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ABSTRACT

We build a data-driven methodology for the performance reliability and the improvement of sensor algorithms
for automated driving perception tasks. The methodology takes as input three elements: I) one or various
algorithms for object detection when the input is an image; II) a dataset of camera images that represents
a sample from an environment, and III) a simple policy that serves as a proxy for a task such as driving
assistance. We develop a statistical estimator, which combines I)-III) and a data augmentation technique,
in order to rank the reliability of perception algorithms. Reliability is measured as the chance of collision
given the speed of the ego vehicle and the distance to the closest object in range. We are able to compare
algorithms in the (speed vs distance-to-closest-object) space using p-values and use this information to
suggest improved-safety algorithms.

1 INTRODUCTION

The goal of this paper is to propose and investigate a comprehensive methodology for the performance
reliability and the improvement of sensor algorithms for automated driving perception tasks.

Our goal is motivated by the need for having a scalable and fully data-driven method to ensure that
self-driving vehicles can be safely deployed in public roads and highways. A self-driving system acting on
erroneous or incomplete data is prone to making decisions that can lead to hazardous or catastrophic situations,
jeopardizing the platform and surrounding safety. The quality of sensors and perception algorithms must be
adequately assessed, as it conditions the system’s ability to perceive the driving environment (Sivaraman and
Trivedi 2013). To further robustify a self-driving system, it is also necessary to characterize the coverage of
perception training data compared to the expected operational environment (Koopman and Wagner 2016).
Safety evaluation systems for autonomous vehicles have received substantial attention in recent years to
develop dependable perception systems (Levinson et al. 2011; Emzivat et al. 2018; Ramanagopal et al.
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2018). However, they do not offer performance guarantees which can be critical to the deployment of this
technology.

As we shall discuss in Section 2 a significant portion of the literature on reliability focuses on the use
of simulated scenarios to evaluate the performance of a class of algorithms which include both detection
and identification. Instead, we seek to study a non-parametric data-driven approach. Another important
difference between our methodology and those studied in the literature is that we not only evaluate the
safety/reliability of an algorithm. Instead, our study also suggests ways to combine and improve the use
of different algorithms in order to obtain more reliable estimators.

Our methodology takes as input three elements: I) one or various algorithms which detect, based on
camera images, the distance from the vehicle to various objects; II) a set of data in the form of 2d camera
images of a certain environment, and III) a simple policy which serves as a proxy for a driving task, such
as driving assistance.

In the context of evaluating the reliability of a single algorithm, the methodology that we propose
delivers a set of heat maps corresponding to the point estimates for the probability of collision as a function
of the distance detected using the algorithm in question and the velocity at which the vehicle is traveling.
We call this space, the (distance, velocity) space. We show that our non-parametric point estimates are
consistent as we increase the sample size (see Theorem 1).

To estimate the probability of collision, we assume a constant deceleration, according to two levels
of deceleration parameters corresponding to normal and emergency environments. The methodology
also delivers corresponding asymptotically correct confidence regions for the probability of collision (see
Theorem 2). We emphasize that our confidence intervals are derived with the optimal rate of convergence
using non-parametric subsampling.

An immediate challenge that we face is that the set of annotated data is often not too large. This
challenge is particularly important for the confidence regions. The dataset that we use is the KITTI dataset
which contains 3768 images. So, we need to find a way to augment the dataset so that we can obtain
reliable confidence intervals for the point estimates that we mentioned earlier. To overcome this problem,
we introduce a statistical estimator which allows us to increase the dataset size at the expense of introducing
the statistical assumption that the detected distance of various objects in a single image is conditionally
independent given the image in question. By introducing this assumption, we increase the sample size by a
factor of about 4, relative to the original dataset. This assumption, as we explain, does not seem to change
the structure of the heat map, but it allows to mitigate the noise (i.e., statistical variance) compared to the
original dataset size.

Monte Carlo simulation lies at the heart of the inference methodology that we use to produce confidence
regions, based on the non-parametric theory of subsampling (see (Politis and Romano 1994)).

The most interesting use of the approach that we propose is, we believe, in the comparison of two or
more algorithms, and the insights obtained by the possibility of combining them to improve reliability. In
the context of evaluating the reliability of two algorithms, for example, our methodology delivers a map in
the (distance, velocity) space which partition the areas in which both algorithms perform similarly or one
of the algorithms performs better than the other one. These regions are coupled with the corresponding
statistical p-values in a companion plot. Once again, these p-values are obtained using sub-sampling
methods. The overall output suggests, for example, a way to combine algorithms with complementary
skills in order to further improve reliability.

