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ABSTRACT

We consider a problem of estimating the probability that the optimal value of a stochastic linear program
exceeds a large threshold. Inspired by the classical theory of linear programming, we partition the sample
space of random components so that the optimal value can be generated without solving a linear program
for each sample. This enables us to develop an efficient importance sampling scheme for computing the
said probability when the random components are jointly normal. We prove its asymptotic efficiency under
the regime where the threshold increases. Our numerical experiments reveal that the proposed method
significantly outperforms the existing simulation techniques in the literature.

1 INTRODUCTION

Over the past few decades, the development of optimization models has greatly facilitated operational
decision making and risk management. In many related cases, we solve optimization problems designed
with prescribed components built on data obtained from various channels. However, some of the underlying
data could be highly uncertain, and the estimation of the associated components may not be accurate enough.
This is a critical issue since uncertain components often distort the optimization outcomes such as optimal
solutions and values, amplifying the uncertainty in those outcomes. To address such an uncertainty issue in
optimization, different approaches have been introduced in the literature: relevant examples include stochastic
programming (Shapiro et al. 2014), simulation optimization (Fu 2015), and robust optimization (Gabrel
et al. 2014). Nevertheless, most of those approaches focus on finding sensible decisions in stochastic
environments rather than considering the likelihood of obtaining extreme-yet-possible outcomes.

In this paper, we particularly consider a linear programming problem with random components and
develop an efficient simulation scheme for computing the probability that its optimal value exceeds a large
threshold. As we shall discuss in Section 4, one representative example of such a problem is the estimation
of network instability. In this example, the optimal value of the corresponding linear program represents a
measure of network losses, and thus, its tail probability indicates how likely extreme network losses occur.
This is applicable to, but not limited to, interbank networks (Eisenberg and Noe 2001; Glasserman and
Young 2015) and supply chain networks (Blanchet et al. 2019).

Our problem setting shares a common theme with the literature of stochastic linear programming.
Many works in this literature focus on the expectation of the optimal value rather than its distribution or
tail probability. For such expected optimal values, upper and lower bounds are derived (Madansky 1960;
Avriel and Williams 1970; Morton and Wood 1999), and correlation effects are investigated (Soyster et al.
1984). Simulation methods for the expected optimal values are also developed; see, for example, Parpas
et al. (2015) and references therein. Only a few studies work on the distribution of the optimal value by
deriving its explicit formulas; see, for example, Bereanu (1963) and Ewbank et al. (1974). However, it
is impractical to apply those formulas to the numerical calculation of the tail probabilities due to their
computational complexity in high-dimensional circumstances.
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In terms of considering the interface between simulation and optimization, our work could be compared
with the literature of simulation optimization (Fu 2015). However, our work is distinct from that literature:
simulation optimization mainly focuses on optimizing simulation outcomes, whereas in this paper, we are
interested in estimating the quantity associated with optimization outcomes. It is also worth noting that
the aforementioned uncertainty of optimization components differs from the issue of input uncertainty in
simulation optimization, which typically means the uncertainty in the input distribution (Zhou and Xie
2015; Lam 2016). This work concentrates on reducing simulation errors when the distribution of the
components is a priori known.

In the literature of rare event simulation, estimating the probability that a random quantity exceeds a large
threshold has been widely studied. Examples of the random quantity include portfolio losses (Glasserman
et al. 2000; Glasserman et al. 2002), the sum of random variables (Juneja and Shahabuddin 2002;
Asmussen and Kroese 2006; Chan and Kroese 2011), and the maximum of a random walk (Juneja et al.
2007). Nevertheless, the optimal value of optimization problems with random components has been rarely
considered as such a random quantity. To the best of our knowledge, only two papers share the same target
probability as our work: Blanchet et al. (2019) and Ahn and Kim (2018). The first paper develops two
variance reduction schemes: importance sampling and conditional Monte Carlo. However, the importance
sampling scheme is useful only when the associated linear program has a specific form, and both methods
require solving at least one linear program for each iteration, leading to much heavier computational burden
than ours. The second work converts the target event into a union of a finite number of rare events and
proposes an efficient conditional Monte Carlo method, but such a conversion is not always feasible.

The main contribution of this paper is to propose an efficient importance sampling scheme for estimating
the probability that the optimal value of a standard linear program with a random right hand side exceeds
a certain threshold. This general method can be applied to all specific situations discussed in Blanchet
et al. (2019) and Ahn and Kim (2018). We derive a large deviation result on the target probability as the
threshold increases and find the relationship between its decay rate and the bases of the linear program.
Based on this result, we prove the asymptotic efficiency of our method under the large threshold regime.
Numerical results show that our scheme is extremely fast and significantly outperforms those existing
methods, especially when the target probability is small.

