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ABSTRACT

We study an easy-to-implement algorithm to construct asymptotically valid confidence regions for model
parameters in stochastic gradient descent. The main idea is to cancel out the covariance matrix which
is hard/costly to estimate using the batch means method with a fixed number of batches. In developing
the algorithm, we establish a process-level functional central limit theorem for Polyak-Ruppert averaging
iterates. We also extend the batch means method to accommodate more general batch size specifications.

1 INTRODUCTION

Stochastic Gradient Descent (SGD) and variants of it have been widely used in model-parameter estimation
in either online learning or when data sizes are very large (Robbins and Monro 1951; Polyak and Juditsky
1992). As the estimators we construct via SGD is not exact, it is desirable to quantify the estimation errors
incurred. While there is a rich literature studying the convergence rate of SGD algorithms (see, e.g., Zhang
2004; Nemirovski, Juditsky, Lan, and Shapiro 2009; Agarwal, Bartlett, Ravikumar, and Wainwright 2012),
much less is known about the uncertainty quantification for the true model parameters (see, however, Hsieh
and Glynn 2002; Toulis and Airoldi 2017; Chen, Lee, Tong, and Zhang 2020; Su and Zhu 2018). In
this paper, we propose a simple procedure to construct asymptotically valid confidence regions for model
parameters based on a cancellation method called the batch means with a fixed number of batches.

We consider the setting where the model parameters, x∗ ∈ Rd , can be characterized as the minimizer
of a convex objective function, which is also known as the loss function. Specifically,

x∗ = argmin(H(x) := E[h(x,ζ )]) , (1)

where h is a real-valued function and ζ is a d′-dimensional random vector. Stochastic gradient descent is
an iterative algorithm to solve (1). In its simplest form, the t-th iteration takes the form

Xt = Xt−1− γt∇xh(Xt−1,ζt),

where ∇xh is the gradient of h with respect to x and γt is the step size. If we use X̄t = t−1
∑

t−1
i=0 Xi to estimate

x∗, then under certain regularity conditions, the paper (Polyak and Juditsky 1992) establishes that

t1/2 (X̄t − x∗)⇒ N(0,Σ) as t→ ∞,

where⇒ denotes convergence in distribution and N(0,Σ) denotes a Gaussian random vector with mean 0
and covariance matrix Σ. Here, Σ = ∇2H(x∗)−1U∇2H(x∗)−1, where ∇2H(x∗) is the Hessian of H at x∗,
and U = E[∇xh(x∗,ζ )∇xh(x∗,ζ )T ]. If we know the value of Σ, then a classic way to construct the 95%
confidence region for x∗ is

R̂t = {x ∈ Rd : t(X̄t − x)T
Σ
−1(X̄t − x)≤ χ

2
d,0.05},
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where χ2
d,0.05 is the 95%-quantile of the chi-squared distribution with d degrees of freedom. The confidence

region R̂t is asymptotically valid in the sense that limt→∞P(x∗ ∈ R̂t) = 0.95.
The key challenge here is that the covariance matrix Σ is often unknown in practice and can be very

costly to estimate consistently. To address the challenge, we adopt the cancellation-based batch means
method from the stochastic simulation literature (Schruben 1983; Glynn and Iglehart 1990). In particular,
our work is closely related to the works that use the cancellation methods to conduct multivariate output
analysis (Yang and Nelson 1992; Munoz and Glynn 2001). These methods were developed for steady-state
estimation problems. The main idea is to construct the statistics in a special way that cancels out the
unknown covariance matrix. Despite the elegance of the batch means idea, existing results in the literature
do not allow us to apply it directly to stochastic gradient descent. This is because in steady-state estimation
problems, we require the stochastic process to be time-homogeneous. However, the transition kernel of
{Xt : t ≥ 0} in SGD is time-varying due to the decreasing step sizes. The main contribution of this paper
is that we rigorously establish the validity of the batch means method in the SGD setting. This provides a
simple way to construct asymptotically valid confidence regions for model parameters in SGD. The method
utilizes the SGD iterates directly and does not require any modification to the underlying algorithm. We
also extend the batch means method to allow more general batch size specifications. Our result relies on
establishing appropriate process-level convergence of (X̄t : t ≥ 0), which is stronger than the large sample
convergence results established in the literature.