We showcase the use of our methodology in the study of three algorithms, in the context of monocular
3D object detection, corresponding to M3D-RPN (Brazil and Liu 2019), D4LCN (Ding et al. 2020), and
Kinematic (Brazil et al. 2020). These algorithms were chosen as illustrations only. The data used, as we
shall discuss, is annotated and obtained from the KITTI website (Geiger et al. 2012). Note that detection
algorithms trained on KITTI dataset typically consider information including 3D locations, 2D bounding
boxes, and classes of objects in images. In this paper, we will extract the distances of objects from their 3D
bounding boxes and focus on them. Some of the insights found in our study are surprising relative to, for
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instance, the performance indicators reported by KITTI. Of course, we emphasize that KITTI’s indicators
are different from those we consider, as they do not directly address the issue of safety as we model it
here in connection with collisions. For instance, if an object is actually closer than what an algorithm
perceives, is a more dangerous error in our setting than an error in estimation in the opposite direction
(i.e. if the object is perceived to be closer than what it actually is). This asymmetry, it turns out, yields
that some algorithms may perform better in the reliability sense that we consider compared to the pure
prediction sense which is more traditional. We are not aware of any other work in the literature that makes
this observation/distinction in the context of actual algorithms deployed in the literature. We believe that
incorporating non-symmetric losses motivated by these types of different errors is a topic worthy of further
scientific exploration.

The rest of the paper is organized as follows. In Section 2 we discuss related literature on the topic
of reliability for self-driving tasks. We introduce our methodology in Section 3. In particular, the non-
parametric estimator that we consider is given in Section 3.2 and confidence region methodology is given
in Section 3.3. We then present how to compare and combine detection algorithms in Section 4. The
experiment results and plots are shown in Section 5. Finally, we discuss final conclusions and future
research directions motivated by our results in Section 6.

2 RELATED WORK

Naturalistic Field Operational Tests (N-FOT), which directly test automated vehicles under real-world
driving conditions, is a popular way to test safety of automated vehicles. Unfortunately, this approach
is challenging to implement because it is costly both in terms of time and resources to collect enough
data in order to implement it. Moreover, only a relatively small proportion of daily driving data may
include critical safety scenarios for testing reliability. Thus, a significant amount of literature focuses on
the simulation of the environment and critical scenarios such as collision events via Monte Carlo methods
– including acceleration and variance reduction techniques. For example, Zhao et al. (2015) introduced a
new approach of Accelerated Evaluation (AE) which adopts Importance Sampling (IS) to accelerate the
evaluation of automated vehicles safety. They introduce a parametric model of human-controlled vehicles
derived from a real world dataset and use this parametric model to emphasize the critical scenarios and
conduct statistical tests based on the parametric model. Then, IS is used to adjust the occurrence rate of
critical scenarios back to the real world level. This method has been proved and applied to various tasks of
interest, including lane change (Zhao et al. 2015), car-following maneuvers (Zhao et al. 2017), and frontal
cut-in (Huang et al. 2017). The model of human-controlled vehicles can vary from single distribution
models to piece-wise mixture distribution models (Huang et al. 2017), or be evaluated non-parametrically
with Gaussian Mixture Models (Huang et al. 2018).

There are various differences between the approaches described earlier and our methodology. First, we
do not evaluate the safety of a given policy. We are mostly interested in the safety of the sensor algorithms.
We assume a fixed and simple policy, namely, the car decelerates at a given constant rate as a function
of the velocity traveled and the distance to the nearest object detected in frontal view. Second, we use a
non-parametric approach and deal with the problem of lack of data by introducing statistical assumptions.
Finally, our method provides insights into how to improve sensor performance for reliability by combining
algorithms.

3 GENERAL METHOD AND ESTIMATORS

3.1 Structure of the Pipeline

In this section we introduce a purely data-driven methodology for evaluating the reliability and safety
of object detection algorithms while informed by simple autonomous driving tasks and environments.
Generally, we try to estimate the probability that predictions of a detection algorithm may mislead the
decisions made by the driving tasks under the given environment and lead to a collision event.
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Our method evaluates performances of different detection algorithms in a given environment E sampled
by a labeled dataset D of camera images (e.g., the KITTI dataset). For each image ω ∈ D , the dataset
gives us the manually labeled locations (“true labels”) of all objects, and an object detection algorithm A
will try to predict these locations.