Before we proceed to the next section, let us introduce the basic notation used throughout the paper.
The d-dimensional Euclidean space is denoted by Rd . For any two functions f and g, f (v) ∼ g(v) and
f (v) = o(g(v)) imply f (v)/g(v)→ 1 and f (v)/g(v)→ 0, respectively, as v→ ∞. For any two vectors
v,w ∈ Rd , v≥ w means entry-wise inequality. For any v ∈ Rd and a set A⊂ Rd , 1A(v) yields 1 if v ∈ A
and 0 otherwise. We denote by 0 and 1 the vectors of zeros and ones, respectively, in a suitable dimension.
The matrix I represents the identity matrix in a suitable dimension.

The rest of the paper is organized as follows. In Section 2, we formalize the main problem of this paper
and introduce the classical theory of linear programming from which we decompose the target probability.
Section 3 describes our importance sampling scheme based on the probability decomposition, discusses the
optimal allocation of the number of simulation trials, and shows the asymptotic efficiency of our scheme.
In Section 4, we conduct numerical experiments to demonstrate the effectiveness of the proposed method.
The proofs of our theoretical results can be found in the appendix.

2 PROBLEM FORMULATION

2.1 The Main Problem

We consider the following linear program (LP) in standard form:

min
x∈Rn

c>x

s.t. Ax = b, x≥ 0,
(1)
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where an m×n matrix A and a vector c ∈Rn are deterministic and known, b ∈Rm is a random vector, and
m ≤ n. We assume that the matrix A has full row rank, and b follows a multivariate normal distribution
with mean vector µµµ and covariance matrix ΣΣΣ which is positive definite. Note that every linear program can
be converted into the standard form (Bertsimas and Tsitsiklis 1997). We are interested in the estimation
of the probability p(v) that the optimal value of (1) exceeds a large threshold v > 0, i.e.,

p(v) = P(c>x(b)≥ v),

where x(b) is the optimal solution to the problem (1). We further assume that at least one component in c
is positive; otherwise, we have p(v) = 0. Also, the probability that the problem (1) is infeasible is assumed
to be negligible so that p(v) approaches 0 as v increases. Although the probability of infeasibility could be
large in some cases, this paper concerns more interesting cases where it is significantly dominated by the
probability of feasibility even when v is sufficiently large, motivated by practical applications (Ahn and
Kim 2018; Blanchet et al. 2019).

The estimation of p(v) requires numerical integral procedures over a high-dimensional region with
a large number of grid points (Ewbank et al. 1974), which are very challenging to conduct in practice.
Alternatively, one might use the naive Monte Carlo method in which for each sample of b, we solve (1)
to obtain the optimal value and check if the optimal value is greater than v. However, two major issues
arise when using the naive Monte Carlo method in our problem. Firstly, large computational costs are
inevitable due to the fact that a linear program needs to be solved each time a sample of b is generated.
Solving a linear program often results in significant computational burden unless the problem size is very
limited. Secondly, inefficiency and low accuracy are aggravated as the threshold v increases. Since the
optimal value rarely exceeds large v, a huge number of simulation trials are required to estimate p(v), and
the standard deviation of the naive Monte Carlo estimator is often much greater than the estimate, which is
common in rare event simulations; see, e.g., Rubino and Tuffin (2009) for a good review. In this paper, we
propose a new Monte Carlo scheme for p(v) that addresses both of the issues raised above, demonstrating
its asymptotic efficiency and effectiveness via theoretical and numerical results, respectively.
Remark 1 Although our distributional assumption on b is seemingly restrictive, as pointed out by Buck-
lew (2004), the normality assumption has been commonly used in the literature of stochastic simulation
due to its practical applicability. Furthermore, our method is applicable to the cases where b has a nor-
mal mean–variance mixture distribution by conditioning on a mixing variable. Note that a wide family of
generalized hyperbolic distributions including multivariate t, variance-gamma, and normal inverse Gaussian
distributions belongs to the class of normal mean–variance mixtures (McNeil et al. 2015).

2.2 Theoretical Motivation from the Classical Linear Programming Theory

Given a linear program in standard form (1), let B be a subset of {1, . . . ,n} with m elements, and denote
by AB and cB the matrix made of m columns of A indexed by B and the vector composed of {ci}i∈B,
respectively. We call B a basis of (1) if A−1

B exists. We say that a basis B is optimal if A−1
B b≥ 0 (primal

feasibility) and c> ≥ c>B A−1
B A (dual feasibility). Note that the dual feasibility of a basis is independent of

b. If such an optimal basis B is found, the optimal solution x(b) exists and is written in closed form as

xB(b) = A−1
B b, xBc(b) = 0, (2)

where xB(b) and xBc(b) are the vectors obtained by restricting the entries of x(b) to the index sets B and
Bc = {1, · · · ,n}\B, respectively. See Bertsimas and Tsitsiklis (1997) for more details. For each basis B,
we define its critical region by {b ∈ Rm : A−1

B b ≥ 0}. Then, according to Gal and Nedoma (1972) and
Chapter 15.2 of Prékopa (1995), there exists a finite collection B of dual feasible bases such that the space
of feasible b is partitioned by the corresponding critical regions. This implies that if b follows a continuous
distribution, we have the following decomposition of p(v) based on (2):

p(v) = ∑
B∈B

pB(v), (3)
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Algorithm 1 Finding Partitioning Bases

1: Set B = /0 and let Q be a queue consisting of an initial dual feasible basis B0.
2: while |Q|> 0 do
3: Pop out the first basis B in Q and set B = B∪{B}, A = A−1

B A, and c> = c>− c>B A.
4: for l = 1, · · · ,m do
5: Set u = Al

, the l-th row of A.
6: if ui < 0 for some i ∈ {1, · · · ,n} then
7: Set B = B, j = argmini:ui<0

ci
|ui| , and B(l) = j.