As discussed above, the main advantage of cancellation-based batch means method is to avoid estimating
Σ directly. Note that constructing consistent estimator of Σ can be quite challenging (Chen, Lee, Tong, and
Zhang 2020). Recently, the paper (Chen, Lee, Tong, and Zhang 2020) develops a consistent estimator of
Σ using the idea of batching. To achieve consistency, it requires the number of batches to go to infinity
as number of SGD iterates increases. The cancellation method we considered here keeps the number of
batches fixed, which is more desirable when the number of iterates is relatively small and/or the dimension
of the parameters is relatively high. This is because the validity of the batching idea relies on having the
batch means close enough to independent Gaussian random vectors. With a fixed number of iterates, when
requiring a large number of batches, the size of each batch tends to be small, which could render the batch
means being far from Gaussian.

2 BATCH MEANS METHODS

Consider the case where H(x) is strongly convex with a unique minimizer at x∗. We apply Polyak-Ruppert
averaging. In particular, the iteration takes the form

Xt = Xt−1− γtG (Xt−1,ζt), (2)

where E[G (Xt−1,ζt)|Xt−1] = ∇H(Xt−1) and γt = at−r for some a > 0 and r ∈ (1/2,1). The batch means
method divides the sample path {Xt : 0≤ t ≤ T} into m non-overlapping batches, where the i-th batch is
of size bi := dTwie. Let τi = ∑

i
j=1 b j. Then, the ith batch contains iterates {Xτi−1+1, . . . ,Xτi} and its batch

mean is defined as

Ξi =
1
bi

τi

∑
t=τi−1+1

Xt .

The basic idea of the batch means method is that for T large enough, Ξi’s are approximately independent
N(x∗,(1/bi)Σ). Then, we can consider an F type of statistic:

ΓT = m(m−d)(d(m−1))−1(X̄T − x∗)T (Sm(T ))−1(X̄T − x∗) (3)

where

X̄T :=
1
T

T

∑
t=1

Xt and Sm(T ) :=
1

m−1

m

∑
i=1

(Ξi− X̄T )(Ξi− X̄T )
T .
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Based on the form of ΓT , the unknown Σ which appears in both X̄T − x∗ and Sm(T ) will cancel out in
the limit (as T → ∞). The actual procedure to construct confidence regions for x∗ is summarized in the
following Algorithm.

Input: The SGD sample path {Xt : 0≤ t ≤ T}, the number of batches m≥ d, the relative batch
length parameter w

Find the appropriate scaling parameter αm(δ ,w) according to Theorem 1.
Calculate the batch means Ξi for i = 1,2, . . . ,m.
Calculate X̄T and Sm(T )

Output: RT =
{

x ∈ Rd : m(m−d)
d(m−1) (X̄T − x)T S−1

m (T )(X̄T − x)≤ αm(δ ,w)
}
.

Algorithm 1: Construct a 100(1−δ )% confidence region for x∗

To apply Algorithm 1, we need to specify the parameters m and w. We require m ∈ Z+ with m > d
and w = (w1, . . . ,wm) ∈Rm

+ with ∑
m
i=1 wi = 1, where Z+ is the set of strictly positive integers and R+ is the

set of strictly positive real numbers. The confidence region constructed in Algorithm 1 is asymptotically
valid in the sense that if the scaling parameter αm(δ ,w) is properly chosen, limT→∞P(x∗ ∈ RT ) = 1−δ .
Then, the key is to calibrate the scaling parameter αm(δ ,w). The value of αm(δ ,w) is determined by the
asymptotic distribution of ΓT , which is characterized in Theorem 1. Before we present the theorem, we first
introduce some assumptions which are standard for the convergence analysis of Polyak-Ruppert averaging
(see, e.g., (Chen, Lee, Tong, and Zhang 2020; Polyak and Juditsky 1992)). Define ∆t := Xt − x∗ and