If a car is going to collide with an object, the most dangerous objects are those closest to it. For image
ω ∈D , let Dmin(ω) denote the distance of the closest object in ω according to the true labels. Let D̂min(ω)
denote the prediction of Dmin(ω) by A . Since the car relies on A to estimate “how close the car is to
the object”, the key distribution we want to focus on is P(Dmin|D̂min). Ideally, we expect to have a joint
distribution with P(Dmin = D̂min) = 1.

Given the closest object’s distance Dmin and the car’s velocity v, we can parametrize the event “whether
a collision will happen” by Collision(Dmin,v). The real-life modelling of Collision(Dmin,v) should be
detailed by the autonomous driving policy in use. For the sake of illustration, we will introduce a simple
modelling of it in Section 3.2. With a given Collision(·, ·), we can estimate the probability of collision

λ (y,v) = P
(

Collision(Dmin,v)
∣∣∣D̂min = y

)
,

i.e., how likely the car, under velocity v, is going to collide with an object which is predicted by A to be
y meters away?

We also provide confidence levels to our estimations of function λ (y,v). Generally, the more samples
we have for the environment E (the larger |D | is), the more confident we are in our estimates. Hence
the confidence levels also serve as an indicator whether we need to increase the size of D to improve the
precision of λ (y,v). The flowchart of our pipeline is shown in Figure 1.

Figure 1: Flowchart of the pipeline.

3.2 A Consistent Non-parametric Estimator of λ (y,v)

To implement a simple model of “collision event”, we consider a simple braking model – uniformly
decelerating motion. Namely, whenever A gives us a small D̂min, we brake the car at a constant deceleration
rate a. Suppose the reaction time the system needs to brake the car is t, we have

Collision(d,v) =
{

d <
v2

2a
+ tv

}
.

Let S(v;a, t) = v2

2a + tv denote this “radius of collision” function parameterized by a and t, we have

λ (y,v) = P
(

Dmin < S(v)
∣∣∣D̂min = y

)
.

We may get into trouble if we simply pair up D̂min(ω) and Dmin(ω) from each image ω ∈D . The main
concern here is that the detection algorithm A may not correctly locate the closest object for some images,
as illustrated in Figure 2. Furthermore, this pairing procedure will only give us |D | pairs of data for
estimation, which will limit our ability to improve the confidence level.
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Figure 2: Example images where the closest object is different based on predictions (red boxes) and dataset
labels (blue boxes).

To make sure P(Dmin|D̂min) is estimated by data associated with same objects and fully explore the
limits of our dataset, we need to consider including all objects in all images into our method. For each
object labelled by the dataset, if we can find an object predicted by A which has the highest 2D and 3D
Intersection over Union (IOU) overlap with it, then we pair up their distances. Such pre-processing will
allow us to significantly increase the amount of data we can use, and make sure all pairs we will use are
well-matched (i.e., referring to the same object in an image). The disadvantage is that we are considering
objects not close to our car, so in order to estimate λ (y,v) we will need some additional assumptions and
extra computations detailed below.

For each image ω ∈D , let N(ω) denote the number of labelled objects that we successfully pair up
with a prediction. For the great majority of the images, this corresponds to the number of objects in the
image. Let n = ∑ω∈D N(ω) denote the total number of such objects in the dataset. By definition we
have Dmin(ω) = min16i6N(ω) Di(ω) and D̂min(ω) = min16i6N(ω) D̂i(ω). Under certain assumptions and
approximations, we are able to get a consistent estimator for λ (y,v) and construct confidence intervals for
it. We first explicitly give the estimator in Theorem 1, the proof of which is given in Appendix A, and then
talk about construction of confidence of intervals in Section 3.3. Note that the consistency of the estimator
paves the way for our estimation of confidence intervals, as we shall explain later.
Theorem 1 Assume (Di, D̂i)

n
i=1 are i.i.d. random vectors independent of N. Let fD̂ denote the density

of D̂, and fD̂|D>z denote the conditional density of D̂ given D > z for some given z. Then a consistent

estimator of λ̂n(y,v) as n→ ∞ is given by

1−
f̂D̂|D>S(v)(y)