8: if B 6∈B∪Q then
9: Place B at the end of the queue Q.

10: end if
11: end if
12: end for
13: end while
14: return B.

where pB(v) = P(c>B A−1
B b≥ v,A−1

B b≥ 0). An important observation from (3) is that p(v) can be estimated
without solving LPs for each realization of b, which motivates us to focus on variance reduction in estimating
pB(v) for each basis B ∈B in the next section. We shall also consider an optimal allocation of the total
number of simulation trials to the bases so that the overall estimation error could be further reduced.
Remark 2 Gal and Nedoma (1972) show that starting from one dual feasible basis B0, by a dual simplex
pivot, one can get another dual feasible basis B1 of which corresponding critical region is disjoint from that
of B0. By repeating this procedure, we can obtain all bases that form the collection B. The initial dual
feasible basis B0 could be identified by a standard technique; see Chapter 4 of Luenberger and Ye (2016).
The complete procedure is given in Algorithm 1. In the worst case, the running time of Algorithm 1 could
grow exponentially in m or n; see Section 5.2 of Luenberger and Ye (2016). However, since B is independent
of the threshold v, once it is identified via Algorithm 1, we can flexibly use the collection for estimating p(v)
for different v. In Section 4, we numerically observe that the computational cost of Algorithm 1 is negligible
when m = 10 and n = 20. Note that it is beyond the scope of this paper to develop an efficient scheme of
finding dual feasible bases that significantly affect the probability for large-scale linear programs.

3 EFFICIENT IMPORTANCE SAMPLING

In this section, we first develop an effective and tractable importance sampling (IS) method for the estimation
of pB(v) that minimizes the asymptotic second moment of the estimator under the regime where v goes to
infinity. We then show that our proposed estimator Z∗(v) for p(v) is logarithmically efficient, i.e.,

liminf
v→∞

logVar(Z∗(v))
log p(v)2 ≥ 1;

see Asmussen and Glynn (2007) for more details on the efficiency notions. The logarithmic efficiency
implies that the decay rate of the estimate with respect to v corresponds to that of the standard deviation of
the estimator. This allows us to expect significant variance reduction in estimating p(v) via the proposed
method compared to the Monte Carlo method when v is large enough.

Before we describe our IS scheme, we present two large deviations results on the probabilities pB(v)
and p(v), respectively. To facilitate later discussions, we let Θv

B = {z ∈ Rm|c>B A−1
B z ≥ v,A−1

B z ≥ 0} so
that pB(v) = P(b ∈ Θv

B). One can easily see that pB(v) = 0 if and only if Θ1
B = /0. We also define

Q(u) = u>ΣΣΣ
−1u/2 for u ∈ Rm and denote by qB the optimal value of the following quadratic program

min
z∈Θ1

B

Q(z), (4)



Ahn and Zheng

where by convention we set qB = ∞ if Θ1
B = /0.

Theorem 1 For each B ∈B, limv→∞ v−2 log pB(v) =−qB, if Θ1
B 6= /0.

One implication from Theorem 1 is that for any two bases B1,B2 ∈ B satisfying qB1 > qB2 and
Θ1

B1
,Θ1

B2
6= /0, the ratio of pB1(v) to pB2(v) can be approximated as pB1(v)/pB2(v)≈ exp(−v2(qB1−qB2)),

which exponentially decays to 0 as v→ ∞, meaning that pB1(v) is significantly smaller than pB2(v) for
large v. Therefore, when v is large, our target probability p(v) is highly dominated by the probabilities
pB(v) associated with minimal qB, which is formalized in the next theorem.
Theorem 2 limv→∞ v−2 log p(v) =−minB∈B qB.

3.1 Efficient IS for Estimating pB(v)

In this subsection, as alluded to earlier, we devise an efficient simulation scheme for estimating pB(v) for
fixed B ∈B. We basically consider changing the mean µµµ in order to generate more samples in Θv

B, which
is referred to as mean shifting; see, for example, Asmussen and Glynn (2007) for more discussions on this
scheme. Under the mean shifting from µµµ to a new point µ̃µµ , the unbiased IS estimator ZB(µ̃µµ,v) for pB(v)
can be written as

ZB(µ̃µµ,v) = exp
(
−Q(Z−µµµ)+Q(Z− µ̃µµ)

)
·1Θv

B
(Z), (5)

where Z is a normal random vector with mean µ̃µµ and covariance matrix ΣΣΣ.
Using the Laplace principle in large deviations theory, one can observe that the second moment of the