ξt = (ξt(1), . . . ,ξt(d)) := G (Xt−1,ζt)−∇H(Xt−1). (4)

Assumption 1 (1) H(x) is differentiable and strongly convex with parameter C > 0, i.e., for any x and y
H(y)≥H(x)+∇H(x)T (y−x)+ C

2 ‖y−x‖2. (2) ∇H(x) is Lipschitz continuous with parameter L > 0, i.e., for
any x and y, ‖∇H(x)−∇H(y)‖≤ L‖x−y‖. (3) There exists C2 > 0, such that ‖∇H(x)−∇2H(x∗)(x−x∗)‖≤
C2‖x− x∗‖2. (4) ∇2H(x∗) exists.
Assumption 2 (ξt : t ≥ 1) are martingale differences with respect to the filtration F = {F}t≥1 generated
by (ζt : t ≥ 1), and it satisfies the following two conditions:
(1) The conditional covariance of ξt has an expansion around x∗: E[ξtξ

T
t |Ft−1] =U + r(∆t−1), for some

positive definite matrix U , and there exist constants S1,S2 > 0, such that for any ∆ ∈ Rd , ‖r(∆)‖ ≤
S1‖∆‖+S2‖∆‖2.
(2) There exists M ∈ (0,∞), such that ‖ξt‖ ≤M almost surely, ∀t ≥ 1.

Assumption 1 ensures that X̄t converges to a unique global optimal x∗ (Polyak and Juditsky 1992).
Assumption 2 provides sufficient conditions to establish the functional Central Limit Theorem (FCLT) for
partial sums of ξt’s.

Define gm : C d [0,1]×Rm→ Rd×d as

gm(x,w) =
1

m−1

m

∑
i=1

(
x(ci)− x(ci−1)

ci− ci−1
− x(1)

)(
x(ci)− x(ci−1)

ci− ci−1
− x(1)

)T

,

with c0 = 0 and ci = ci−1 +wi.
Theorem 1 Under Assumptions 1 and 2, for ΓT defined in (3) with m > d and w ∈ Rm

+,

ΓT ⇒ m(m−d)(d(m−1))−1ZT gm(B,w)−1Z as T → ∞,

where Z is a standard d-dimensional Gaussian random vector, B is a standard d-dimensional Brownian
motion (BM), and Z is independent of gm(B,w). Furthermore, if we set αm(δ ,w) as the (1−δ )-quantile
of m(m−d)(d(m−1))−1ZT gm(B,w)−1Z, then

lim
T→∞

P(x∗ ∈ RT ) = 1−δ .
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The proof of Theorem 1 is delayed until Section 5. We note from Theorem 1 that the scaling parameter
αm(δ ,w) does not depend on the underline problem instances, (Xt : 0 ≤ t ≤ T ). It only depends on the
batch means parameters m and w. In the special case of evenly-split batches, i.e., wi = 1/m,

m(m−d)(d(m−1))−1ZT hm(B,w)−1Z d
= Fd,m−d ,

where Fd,m−d denote the F distribution with d and m−d degrees of freedom. We will discuss a different
splitting scheme in Section 3.

3 SELECTION OF THE BATCH MEANS PARAMETERS

The confidence region constructed using the batch means method is asymptotically valid regardless of our
choice of m and w, as long as m> d and w∈Rm

+. However, different values of m and w will affect the pre-limit
performance of the procedure. In this section, we study how to choose these parameters to achieve good pre-
limit performance. The analysis is divided into two parts. We first study how to choose the batch sizes w with
a fixed value of m. We then study how to choose m. The key intuition is that the pre-limit performance of the
procedure is largely determined by how close the distribution of

(
(b1/
√

T )(Ξ1− x∗), . . . ,(bm/
√

T )(Ξm− x∗)
)

is to the distribution of (G(B(c1)−B(c0)), . . . ,G(B(cm)−B(cm−1))), where B is a d-dimensional BM.