(1
n ∑

n
i=1 I{Di > S(v)}

)
∑

∞
m=0

(
m
(

1
n ∑

n
i=1 I{Di > S(v), D̂i > y}

)m−1
∑ω∈D I{N(ω) = m}

)
f̂D̂(y)∑

∞
m=0

(
m
(

1
n ∑

n
i=1 I{D̂i > y}

)m−1
∑ω∈D I{N(ω) = m}

)
(1)

where f̂D̂ and f̂D̂|D>S(v) are Gaussian kernel density estimations of fD̂ and fD̂|D>S(v) respectively, and their
bandwidths satisfy limn→∞ hn = 0 and limn→∞ nhn = ∞.

3.3 Subsampling and Point-wise Confidence Intervals

In this section we introduce Algorithm 1, which gives asymptotically valid point-wise confidence intervals for
λ (y,v). To construct asymptotically valid confidence intervals for λ (y,v), Algorithm 1 uses the subsampling
method by Politis and Romano (1994). We summarize its validity in Theorem 2 below, the proof of which
is given in Appendix B. The only assumption necessary for applying the method is the following.

Assumption 1 Let Jn(y,v) denote the sampling distribution of τn

(
λ̂n(y,v)−λ (y,v)

)
for some non-

decreasing normalizing constant τn. Then there exists a limiting law J(y,v) with a continuous distribution
such that Jn(y,v) converges weakly to J(y,v) as n→ ∞.
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Since we can easily infer from the entire dataset D how many objects there are in any given image,
but difficult to do so when we estimate λ (y,v) based on a subset of

(
Di, D̂i

)
, the distribution of N will be

treated as given in this section. We consider this to be a reasonable simplifying assumption since typically
N will be supported on finitely many points and large deviations results will so learning the distribution
of N is not complicated.

We now are ready to provide the statement of Theorem 2 and Algorithm 1.
Theorem 2 In the setting of Theorem 1, and assuming that D̂ has a density which is twice continuously
differentiable, Algorithm 1 computes asymptotically correct point-wise confidence intervals for λ (y,v).

Algorithm 1: Point-wise Confidence Intervals by Subsampling

1 def lamb (Xi,y,v):
2 f̂D̂|D>S(v)(y), f̂D̂(y)← Gaussian Kernel(Xi;hb)

3 λ ′(y,v)← By Equation (1)
4 return λ ′(y,v)
5 end
6 def subsampling (X ,y,v):
7 λ̂n(y,v)← By Equation (1)
8 b←

√
n // Size of each batch

9 s←
√

n // Number of batches
10 τn,τb← n2/5,b2/5

11 for i in 1,2, · · · ,s do
12 Xi← Sample of size b without replacement from D

13 L̂i(y,v)← τb

(
lamb(Xi,y,v)− λ̂n(y,v)

)
14 end
15 L̂s

i (y,v)← sort
(

L̂i(y,v)
)

16 return
(

λ̂n(y,v)− 1
τn

L̂s
0.95s(y,v), λ̂n(y,v)− 1

τn
L̂s

0.05s(y,v)
)

17 end

Remark 1 Another approach for building confidence intervals is based on Bootstrap. However, in the
literature on non-parametric density estimation, generally the Bootstrap method is applied in conjunction
with under-smoothing which deteriorates the rate of convergence, see Section 3.3.2 of Chen (2017). Instead,
applying subsampling we maintain the optimal rate of convergence.

4 COMPARISON, COMBINATION AND RANK

We now use λ (y,v) to compare the reliability of different detection algorithms and combine them to improve
the overall performance. Let λ ∗(y,v) denote the reliability of an oracle detection model, i.e., a model that
always predicts D̂∗ = D. The interpretation of λ ∗(y,v) is that it estimates the probability of collision of
our autonomous driving policy at different (y,v), assuming the vehicle is equipped with a perfect detection
algorithm. Then naturally for λA measuring the performance of an arbitrary detection algorithm A , the
smaller |λ ∗(y,v)−λA (y,v)| is, the more reliable A will be at (y,v). An important note here is that the sign
of λ ∗(y,v)−λA (y,v) is just as important as its absolute value. Namely, if λ ∗(y,v)< λA (y,v), then A will
mislead the driving policy by overestimating the danger, which may lead to unnecessary brakes and should
be slightly penalized. If λ ∗(y,v) > λA (y,v), then A will mislead the driving policy by underestimating
the danger, which may lead to a collision event and should be heavily penalized. Thus, here we present a
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weighted loss function `(y,v) by