IS estimator (5), denoted by M2(µ̃µµ,v), has the following asymptotic relationship:

logM2(µ̃µµ,v)−κ = log
∫

Θv
B

exp(−2Q(z−µµµ)+Q(z− µ̃µµ))dz∼max
z∈Θv

B

{
−2Q(z−µµµ)+Q(z− µ̃µµ)

}
,

for some constant κ . Following a standard approach (e.g., Glasserman et al. (2000)), we find the optimal
mean shift that asymptotically minimizes the second moment of (5), i.e., we solve

min
µ̃µµ∈Rm

max
z∈Θv

B

{
−2Q(z−µµµ)+Q(z− µ̃µµ)

}
. (6)

From the minimax theorem (e.g., Du and Pardalos (1995)), for any T sufficiently large, we have

min
µ̃µµ∈ΩT

max
z∈Θv

B∩ΩT

{
−2Q(z−µµµ)+Q(z− µ̃µµ)

}
= max

z∈Θv
B∩ΩT

min
µ̃µµ∈ΩT

{
−2Q(z−µµµ)+Q(z− µ̃µµ)

}
, (7)

where ΩT = [−T,T ]m. The inner minimization in the right hand side of (7) is achieved at µ̃µµ = z. Thus,
by letting T → ∞, one can easily see that solving (6) is equivalent to solving

q∗B(v) = min
z∈Θv

B

Q(z−µµµ), (8)

and we denote its optimal solution by µµµ∗B to which we shift the mean. We write Z∗B(v) = ZB(µµµ
∗
B,v) for

ease of exposition. The asymptotically optimal mean shifting can be interpreted as changing the mean to
the point with the greatest density in Θv

B so that the event Θv
B could occur more frequently under the new

distribution. Note that since µµµ /∈Θv
B for large v, it is likely that the point µµµ∗B is at the boundary of Θv

B.
Theorem 3 For each B ∈B, limv→∞ v−2 logM2(µµµ

∗
B,v) =−2qB if Θ1

B 6= /0.
The above theorem provides a large deviations result on the second moment M2(µµµ

∗
B,v) of the IS

estimator under the asymptotically optimal mean shifting. According to this result, we observe that the
decay rate of the second moment M2(µµµ

∗
B,v) is twice as large as that of the probability p(v). This implies

that the second moment decays at the maximum achievable rate, which is straightforward from Jensen’s
inequality. In other words, Z∗B(v) is a logarithmically efficient estimator for pB(v).
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3.2 The Aggregate IS Estimator

In this subsection, we first discuss the problem of optimally allocating the total number of simulation trials,
denoted by N, to the bases in B so that for each B ∈B, pB(v) can be estimated using NB simulation trials
allocated to B. We then provide a logarithmically efficient estimator for our target probability p(v) based on
the optimal allocation of the number of simulation trials and the results in Section 3.1. Given any unbiased
estimator ZB(v) for pB(v), we can construct the estimator Z(v) for p(v) as Z(v) = ∑B∈B N−1

B ∑
NB
i=1 ZB,i(v),

where {ZB,i(v)}i=1,··· ,NB are i.i.d. realizations of ZB(v) for each B ∈B. This estimator is unbiased if NB ≥ 1
for all B∈B, and its variance is given by Var(Z(v)) =∑B∈B N−1

B Var(ZB(v)). Then, using N =∑B∈B NB and
the Cauchy-Schwarz inequality, we observe that the following allocation of the total number of simulation
trials minimizes Var(Z(v)):

NB = N ·
√

Var(ZB(v))

∑B∈B
√

Var(ZB(v))
. (9)

Note that we ignore minor technicalities associated with NB not being a positive integer.
We finally define our aggregate IS estimator Z∗(v) as follows:

Z∗(v) = ∑
B∈B

1
N∗B

N∗B

∑
i=1

Z∗B,i(v), (10)

where N∗B is the number of simulation trials (9) for B ∈B calculated by using the estimator Z∗B(v). Our
estimator thus reduces estimation error in two ways: importance sampling for pB(v) and the optimal
allocation of the number of simulation trials. The asymptotic efficiency of the estimator is demonstrated
in the following theorem.
Theorem 4 The aggregate IS estimator Z∗(v) is logarithmically efficient.

In practice, it is challenging to compute N∗B since {Var(Z∗B(v))}B∈B are unknown. Alternatively, as
mentioned in Chapter V.7 of Asmussen and Glynn (2007), one may adaptively allocate samples based on
the sample variance updated at each step or estimate them in advance using a pilot run. However, both
of them require additional computational costs. To avoid such an issue, in this paper, we propose to use
the approximation Var(Z∗B(v))≈ exp(−2q∗B(v)), which results from Theorems 1 and 3 and Lemma 1 in the
appendix. This approximation leads to the the number of simulation trials N∗B proportional to N exp(−q∗B(v))
by (9). Algorithm 2 describes our proposed method given the collection B identified by Algorithm 1.