3.1 Batch Size

Note that the pre-limit Ξi’s are correlated while the limiting (B(ci)−B(ci−1))’s are uncorrelated. Thus,
one important quantity we want to minimize is the correlation between Ξi and Ξi+1. To understand the
correlation between Ξi and Ξi+1, we follow the arguments in (Chen, Lee, Tong, and Zhang 2020). First,
note that for t large enough, Xt is close to x∗. Thus,

∇H(Xt−1)≈ ∇H(x∗)+∇
2H(x∗)(Xt−1− x∗) = A∆t−1,

where A := ∇2H(x∗) and recall that ∆t = Xt − x∗. The equality follows as ∇H(x∗) = 0. Next, by the
recursion formula (2), we have

∆t ≈ (I− γtA)∆t−1 + γtξt ,

where I is the identity matrix and ξt is defined in (4). This further indicates that for i and j large enough,
the correlation between ∆i and ∆ j is approximately ∏

j−1
t=i ||I− γtA|| ≈ exp

(
−λ (A)∑

j−1
t=i γt

)
, where λ (A)

denotes the smallest eigenvalue of A. With the goal of balancing the correlation between Ξi and Ξi+1, we
can choose w according to minw maxi exp

(
−λ (A)∑

τi
t=τi−1 γt

)
. It is easy to see that the minimum is achieved

when ∑
τi
t=τi−1+1 γt’s are equal. In this case, we can set

τi = (i/m)1/(1−r) T.

Note that for this specification of τi’s, the batch sizes are gradually increasing, i.e., wi is increasing in i.
In what follows, we shall refer to this batch-size specification as the “increasing batch size” (InBS).

Table 1 provides some of the commonly used scaling parameters for InBS with different values of d
and m. The quantiles are estimated using Monte Carlo simulation. We generate enough samples such that
half-width of the corresponding 95% confidence interval is less than 0.01.

We next show some numerical experiments comparing the performance of three different batch size
specifications: i) InBS, ii) even splitting (ES), and iii) decreasing batch size (DeBS) where we reverse the
order of the batch size specification of InBS. Table 2 summarizes results.

For Table 2 and the subsequent numerical experiments, we consider two classes of examples: linear
regression and logistic regression. For linear regression, bi = x∗T ai + εi where ai’s and εi’s are i.i.d.
N(0,1). In this case, ζ = (a,b) and h(x,ζ ) = (b− xT a)2. For logistic regression, bi ∈ {−1,1} with
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Table 1: 95%-quantile of m(m−d)
d(m−1) ZT gm(B,w)−1Z with InBS allocation

d 1 2 3 4
m = 10 2.93 2.92 3.13 3.50
m = 20 2.18 2.00 1.95 1.97
m = 30 1.91 1.71 1.64 1.62
m = 40 1.76 1.55 1.47 1.50

d 10 50 80 100
m = 20 2.46 NA NA NA
m = 60 1.24 2.49 NA NA
m = 100 1.02 1.31 1.81 NA
m = 120 0.97 1.18 1.43 1.81

P(bi = 1|ai) = (1+exp(−x∗T ai))
−1. In this case ζ = (a,b) and h(x,ζ ) = log(1+exp(−bxT a)). When not

specified, the true parameters x∗ is a d-dimensional vector linearly spaced between 0 and 1. We set the
baseline number of iterations at n := 105. In all the experiments, our goal is to achieve a 95% coverage
rate. The estimated coverage rate is based on 1000 independent replications of the procedure. We also
report the corresponding 95% confidence interval for the coverage rate.

We observe from Table 2 that as the number of iterations increases, all three batch size specifications
are approaching the target coverage rate, 0.95. For a small number of iterations, InBS and ES achieve a
higher coverage rate than DeBS, and InBS performs slightly better than ES. In practice, when T is large,
we suggest using ES for the ease of implementation. When T is small, we suggest using InBS.

