, o3 …, on} is a set of objectives
 S = {s1, s2, s3 …, sn} is a set of constraints

Mahmood, Askari, and Sarjoughian

illustrate both cases in our case study, later in this paper. When all the goal states are verified and when all
the constraints are fulfilled, we say that the composability of the given set of components is verified at the
behavioral level.

Figure 3: State-Space analysis process.

We can also analyze the state space by means of a Computation Tree Logic. It is possible to formulate
queries about states, and the state changes (e.g., the occurrence of certain transitions). Strongly connected
components are used to make the model checking for Hierarchical Colored Petri Nets more efficient (Xia
et al. 2013).

4 CASE STUDY: COMPOSABILITY VERIFICATION OF AN ELEVATOR MODEL

In this section, we provide the details of the case study of an elevator model. We assume the elevator which
servers 6 floors. For the sake of simplicity and reduced space, we initialize each floor with 3-4 passengers
(though the actual model is capable of taking a large number of incoming passengers). The following steps
demonstrate the composability verification process of the elevator model.

4.1 Requirement Specification

We define RS = 〈O1, S1〉 where, objective O1 = {All the arrived passengers must reach their destination

floor} and Constraint S1 = {The door should never be opened when the elevator is moving}.

4.2 Model Components

The four basic components developed for the construction of an elevator model are briefly described next.

• Panel: It is the button panel that is installed on each floor outside the elevator door. When the

passengers arrive, they press the panel buttons to call the elevator at their current floor. It takes the
passenger tokens as input in their respective floors, processes them in a FIFO queue, constructs a
list of trips and passes on the passenger tokens to the output. System Property State-Space CPN
Translation Composed CPN Model Query function (Algorithm) Function Library Satisfied
Violated.

• Door: The door opens and closes on arriving at each floor and allows the passengers to enter the
cabin according to the capacity. The place ‘current floor’ represents the current floor. The place

‘Load’ represents the current load in the cabin. Only those passengers can enter which are at the
current floor. The door closes when there are no more passengers or the maximum capacity has
been reached.

• Cabin: It is the carriage for a maximum of 10 passengers. When the passengers enter the cabin,
they wait until their desired floor has arrived. When the passengers enter the cabin, their desired

System Property

State Space
CPN Translation

Composed CPN Model

Query function

(Algorithm)
Function

Library

Violated Satisfied

Mahmood, Askari, and Sarjoughian

floor is selected and a list of trips is created after removing the duplicates. The passengers wait until
the elevator arrives at their desired destination.

• Motor: It takes a list of trips as input from the cabin (the internal button panel selection for the
desired floor) or from the floors (outer panel) and moves the motor right to go upwards or left to
go downwards. The motor has brakes, which are applied when the desired floor is reached. This
component is responsible to change the ‘current floor’. The model files, detailed description and

the step-by-step tutorial on how to execute and verify the elevator model is available at:
https://github.com/imahmood786/CPN.

4.3 Model composition

All the components are composed together to form an elevator model as shown in Figure 4.

Figure 4: Elevator composed model.

4.4 Model Execution

Figure 5 illustrates the initial state and the final state of the model execution. The tokens in the initial state
represent passengers as a tuple: {Passenger ID, Current Floor, Desired Floor}. Note that in the final state,
all the passengers reach their desired floor.

(a) Initial state (b) Final state

Figure 5: State of the model execution.

Mahmood, Askari, and Sarjoughian

4.5 Composability Verification

In this step, we perform the state-space analysis. After generating the state-space of the composed model,
we visualize it in Gephi tool as shown in Figure 6(a). In the state-space, Node 1 is the initial node and Node
223 is the goal state. The shortest path to reach the goal state is shown in red color. We develop and perform
the query functions, shown in Figure 6(b) to prove that the goal state is reachable and ensure that all the
passengers arrive at their desired floors. The constraint is to ensure that the door will never be opened when

the elevator is moving. We prove that if there are tokens in ‘Entered’ place of any floor, meaning the door
is opened, then the ‘RotatingLeft’ or ‘RotatingRight’ place is empty and vice versa. The satisfaction of
goals and constraints assert that all the components are consistent and their behavioral composability is
verified as per the given requirement specification.

(a) Goal state reachability query

 (b) Constraint unreachability query.

Figure 6: State-space analysis results.

4.6 Reusability of Model Components

We create another scenario of the Elevator Model where two elevators are used to show the reuse of model
components. Figure 7(a) shows the initial step of the simulation after reuse and Figure 7(b) show the final
step. The reuse of the elevator component renders the same results, it however improves the overall
efficiency of the system as the passengers randomly select either elevator and reach their final destination
in lesser time. When we apply our composability verification process the goal state is reached and the safety
property is satisfied. Thus, we can say that a verified composed model satisfies its requirement specification
and that successful composability verification is an important characteristic of model reuse.

Mahmood, Askari, and Sarjoughian

 (a) Initial step (b) Final step.

Figure 7: Model reuse.