In Figure 1, we numerically observe that the said approximation works well for the example in Section 4.
For v = 1,2,3, we compute q∗B(v) and use 105 simulation trials to estimate Var(Z∗B(v)) for each B ∈B.
The blue dots represent the points (2q∗B(v),− logVar(Z∗B(v))) for different B, while the red line is the
identity line. In all cases we consider, the blue dots are mostly parallel to the red line, meaning that
− logVar(Z∗B(v))≈ 2q∗B(v)+β (v), where for fixed v, β (v) is a constant independent of B. However, such
a constant does not affect the optimal allocation since it cancels out in the ratio (9).

4 NUMERICAL EXPERIMENTS

Linear programming models have been widely used to describe networked systems that address the
distribution of resources, e.g., electricity and water, and the spread of negative impacts, e.g., economic
shocks and epidemics. In this section, we particularly consider the following linear program that has been
applied to equilibrium modeling in various networks:

min
x∈Rm

1>x

s.t. (I−ΠΠΠ)>x≥ ηηη , x≥ 0,
(11)

where ηηη = (η1, . . . ,ηm)
> represents a vector composed of excess resources (or impacts) generated at each

node, ΠΠΠ is an m×m matrix consisting of {πi j}i, j=1,...,m, and πi j represents the proportion of excess resources
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Figure 1: The quality of the approximation Var(Z∗B(v))≈ exp(−2q∗B(v)).

at node i transferred to node j. An important underlying assumption of the above model is that the resources
are distributed according to the pro rata allocation rule. The associated applications include risk allocation
in financial networks (Eisenberg and Noe 2001; Glasserman and Young 2015) and commodity allocation
in distribution networks (Blanchet et al. 2019). In the former, the goal is to minimize the total shortfall in
interbank payments, whereas the latter aims to minimize the total excess demand in the network.

The linear program formulation (11) can be rewritten in standard form by introducing a redundant vector
y, and we denote its optimal value by h(ηηη), i.e., h(ηηη) = min{1>x | (I−ΠΠΠ)>x−y = ηηη , x,y≥ 0}. Assuming
that ηηη follows a multivariate normal distribution with mean vector µµµ = (µ1, . . . ,µn)

> and covariance matrix
ΣΣΣ = (σi j), we are concerned with the estimation of the probability that h(ηηη) exceeds a certain threshold v,
i.e., P(h(ηηη)≥ v). This probability can be interpreted as systemic risk in the case of financial networks and
a failure probability in the case of distribution networks. Recent papers including Ahn and Kim (2018)
and Blanchet et al. (2019) also address this issue. In particular, assuming that the random vector has a
multivariate elliptical distribution, Ahn and Kim (2018) propose a conditional Monte Carlo (CMC) method
by geometrically interpreting the target event {h(ηηη)≥ v} as a union of half-spaces identified by the extreme
points of the feasible set. Blanchet et al. (2019) provide importance sampling and conditional Monte Carlo
schemes under the assumption that the random vector is jointly normal. The former shows the asymptotic
efficiency of their method under a regime in which the size of the random vector diminishes to zero,
whereas the latter considers a regime where its mean vector decreases to negative infinity. Although those
asymptotic regimes are different from ours, the three regimes share the same spirit in that all of them make
the target event rarer.

Table 1 compares our proposed method with five different schemes including the naive Monte Carlo,
the aggregate IS with the uniform allocation of the number of simulation trials, and those developed in Ahn

Algorithm 2 Aggregate Importance Sampling

1: for B ∈B do
2: Compute µµµ∗B and q∗B(v) by solving (8).
3: end for
4: for B ∈B do
5: Set N∗B = N exp(−q∗B(v)) · (∑B∈B exp(−q∗B(v)))

−1.
6: for i = 1, . . . ,N∗B do
7: Sample Z = z from the multivariate normal distribution with mean µµµ∗B and covariance matrix ΣΣΣ.
8: Set Z∗B,i(v) = exp(−Q(z−µµµ)+Q(z−µµµ∗B)) ·1Θv

B
(z).

9: end for
10: end for
11: Compute Z∗(v) by (10).
12: return Z∗(v).
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Table 1: Estimates of the probability P(h(ηηη)≥ v) with v = 1,2,3 based on six different simulation methods.

v Method Estimate Standard Error Time (sec) VR ER

1

Naive Monte Carlo 1.91×10−3 1.38×10−4 516 - -
Aggregate IS 2.10×10−3 1.39×10−5 0.7 99 73,804

Aggregate IS (unif. alloc.) 2.09×10−3 1.64×10−4 0.8 0.7 449
CMC (Ahn and Kim 2018) 2.06×10−3 3.34×10−5 4.8 17 1,856
IS (Blanchet et al. 2019) 2.10×10−3 1.54×10−5 527 81 79

CMC (Blanchet et al. 2019) 2.13×10−3 3.39×10−5 2,291 17 3.7

2

Naive Monte Carlo 5.40×10−4 7.35×10−5 520 - -
Aggregate IS 4.81×10−4 3.49×10−6 0.8 444 302,919