Table 2: Coverage rate comparison for different batch size specifications

n 4n 7n 10n
Linear regression with d = 2

InBS 0.975±0.009 0.955±0.013 0.970±0.010 0.971±0.009
ES 0.938±0.015 0.947±0.014 0.951±0.013 0.950±0.013

DeBS 0.787±0.025 0.878±0.020 0.909±0.017 0.912±0.019
Logistic regression with d = 2

InBS 0.934±0.015 0.932±0.015 0.946±0.014 0.948±0.013
ES 0.899±0.018 0.917±0.018 0.934±0.015 0.933±0.015

DeBS 0.842±0.023 0.908±0.017 0.932±0.018 0.930±0.015

3.2 Number of Batches

We next look into different choices of m for m > d. We divide the analysis into two parts. We first analyze
the limiting volume of the confidence region for different values of m. We then analyze the pre-limit
performance. The volume of the confidence region, which is a d-dimensional ellipsoid, takes the form

Vd(m,w) :=
(

d(m−1)
m(m−d)

)d/2

det(Sm(T )1/2)αm(δ ,w)d/2qd ,

where qd = πd/2/Γ(d/2+ 1) is the volume of a d-dimensional unit sphere and Γ denotes the Gamma
function. From Theorem 2, we have

det((T Sm(T ))1/2)⇒ det(G)2 det(hm(B,w)1/2) as T → ∞.

Then, we can compare the limiting volume of the confidence region by comparing

vd(m,w) :=
(

d(m−1)
m(m−d)

)d/2

E[det(hm(B,w)1/2)]αm(δ ,w)d/2

for different values of m. We show one such comparison in Figure 1. We observe in Figure 1 that as m
increases, vd(m,w) decreases. However, there is a diminishing decreasing effect. On the other hand, for a
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finite number of iterations, the larger m is, the smaller the sizes of the batches are. Then, the batch means
are further from their asymptotic Gaussian distributions. In Table 3, we compare the pre-limit performance
for different values of m. We use InBS for the batch size specification and focus on a relatively small
number of iterations. We observe that when the numbers of iterations are small, large values of m can lead
to substantial under-coverage. In practice, we suggest setting m between 15 and 30 when d < 10, and m
between d +5 and d +10 when d > 10.

Figure 1: Compare vd(m,w) for different values of m and d.

(a) d = 1 (b) d = 2 (c) d = 5

Table 3: Coverage comparison for different values of m, logistic regression with d = 3

0.1n 0.4n 0.7n n
m = 10 0.913±0.017 0.933±0.015 0.947±0.013 0.933±0.015
m = 20 0.814±0.024 0.897±0.018 0.919±0.017 0.927±0.016
m = 30 0.730±0.027 0.876±0.020 0.909±0.017 0.906±0.018
m = 40 0.615±0.030 0.817±0.024 0.845±0.022 0.883±0.019

4 COMPARISON TO OTHER METHODS

In this section, we compare our batch means method to several existing state-of-the-art methods. In
particular, we consider two recently developed statistical inference methods for model parameters in SGD:
the batch means method with an increasing number of batches (BMI) developed in (Chen, Lee, Tong, and
Zhang 2020) and the hierarchical incremental gradient descent method (HiGrad) developed in (Su and Zhu
2018). These methods have been demonstrated to achieve superior performance (in terms of the accuracy
and the computational complexity) over other existing methods. We also consider the sectioning method
(Hsieh and Glynn 2002), which is similar to the batch means method, but instead of dividing a single
sample path into m batches, it generates m independent paths of equal length. This method can also be
viewed as a special case of HiGrad with only 1 level.

BMI is mainly designed to draw marginal inference, i.e., it constructs confidence intervals for each
parameter (dimension) separately. Thus, it does not require m ≥ d +1. However, Lemma 3 in Section 5
indicates that when m≤ d, the estimated covariance matrix Sm(T ) is likely to be degenerate. HiGrad has
versions for both marginal inference and joint inference. Comparing to our method, HiGrad has a lot more
parameters to be specified (e.g., the tree structure and the partition of the data set) and requires modification
to the original SGD procedure. The sectioning method has the advantage that estimators constructed based
on different sections are independent. Thus, the asymptotic independence requirement is automatically
satisfied. However, with a fixed budget, the length of each path (section) in the sectioning method is only
1/m the length of the path in the batch means. If we have a limited amount of computational budget,



Zhu and Dong

focusing on a single long run (as in the batch means) instead of multiple shorter runs (as in the sectioning
method) may get us closer to x∗.