4.7 State-Space Reduction Technique

In order to deal with the scalability of the proposed approach and to deal with the state-space explosion we
propose a state-space reduction technique. The main idea of this technique is to only consider the places in
the composed model and ignore all the places of the underlying components, as we treat them as black
boxes. The inputs and outputs of each component can be observed using the flow of Tokens and the data
they carry. Therefore in the state-space graph we only keep the markings in which any token is present in
the Main model (i.e., any of the place in the main model has at least one token) and delete all other nodes
in the state-space graph. The resultant graph will be a reduced form of the actual graph and only considers
those markings that reflect a compositional state-space.

5 SUMMARY AND CONCLUSION

In this paper, we presented composability verification and proposed the use of Colored Petri Nets for
component-oriented model development and the verification of composed models using state-space
analysis technique. We presented the proposed process using our case study of an elevator model as a proof
of concept. A verified composed model ensures consistent structure and compatible behavior of the
composites to guarantee or not the satisfaction of its objectives and required constraints provided in the
requirement specifications. Verification helps in rectifying knowable defects in the model design of a
complex system before it is actually implemented to serve its purpose and thus helps save a significant
amount of time and cost while also achieving design robustness. Moreover, this process supports reusability
as the entire process can systematically be repeated to compose existing components for different scenarios
with varied configurations or with different requirement specifications. In the future, we intend to deploy
the composability verification framework in different application areas, particularly in safety-critical
systems, to evaluate its potential and use its valuable features in the verification of complex system design

and its correctness analysis. We also aim to extend our approach for heterogeneous model composability.

ACKNOWLEDGMENTS

Anonymous referees provided constructive reviews of an earlier version of this paper. We thank the referees
for their critiques and suggestions that helped improve the presentation of this research.

Mahmood, Askari, and Sarjoughian

REFERENCES

Alur, R. 2015. Principles of cyber-physical systems. Cambridge, MA: MIT press.

Askari, Syed H., S. A. Khan, M. Haris, and M. Shoaib. 2019. “Pattern Based Model Reuse Using Colored Petri Nets”. In
Proceedings of the 19th International Conference on Computational Science and Its Applications (ICCSA), July 1st–4th, St.

Petersburg, Russia, 32–38.

Balci, Osman, G. L. Ball, Katherine L. Morse, E. Page, Mikel D. Petty, A. Tolk, and Sandra N. Veautour. 2017. “Model Reuse,

Composition, and Adaptation”. In Research Challenges in Modeling and Simulation for Engineering Complex Systems, edited
by R. Fujimoto, C. Bock, W. Chen, E. Page, and J. Panchal. 87–115. Springer, Cham.

CPN Tools. 2017. A tool for editing, simulating, and analyzing Colored Petri nets. http://cpntools.org/, accessed 7th July.

Dahmann, J. S., R. M. Fujimoto, and R. M. Weatherly. 1997. “The department of defense high level architecture”. In Proceedings

of the 1997 Winter Simulation Conference, edited by S. Andraddttir, K. J. Healy, D. H. Withers, and B. L. Nelson, 142–149.
Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

David, R., and H. Alla. 2010. Discrete, Continuous, and Hybrid Petri Nets. Berlin: Springer-Verlag Berlin Heidelberg.

Davis, P. K. 2006. Defense Modeling, Simulation, and Analysis: Meeting the Challenge. Washington, DC: The National Academies

Press.
De Alfaro, L. and T. A. Henzinger. 2001. “Interface automata”. ACM SIGSOFT Software Engineering Notes 26 (5): 109–120.

Gholami, S. and H. S. Sarjoughian. 2017. “Modeling and verification of network-on-chip using constrained-DEVS”. In

Proceedings of the Symposium on Theory of Modeling & Simulation, April 13rd–16th, Tampa, USA, 1–12.

Henzinger, T. A. 2000. “The Theory of Hybrid Automata”. In Verification of Digital and Hybrid Systems, edited by M.K. Inan and
R. P. Kurshan. 265–292. Springer, Berlin, Heidelberg.

Hwang, M. H., and B. P. Zeigler. 2009. “Reachability Graph of Finite and Deterministic DEVS Networks”. IEEE Transactions on

Automation Science and Engineering 6(3): 468–478.

Kurt, J. and L. M. Kristensen. 2009. Coloured Petri nets: modelling and validation of concurrent systems. 1st ed. Berlin Heidelberg:
Springer-Verlag Berlin Heidelberg.

Kurt, J., S. Christensen, and L. M. Kristensen. 2006. “State Space analysis Manual”. Denmark: Aarhus.

Kasputis, S. and H. C. Ng. 2000. “Composable simulations”. In Proceedings of the 2000 Winter Simulation Conference, edited by

J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick. 1577–1584. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Mahmood, I. 2013. “A Verification Framework for Component Based Modeling and Simulation - Putting the pieces together”.

Stockholm: KTH Royal Institute of Technology.

Mahmood, I., R. Ayani , V. Vlassov, and F. Moradi. 2012. “Verifying Dynamic Semantic Composability of BOM-Based Composed
Models Using Colored Petri Nets”. In the 26th Workshop on Principles of Advanced and Distributed Simulation, July 15th –

19th, China, 250–257.