`(y,v;λ
∗,λA ) =

{
α(λA (y,v)−λ ∗(y,v)) if λ ∗(y,v)< λA (y,v)
β (λ ∗(y,v)−λA (y,v)) if λ ∗(y,v)> λA (y,v)

where α << β , and the ratio between them is a user-defined tuning hyper-parameter for “how much more
serious a collision event is compared with an overly cautious brake” (e.g. an error that would imply a
collision is 10 times more important than an error that will not result in a collision.)

For two algorithms, we may directly use `(y,v) to compare and combine their point-wise performances.
Such comparison result is shown in Section 5.4, where we compare D4LCN and Kinematic. We will also
illustrate how to use this result to determine which algorithm we should rely on at different (y,v).

For more than two algorithms, we introduce a score, which measures how much an individual detection
model deviates from this oracle detection model on average, to compare and rank their performances.
Specifically, let

L(λ ∗,λA ) =
∫

`(y,v;λ
∗,λA )h(y,v)d(y,v), (2)

i.e., the expectation of the loss `(y,v) given the density function h(y,v), which measures the relative
importance of different (y,v). In Section 5.5 we will compute the scores for three detection algorithms and
compare our ranking result with that on KITTI leaderboard.

5 RESULTS

5.1 Environment Setup

Throughout this section, we will use KITTI validation dataset as our labeled dataset D , and compare the
performances of three recently developed 3D detection models: M3D-RPN, D4LCN, and Kinematic. We
set the reaction time t = 0.1s and test our estimator with two levels of deceleration: asa f e = 3.92m/s2 and
amax = 6.86m/s2. The function λ (y,v;a, t) will be computed for all three detection algorithms and two
deceleration levels. Section 5.2 will show the heat maps of λ (y,v;a, t), and Section 5.3 will present example
confidence intervals for these estimates. In Section 5.4 we will discuss how to compare and combine these
detection algorithms to get an overall better estimator, and finally rank them in Section 5.5.

5.2 Heat Maps of λ (y,v)

Figure 3 shows the heat maps of λ (y,v), where the rows correspond to the two levels of decelaration and
the columns correspond to the three detection algorithms: M3D-RPN, D4LCN, and Kinematic respectively.
In all plots, we also explicitly draw the black curve y = S(v) to help understand the general pattern of
λ (y,v). The plots are similar, although there are significant differences which can already be observed.
For example, note the irregularity in the blue area in Kinematic’s heat map when y > 50 (relative to the
other two algorithms). We will compare these heat maps numerically and explain the irregular (y,v)’s by
introducing their p-values in following sections.

5.3 Point-wise Confidence Intervals

We will focus on deceleration level amax = 6.86m/s2 hereafter since the results of asa f e are quite similar.
We take two frequently met speed limits in daily driving, v = 25 mph and v = 40 mph, as examples to
show our confidence intervals for λ (y,v). The results are shown in Figure 4.

We can easily see that our estimation of λ (y,v) becomes highly unstable when y > 50. Lack of data
is the main reason here, since almost 90% of objects in KITTI dataset are less than 50 meters away from
the ego vehicle. As illustrated in Figure 1, we may need to collect more data in this range to improve our
confidence of estimates.
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Figure 3: Heat maps of λ (y,v)’s for different detection algorithms and deceleration levels.

5.4 Comparison and Combination of Two Algorithms

We now compare D4LCN and Kinematic as an example and discuss how we can get an overall better
estimator from them. As discussed in Section 4, we first set up an oracle detection algorithm and estimate
λ ∗, and then compare the differences between λA of the two detection algorithms with λ ∗ respectively.
The result is shown in Figure 5. Note that as discussed in Section 5.3, we will not include the comparison
when y > 50 because of lack of data.
For the green areas where both detection algorithms have their λA close enough to λ ∗, we may choose

either one to estimate the probability of collision. In other cases, we may choose to rely on D4LCN when
(y,v) falls in an orange area and on Kinematic when (y,v) falls in a purple area.