In Tables 4 and 5 we compare the finite sample coverage rate of our batch means method (BM) and
other benchmark methods for logistic regression examples. For BM, we set m = 30 and use InBS for batch
sizes. When conducting joint inference using BMI, we set the marginal confidence level to be 1−0.05/d
based on the Bonferroni correction. For HiGrad, we use a two-layer tree structure with 5 and 6 nodes for
the two layers respectively. When doing marginal inference using BM, we can construct the batch means
confidence interval for each parameter (dimension) separately. In Table 4, we show the coverage rates of
confidence regions (joint inference) constructed using different methods and with different sample sizes
(number of iterations). In Table 5, we show results for confidence intervals (marginal inference). The
reported coverage rate in Table 5 is the average coverage rate over the d parameters. We observe that
BM achieves superior coverage rate in all cases. We also note that the coverage rate deteriorates as the
dimension of the problem, d, increases. Lastly, since all the methods are asymptotically valid, we expect
all of them to achieve the target coverage rate when the number of iterates is large enough.

Table 4: Joint coverage rate comparison for different methods: logistic regression

n 4n 7n 10n
d = 2

BM 0.919±0.017 0.942±0.013 0.936±0.015 0.945±0.014
BMI 0.890±0.019 0.919±0.017 0.897±0.018 0.899±0.018

HiGrad 0.833±0.023 0.879±0.020 0.901±0.018 0.913±0.017
Sectioning 0.659±0.029 0.807±0.024 0.842±0.023 0.859±0.021

d = 20
BM 0.638±0.029 0.847±0.020 0.878±0.020 0.900±0.018
BMI 0.537±0.030 0.642±0.031 0.680±0.029 0.698±0.028

HiGrad 0.090±0.017 0.427±0.030 0.510±0.029 0.570±0.028
Sectioning 0.024±0.009 0.226±0.026 0.311±0.028 0.384±0.030

Table 5: Marginal coverage rate comparison: logistic regression

n 4n 7n 10n
d = 2

BM 0.938±0.015 0.949±0.014 0.945±0.014 0.953±0.013
BMI 0.905±0.018 0.920±0.017 0.927±0.016 0.932±0.015

HiGrad 0.860±0.020 0.903±0.018 0.913±0.017 0.915±0.017
Sectioning 0.757±0.026 0.851±0.020 0.872±0.020 0.880±0.020

d = 20
BM 0.901±0.019 0.937±0.015 0.945±0.014 0.953±0.013
BMI 0.835±0.023 0.861±0.021 0.860±0.029 0.866±0.021

HiGrad 0.457±0.030 0.610±0.029 0.631±0.031 0.650±0.029
Sectioning 0.367±0.030 0.535±0.031 0.564±0.031 0.580±0.030

5 PROOF OF THE MAIN RESULT

The proof of Theorem 1 involves two main steps. The first step establishes the process level convergence
of X̄t (Theorem 2). The second step shows that gm(B,w) is positive definite almost surely (Lemma 3).
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5.1 Process level convergence of X̄t

For the first step, we start by presenting two auxiliary lemmas. The first lemma extends the Azuma-Hoeffding
inequality to the multidimensional setting. Its proof follows similar lines of arguments as Theorem 1.8 in
(Hayes 2005) and is thus omitted here.
Lemma 1 Let M be a martingale in Rd with M0 = 0, and for every n, the martingale difference Mn−Mn−1
satisfies ‖Mn−Mn−1‖ ≤ σn ≤ 1/2. Then for any a > 1,

P(‖Mn‖ ≥ a)≤ 2exp

(
1− (a−1)2/(

n

∑
i=1

2σ
2
i )

)
.