Aggregate IS (unif. alloc.) 4.88×10−4 4.58×10−5 0.8 2.6 1,778
CMC (Ahn and Kim 2018) 4.78×10−4 1.12×10−5 4.7 43 4,686
IS (Blanchet et al. 2019) 4.80×10−4 7.85×10−6 527 88 86

CMC (Blanchet et al. 2019) 4.97×10−4 1.18×10−5 2,132 39 10

3

Naive Monte Carlo 1.30×10−4 3.61×10−5 506 - -
Aggregate IS 1.17×10−4 9.48×10−7 0.7 1,447 1,037,690

Aggregate IS (unif. alloc.) 1.03×10−4 1.08×10−5 0.7 11 7,932
CMC (Ahn and Kim 2018) 1.11×10−4 3.69×10−6 4.7 95 10,347
IS (Blanchet et al. 2019) 1.16×10−4 3.91×10−6 523 85 82

CMC (Blanchet et al. 2019) 1.21×10−4 4.02×10−6 1,990 80 20

and Kim (2018) and Blanchet et al. (2019). For each algorithm, we use 105 simulation trials to compute
P(h(ηηη)≥ v) for different values of v. We set m = 10 and ΠΠΠ = 0.1(em,e1, · · · ,em−1)+0.9(J− I)/(m−1),
where ei is the i-th column of I, and J is the m×m matrix of ones. We also assume that η1, . . . ,ηm
are independent, and for each i, ηi has mean µi = −i and variance σii = (i/3)2. Using Algorithm 1, we
identify 1,023 dual feasible bases in 0.3 seconds. The extreme points required to implement the CMC
method of Ahn and Kim (2018) can simply be obtained from those dual feasible bases. Note that these
computation times are found to be negligible and thus are not included in the results in Table 1. For each
result, we use two efficiency measures: variance ratio (VR) and efficiency ratio (ER). VR is the ratio of the
variance of the naive Monte Carlo estimator to that of the new estimator, which captures the effect of the
new estimator on variance reduction. ER is obtained by multiplying VR by the ratio of the running time
of the naive Monte Carlo scheme to that of the new scheme, which describes the practical effectiveness of
the new scheme compared to the naive Monte Carlo method.

According to the VR and ER estimates in the table, we observe that our proposed method thoroughly
dominates the other methods in all instances, and its performance improves as v increases, i.e., the target
event becomes rarer. To be more specific, the aggregate IS provides significant variance reduction compared
to the other methods. This might result from the asymptotically optimal mean shifting that minimizes the
approximate second moment of the estimator, which the schemes of Ahn and Kim (2018) and Blanchet et al.
(2019) do not consider. Also, by comparing the aggregate IS schemes with optimal allocation and uniform
allocation, we find that the optimal allocation greatly contributes to variance reduction. Furthermore, the
proposed method substantially reduces computational costs. Recall that our algorithm does not require
solving LPs and its computational time is not affected by the number of dual feasible bases. Although the
method of Ahn and Kim (2018) can also be implemented without solving LPs, it is slightly slower than
ours because its computational time depends on the number of extreme points as well as the number of
simulation trials. In the naive Monte Carlo and the schemes of Blanchet et al. (2019), at least one linear
program needs to be solved for each iteration, which results in a huge computational burden.
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5 CONCLUDING REMARKS

We found this article not without any limitations. We hence provide two other interesting topics that could
be investigated for further research. Firstly, it would be challenging but practically important to devise
an efficient simulation method for more complicated cases where the matrix A is stochastic. Our current
work does not cover such cases, but may help initiate the related discussion. Secondly, the distributional
assumption could be relaxed. In addition to applying the current approach to normal mean–variance mixtures
(Remark 1), one might consider an extension to the case where the distribution of the random components
is not a priori known and thus could be misspecified. Despite those limitations, we hope that this work
sheds new light on the combination of rare–event simulation and optimization theory.
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A PROOFS OF THEORETICAL RESULTS

Proof of Theorem 1. Let z∗ denote the optimal solution of (4). We note that the Karush–Kuhn–Tucker
conditions for (4) can be written as follows:

z∗ = ΣΣΣA−>B (λλλ + γcB), (λλλ + γcB)
>A−1

B z∗ = γ, (12)

for some λλλ ≥ 0 and γ ≥ 0 in Rm and R, respectively. Let smax denote the largest eigenvalue of ΣΣΣ. Then, for
any z ∈Θ1

B, we have

Q(z)−Q(z∗) = Q(z− z∗)+λλλ
>A−1

B z+ γ(c>B A−1
B z−1)≥ Q(z− z∗)≥ ||z− z∗||2

2smax
, (13)

where the equality is from (12), the first inequality holds since z ∈ Θ1
B, λλλ ≥ 0, and γ ≥ 0, and the second

inequality results from the Courant–Fischer theorem; see, e.g., Theorem 4.2.6 of Horn and Johnson (2013).
Fix B ∈B, by a change of variable, pB(v) can be recast in the following integral form:

pB(v) =
vm exp(−v2qB)√
(2π)m|det(ΣΣΣ)|

∫
Θ1

B

exp
(
−v2 (Q(z−µµµ/v)−qB)

)
dz. (14)

Since qB = Q(z∗), by (13), the exponent in (14) can be rewritten as

−v2 (Q(z−µµµ/v)−qB) =−v2(Q(z− z∗)+λλλ
>A−1

B z+ γ(c>B A−1
B z−1)

)
−Q(µµµ)+ vz>ΣΣΣ

−1
µµµ (15)

≤−v2||z− z∗||2/(2smax)+ vz>ΣΣΣ
−1

µµµ. (16)

Using (16) and changing the integral region to Rm, we have pB(v) ≤ exp(−v2qB + o(v2)), and hence,
limsupv→∞ v−2 log pB(v)≤−qB.