We also present a plot of p-values for this comparison plot. Note that areas of different colors have
different null hypotheses: the null hypothesis for orange area is `(y,v; ,λ ∗,λ D)> `(y,v; ,λ ∗,λ K), for purple
area is `(y,v; ,λ ∗,λ D)< `(y,v; ,λ ∗,λ K), and for green area is max{`(y,v; ,λ ∗,λ D), `(y,v; ,λ ∗,λ K)}> 0.05.
Note that the uncertainty mostly happens around the transition from green to other areas or when y > 50.
Thus, we are generally confident in the comparison result in orange and purple areas when y < 50.

5.5 Comparing Safety in Detection Algorithms

We compute the score introduced in Equation (2) for all three detection algorithms, with h(y,v) being a
uniform distribution. Note that then for any given λA , L is a linear function of the ratio β/α . The slopes of
this linear loss function are 0.0325, 0.0429, and 0.0694 for M3D-RPN, D4LCN, and Kinematic respectively.
Therefore, we may conclude that M3D-RPN overall tends to provide safer estimates, and D4LCN yields
safer estimates than Kinematic. This ordering is not aligned with that of the KITTI leader-board, which
ranks Kinematic as the best detection algorithm. However, we emphasize that our criterion places more
emphasis on overestimation of distances than on underestimation.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In our analysis, we introduced simplifying assumptions (e.g. the distribution of N is known). The sub-
sampling theory can be applied relaxing these assumptions. On the statistical side, we believe that the most
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Figure 4: Point-wise confidence intervals of three detection algorithms at v = 25 and v = 40.

interesting issue is extending the non-parametric estimators to functional versions instead of point-wise
estimation. Another topic of interest suggested by our research is the possibility of combining algorithms
based on the context (e.g. velocity and speed) to improve overall reliability performance. Systematically
studying this type of fusion is of significant interest. We also are interested in considering more complex data
(e.g. videos). The challenge is that the data-augmentation techniques that we introduced (i.e. conditional
independence of objects in images) are more difficult to apply. Finally, an additional direction involves
considering more complex policies (beyond deceleration given a velocity field and the distance to the closes
object) would be of significant interest as well.
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A Proof of Theorem 1

Proof. We first express the target function λ (y,v) = P(Dmin 6 S(v)|D̂min = y) in terms of (Di, D̂i)
n
i=1,

and find consistent estimators for each component of the expression. We will write P(D̂min = y) = fD̂(y)dy,
similarly with other density expressions. Observe that

P(Dmin 6 S(v)|D̂min = y) = 1−P(Dmin > S(v)|D̂min = y)

= 1−
∞

∑
n=1

P
(

Dmin > S(v)
∣∣∣N = n, D̂min = y

)
·P
(

N = n
∣∣∣D̂min = y

)
= 1−

∞

∑
n=1

P
(

Dmin > S(v)
∣∣∣N = n, D̂min = y

)
· P(N = n)P(D̂min = y|N = n)

P(D̂min = y)
.



Xu, Blanchet, Gerardo-Castro, and Paudel

Figure 5: Orange areas correspond to (y,v)’s where D4LCN performs better (closer to the oracle detection
algorithm), while purple areas correspond to those where Kinematic performs better. Green areas are where
both algorithms have good performances (the differences between λA and λ ∗ are less than 0.05). We also
include p-values which test the hypothesis implied by the color coding (e.g. for the orange area the null
is that the Kinematic performs better, so rejecting with small p-values supports the claim that D4LCN
performs better).

For the first term in the summation, we have

P
(

Dmin > S(v)
∣∣∣N = n, D̂min = y

)
=

n

∑
i=1

P
(

Dmin > S(v)
∣∣∣arg min

16 j6n
D̂ j = i, D̂i = y

)
·P
(

arg min
16 j6n

D̂ j = i, D̂i = y
∣∣∣N = n, D̂min = y

)
=

1
n

n

∑
i=1

P
(

Dmin > S(v)
∣∣∣D̂1 > y, . . . , D̂i−1 > y, D̂i = y, D̂i+1 > y, . . . , D̂n > y

)
=

1
n

n

∑
i=1

P(D1 > S(v), . . . ,Dn > S(v), D̂1 > y, . . . , D̂i = y, . . . , D̂n > y)

P(D̂1 > y, . . . , D̂i = y, , . . . , D̂n > y)

=
1
n

n

∑
i=1

P(Di > S(v)|D̂i = y)∏
j 6=i

P(D j > S(v)|D̂ j > y))

=
1
n

n

∑
i=1

P(D > S(v)|D̂ = y)
(
P(D > S(v)|D̂ > y)

)n−1
= P(D > S(v)|D̂ = y)

(
P(D > S(v)|D̂ > y)

)n−1
.