Mahmood, I., R. Ayani, V. Vlassov, and F. Moradi. 2011. “Fairness Verification of BOM-Based Composed Models Using Petri

Nets”. In Workshop on Principles of Advanced and Distributed Simulation (PADS), June14th–17th, Nice, France: IEEE. 1-8.
Mahmood, I., T. Kausar, H. S. Sarjoughian, A. W. Malik, and N. Riaz. 2019. “An Integrated Modeling, Simulation and Analysis

Framework for Engineering Complex Systems”. IEEE Access 7:67497–67514.

Mayer, G. R. , and H. S. Sarjoughian. 2009. “Composable Cellular Automata”. SAGE Transactions of The Society for Modeling

and Simulation International 85(11–12):735–749.
Medjahed, B., and A. Bouguettaya. 2005. “A Multilevel Composability Model for Semantic Web Services”. IEEE Transactions

on Knowledge and Data Engineering 17(7): 954–968.

Moradi, F., R. Ayani, S. Mokarizadeh, G. H. A. Shahmirzadi, and G. Tan. 2007. “A Rule-based Approach to Syntactic and Semantic

Composition of BOMs”. . In Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-Time
Applications (DS-RT'07), October 22nd –26th, Chania, Greece, 145–155.

Pace, D. K. 2004. “Modeling and simulation verification and validation challenges”. Johns Hopkins APL Technical Digest 25:163–

172.

Petri, C. A., and R. Wolfgang. 2008. Petri net 3:6477. Boston, MA: Scholarpedia.
Petty, M. D. 2008. “Verification and Validation”. In Principles of Modeling and Simulation: A Multidisciplinary Approach, edited

by John A., C. M. Banks and J. Sokolowski, 121–149. New Jersey: Wiley & Sons, Inc.

Platzer, A. 2008. “Differential Dynamic Logic for Hybrid Systems”. Journal of Automated Reasoning 41:143–189.

Sargent, R. G. 2005. “Verification and validation of simulation models”. In Proceedings of the 2005 Winter Simulation Conference,
edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, , 12–24. Piscataway, New Jersey: Institute of Electrical

and Electronics Engineers, Inc.

Sarjoughian, H. S. 2006. “Model Composability”. In Proceedings of the 2006 Winter Simulation Conference, edited by L. F.

Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 149–158. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers, Inc.

SISO. 2007. “IEEE Recommended Practice for Verification, Validation, and Accreditation of a Federation”. Simulation

Interoperability Standards Organization.

http://cpntools.org/

Mahmood, Askari, and Sarjoughian

Tolk, A. 2010. “Interoperability and composability”. In Modeling and Simulation Fundamentals, edited by Sokolowski J. A. and

C.M. Banks, 403–434. New Jersey: Wiley & Sons, Inc.
Wymore, A. W. 1993. Model-Based Systems Engineering. USA: CRC Press, Inc.

Xia, M., K. Lo, S. Shao, and M. Sun. 2013. “Formal Modeling and Verification for MVB”. Journal of Applied Mathematics 2013:

1–12.

Zeigler, B. P., H. Prähofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. 2nd Edition, Academic press
Zhu, Z., Y. Lei, A. Alshareef, H. S. Sarjoughian, and Y. Zhu. 2018. “Domain Specific Meta Modeling for Deep Semantic

Composability”. IEEE Access 6:18276–18289.

AUTHOR BIOGRAPHIES

IMRAN MAHMOOD is currently working as a Senior Research fellow at the University of South Florida. He has served as

research fellow at Brunel University London, and as an Assistant Professor at the Department of Computing, School of Electrical
Engineering and Computer Science, National University of Sciences and Technology, (Pakistan). Imran earned his Masters and

doctoral degrees in Computer Systems at the School of Information and Communication Technology (ICT), KTH-Royal Institute

of Technology Sweden in 2007 and 2013 respectively. He is serving as the Director of the Center for Research in Modeling and

Simulation (CRIMSON). His current research interests are in applied modeling, simulation, analysis and formal verification of
complex systems. He can be reached at imran.mahmood@seecs.edu.pk.

SYED HASSAN ASKARI is currently working as a Lecturer at the Department of Software Engineering, The University of

Lahore, (Pakistan). His current research interests are Model Composability and Colored Petri Nets. He can be reached at
saskari.msit15seecs@seecs.edu.pk.

HESSAM S. SARJOUGHIAN is an Associate Professor of Computer Science and Computer Engineering in the School of

Computing, Informatics, and Decision Systems Engineering (CIDSE) at Arizona State University (ASU), Tempe, AZ, and co-
director of the Arizona Center for Integrative Modeling & Simulation (ACIMS). He is a core faculty in the School of Complex

Adaptive Systems at Arizona State University. His research interests include model theory, poly-formalism modeling, collaborative

modeling, simulation for complexity science, and M&S frameworks/tools. He can be contacted at hessam.sarjoughian@asu.edu.

mailto:imran.mahmood@seecs.edu.pk
mailto:saskari.msit15seecs@seecs.edu.pk
mailto:hessam.sarjoughian@asu.edu