We next claim that liminfv→∞ v−2 log pB(v)≥−qB. By letting y = A−1
B z and y∗ = A−1

B z∗, we obtain

pB(v) = κ̃vm exp(−v2qB)
∫

Θ̃1
B

exp
(
−v2

(
Q(AB(y−y∗))+λλλ

>y+ γ(c>B y−1)
)
+ vµµµ

>
ΣΣΣ
−1ABy

)
dy,

where κ̃ = |det(AB)|exp(−Q(µµµ))(2π)−m/2|det(ΣΣΣ)|−1/2 is a constant, and Θ̃1
B = {y ∈ Rm|c>B y≥ 1,y≥ 0}.

Let I = {i ∈ B | ci > 0}, J = {i ∈ B | ci < 0}, and K = {i ∈ B | ci = 0}. Note that I 6= /0 since Θ1
B 6= /0. Define

δ = (∑i∈I ci)/(2∑ j∈J |c j|+ ε) for some constant ε > 0. Then, we have{
y ∈ Rm

∣∣∣yi− y∗i ≥ v−1/2,δv−1/2 ≤ y j− y∗j ≤ 2δv−1/2 for all i ∈ I∪K, j ∈ J
}
⊂ Θ̃

1
B, (17)
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where yi is the i-th component of a vector y. By Theorem 4.2.6 of Horn and Johnson (2013), we have
2Q(AB(y− y∗)) ≤ αmax||y− y∗||2, where αmax > 0 is the largest eigenvalue of A>B ΣΣΣ

−1AB. Note that the
existence and positiveness of αmax are guaranteed since A>B ΣΣΣ

−1AB is positive definite. Define the following
probability density functions

fi(y) =
exp(−v2αmax(y− y∗i )

2/2)I{y≥ y∗i + v−1/2}∫
∞

y∗i +v−1/2 exp(−v2αmax(y− y∗i )2/2)dy
for i ∈ I∪K, and

f j(y) =
exp(−v2αmax(y− y∗j)

2/2)I{y∗j +δv−1/2 ≤ y≤ y∗j +2δv−1/2}∫ y∗j+2δv−1/2

y∗j+δv−1/2 exp(−v2αmax(y− y∗j)2/2)dy
for all j ∈ J.

By (17) and Jensen’s inequality, for large v, we thus obtain the following asymptotic relationship:

κ̃
−1v−m exp(v2qB)pB(v)≥ ∏

i∈I∪K

∫
∞

y∗i +v−1/2
e−v2αmax(yi−y∗i )

2/2dyi · ∏
j∈J

∫ y∗j+2δv−1/2

y∗j+δv−1/2
e−v2αmax(y j−y∗j)

2/2dy j

· eγv2

∏
i∈B

∫
∞

−∞

e−v2(λiyi+γciyi)+vuiyi fi(yi)dyi

≥
(

2π

v2αmax

)m/2

Φ(
√

vαmax)
|I∪K| (

Φ(δ
√

vαmax)−Φ(2δ
√

vαmax)
)|J|

· exp
(
−v2

(
λλλ
>y+ γ(c>B y−1)

)
+ vu>y

)
∼

exp
(
−v2

(
λλλ
>y+ γ(c>B y−1)

)
− v
(
αmax(δ

2|J|+ |I∪K|)/2−u>y
))

δ |J|v3m/2αm
max

, (18)

where u> = µµµ>ΣΣΣ
−1AB, yi =

∫
y fi(y)dy for each i ∈ B, Φ(·) is the tail distribution of the standard normal

distribution, and (18) follows from the so-called Mills ratio (Feller 1968, Chapter 7): Φ(t)∼ (t
√

2π)−1e−t2/2

as t→ ∞. Using yi− y∗i =
∫
(y− y∗i ) fi(y)dy for i ∈ B, the Mills ratio also implies that

yi− y∗i =
exp(−vαmax/2)

Φ(
√

vαmax)
√

2πv2αmax
∼ v−1/2 for i ∈ I∪K, and

y j− y∗j =
exp(−δ 2vαmax/2)− exp(−2δ 2vαmax)(

Φ(δ
√

vαmax)−Φ(2δ
√

vαmax)
)√

2πv2αmax
∼ δv−1/2 for j ∈ J.