For the second term in the summation, we have

P
(

D̂min = y
∣∣∣N = n

)
=

n

∑
i=1

P
(

D̂1 > y, . . . , D̂i = y, . . . , D̂N > y
)

=
n

∑
i=1

P
(

D̂ > y
)n−1

· fD̂(y)dy = n fD̂(y)dyP
(

D̂ > y
)n−1

,

and

P(D̂min = y) =
∞

∑
m=1

P
(

D̂min = y
∣∣∣N = m

)
=

∞

∑
m=1

P(N = m) ·m fD̂(y)dy
(
P(D̂ > y)

)m−1
.
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Therefore we have

λ (y,v) = 1−
∞

∑
n=1

P
(

Dmin > S(v)
∣∣∣N = n, D̂min = y

) P(N = n)P(D̂min = y|N = n)

P(D̂min = y)

= 1−P(D > S(v)|D̂ = y)
∞

∑
n=1

(
P(D > S(v)|D̂ > y)

)n−1 P(N = n) ·n fD̂(y)dy
(
P(D̂ > y)

)n−1

∑
∞
m=1P(N = m) ·m fD̂(y)dy

(
P(D̂ > y)

)m−1

= 1−P(D > S(v)|D̂ = y)
EN

[
N
(
P(D > S(v), D̂ > y)

)N−1
]

EN

[
N
(
P(D̂ > y)

)N−1
]

= 1−
fD̂|D>S(v)(y)P(D > S(v))

fD̂(y)
·
EN

[
N
(
P(D > S(v), D̂ > y)

)N−1
]

EN

[
N
(
P(D̂ > y)

)N−1
] .

By Law of Large Numbers, we know 1
n ∑

n
i=1 I{Di > S(v)}, 1

n ∑
n
i=1 I{Di > S(v), D̂i > y}, 1

n ∑
n
i=1 I{D̂i > y},

and ∑ω∈D I{N(ω) = m} are consistent estimators of P(D > S(v)), P(D > S(v), D̂ > y), P(D̂ > y), and
P(N = m) respectively. As shown in Parzen (1962), a Guassian kernel density estimator with bandwidth hn

satisfying limn→∞ hn = 0 and limn→∞ nhn = ∞ is a consistent estimator. Thus, f̂D̂ and f̂D̂|D>S(v) are consistent
estimations of fD̂ and fD̂|D>S(v) respectively. Therefore by Slutsky’s theorem, we finally conclude that

1−
f̂D̂|D>S(v)(y)

(1
n ∑

n
i=1 I{Di > S(v)}

)
∑

∞
m=0 m

(
1
n ∑

n
i=1 I{Di > S(v), D̂i > y}

)m−1
∑ω∈D I{N(ω) = m}

f̂D̂(y)∑
∞
m=0 m

(
1
n ∑

n
i=1 I{D̂i > y}

)m−1
∑ω∈D I{N(ω) = m}

is a consistent estimator of λ (y,v).

B Proof of Theorem 2

Proof. By Theorem 2A of Parzen (1962) using a Gaussian kernel with bandwidth hn ∈Ω(n−1/5) for the
kernel density estimator f̂D̂|D>S(v)(y), we know its convergence to fD̂|D>S(v)(y) is asymptotically normal

with rate n2/5. Similarly, with the same Gaussian kernel, f̂D̂(y) converges to fD̂(y) at the same rate
n−2/5. The asymptotic normal limit does not have mean zero, however, because the bias term assuming
that the density is twice continuously differentiable is of order O(n−2/5) and it is characterized explicitly
(see section 3.3.3 of Chen (2017) and Scott (2015)). Nevertheless, this not a problem when applying
the subsampling method because the existence of a continuous limit law is all what the method requires,
according to Assumption 1. For the other three indicator estimators, Central Limit Theorem implies that
they all converge to their expectations with rate

√
n. Since λ̂n(y,v) is a simple function of these component

estimators which all converge to some normal distribution asymptotically, the delta method implies that
its convergence is also asymptotically normal with rate n−2/5. Since the normal distribution is continuous,
we can apply Assumption 1 and the result follows.
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