(19)

From (12), we know (λλλ + γcB)
>y∗ = γ , and hence, according to (19), the logarithm of (18) is equal to

−v2(λλλ + γcB)
>(y−y∗)− v

(
αmax(δ

2|J|+ |I∪K|)
2

−u>y
)
+ log(δ |J|v3m/2

α
m
max) = o(v2).

This completes the proof.

Proof of Theorem 2. By Theorem 1, for each B ∈B, pB(v) = exp(−qBv2 +o(v2)) as v→ ∞ if Θ1
B 6= /0.

Let B∗ = argminB∈B qB and q∗ = minB∈B qB. Then, q∗ = qB for all B ∈B∗, and we observe that as v→ ∞,

p(v) = ∑
B∈B∗

exp(−q∗v2 +o(v2))+ ∑
B/∈B∗,Θ1

B 6= /0

exp(−qBv2 +o(v2))

≤ |B∗|exp(−q∗v2 +o(v2))+ ∑
B/∈B∗,Θ1

B 6= /0

exp(−qBv2 +o(v2))∼ |B∗|exp(−q∗v2),

where |B∗| denotes the number of bases in B∗. Hence, limsupv→∞ v−2 log p(v)≤−q∗ since f (v)∼ g(v) and
g(v)→ 0 implies log f (v)∼ logg(v). Also, we have p(v)≥ pB(v)= exp(−q∗v2+o(v2)) for any B∈B∗.
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Lemma 1 Let z∗ denote the optimal solution of (4). If z∗v = argminz∈Θ1
B

Q(z− µµµ/v) for all v > 0, then
z∗v → z∗ as v→ ∞.

Proof. Consider the difference function D(z) = Q(z− µµµ/v)−Q(z). Then, by the Cauchy-Schwarz in-
equality, |D(z)−D(z′)|= v−1|(z−z′)>ΣΣΣ

−1
µµµ| ≤ v−1||ΣΣΣ−1

µµµ|| · ||z−z′||, for any z,z′ ∈Θ1
B. Combining with

(13), according to Proposition 4.32 of Bonnans and Shapiro (2000), ||z∗v− z∗|| ≤ 2v−1smax||ΣΣΣ−1
µµµ||.

Proof of Theorem 3. Fix B ∈ B such that Θ1
B is nonempty. We note that M2(µµµ

∗
B,v) ≥ pB(v)2 implies

liminfv→∞ v−2 logM2(µµµ
∗
B,v)≥−2qB. Thus, it is enough to show that limsupv→∞ v−2 logM2(µµµ

∗
B,v)≤−2qB.

Recall Lemma 1 and observe that µµµ∗B = vz∗v . By a change of variable, M2(µµµ
∗
B,v) can be recast as

M2(µµµ
∗
B,v) =

vm√
(2π)m|det(ΣΣΣ)|

∫
Θ1

B

exp
(
−2v2Q(z−µµµ/v)+ v2Q(z− z∗v)

)
dz. (20)

Using (15) and (13), the exponent of the integrand in (20) has an upper bound:

−2v2Q(z−µµµ/v)+ v2Q(z− z∗v)

=−v2
(

2qB +2Q(z− z∗)+2λλλ
>A−1

B z+2γ(c−1
B A−1

B z−1)+2Q(µµµ/v)−2z>ΣΣΣ
−1

µµµ/v−Q(z− z∗v)
)

≤−v2(2qB +2Q(z− z∗)−Q(z− z∗v))+2vµµµ
>

ΣΣΣ
−1z

≤−v2(3qB−Q(z∗v)+ ||z− z∗||2/(2smax))+ v(2µµµ
>

ΣΣΣ
−1z+ z>ΣΣΣ

−1sv),

where sv = v(z∗− z∗v) is a bounded vector since ||z∗v− z∗|| ≤ 2v−1smax||ΣΣΣ−1
µµµ|| from the proof of Lemma 1.

Therefore, by relaxing the integral region and noticing Q(z∗v)→ qB as v→ ∞ by Lemma 1, we have

M2(µµµ
∗
B,v)≤

vme−v2(3qB−Q(z∗v))√
(2π)m|det(ΣΣΣ)|

∫
e−v2||z−z∗||2/(2smax)+v(2µµµ>ΣΣΣ

−1z+z>ΣΣΣ
−1sv)dz = exp(−2v2qB +o(v2)).

This leads to limsupv→∞ v−2 logM2(µµµ
∗
B,v)≤−2qB. The proof thus completes.

Proof of Theorem 4. From (9), we observe the following relationship for Var(Z∗(v))1/2:

Var(Z∗(v))1/2 = N−1/2
∑

B∈B
Var(Z∗B(v))

1/2 ≤ ∑
B∈B∗

M2(µµµ
∗
B,v)

1/2 + ∑
B/∈B∗,Θ1

B 6= /0

M2(µµµ
∗
B,v)

1/2.

By Theorem 3, M2(µµµ
∗
B,v)

1/2 = exp(−qBv2 + o(v2)) if Θ1
B 6= /0. Then, the result follows using the same

approach in the proof of Theorem 2.
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