The second lemma characterizes the convergence rate of an important term in the SGD iterrates. It
tightens the bound established in (Polyak and Juditsky 1992). Let

β̄
t
s := γs

t−1

∑
i=s

i

∏
k=s+1

(
I− γk∇

2H(x∗)
)

and φ
t
s = β̄

t
s −
(
∇

2H(x∗)
)−1

,

where ∏
s
k=s+1

(
I− γk∇2H(x∗)

)
≡ I.

Lemma 2 For γt = at−r with some a > 0 and 1/2 < r < 1, ∑
t−1
s=0 ‖φ t

s‖= O(tr).

Proof. We first summarize some useful results from (Polyak and Juditsky 1992). Let β s
s = I and

β t+1
s = β t

s (I− γt∇
2H(x∗)) for t ≥ s. There exist λ ,K > 0, such that for any s≥ 0 and t ≥ s,

‖β t
s‖ ≤ K exp

(
−λ

t−1

∑
i=s

γi

)
, where ∑

s−1
i=s γi ≡ 0. (5)

Let St
s = ∑

t−1
i=s (γs− γi)β

i
s . It can be shown that φ t

s = St
s−
(
∇2H(x∗)

)−1
β t

s . Let mi
s = ∑

i
k=s γk. Then,

t−1

∑
i=s

mi
s exp(−λmi

s) = O(1/γs) and ‖β̄ t
s‖ ≤ K.

Second, note that ‖φ t
s‖ ≤ ‖St

s‖+ ‖(∇2H(x∗))−1‖‖β t
s‖. We next establish bounds for ‖St

s‖ and ‖β t
s‖

respectively. First,

‖St
j‖=

∥∥∥∥∥ t−1

∑
i= j+1

(
i

∑
k= j+1

(γk−1− γk)

)
β

i
j

∥∥∥∥∥ =

∥∥∥∥∥ t−1

∑
i= j+1

(
i

∑
k= j+1

(γk−1− γk)γk−1(γk−1)
−1

)
β

i
j

∥∥∥∥∥
≤ K(γ j− γ j+1)(γ j)

−1
t−1

∑
i= j

mi
j exp(−λmi

j)

≤ K(γ j− γ j+1)/γ
2
j for j large enough.

By L’Hospital’s rule, (γ j− γ j+1)/γ2
j = O( j−(1−r)). Thus, for t large enough,

t−1

∑
j=0
‖St

j‖ ≤ K
t−1

∑
j=0

j−(1−r) ≤ K
∫ t

0
x−(1−r)dx = O(tr). (6)

Lastly, note that
t−1

∑
j=0
‖β t

j‖ ≤ K
t−1

∑
j=0

exp(−λ (t− j)γt)≤
K

1− exp(−λγt)
= O(γ−1

t ) = O(tr). (7)

Combining (6) and (7), we have ∑
t−1
j=0 ‖φ t

j‖ ≤ ∑
t
j=0 ‖St

j‖+
∥∥∇2H(x∗)

∥∥−1
(

∑
t
j=0 ‖β t

j‖
)
= O(tr).
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Theorem 2 Under Assumptions 1 and 2, there exists a matrix G, such that

n1/2t(X̄nt − x∗)⇒ GB(t) in D(0,∞) as n→ ∞,

where D(0,∞) denotes the space of right continuous functions with left limit endowed with Skorokhod J1
topology.

Proof. We start by summarizing some useful results from (Polyak and Juditsky 1992). We first note
that X̄t has the following decomposition:

X̄t − x∗ = J(0)(t)+ J(1)(t)+ J(2)(t)+ J(3)(t), where J(0)(t) =−1
t

t−1

∑
s=0

β
s
0∆0,

J(1)(t) =−1
t

t−1

∑
s=0

β̄
t
s
(
∇H(Xs)−∇

2H(x∗)∆s
)
, J(2)(t) =

1
t

t−1

∑
s=0

(
∇

2H(x∗)
)−1

ξs, J(3)(t) =
1
t

t−1

∑
s=0

φ
t
sξs.

Recall that ξt = G (Xt−1,ζt)−∇H(Xt−1) and ∆t = Xt−x∗. We have the following properties for terms in the
decomposition: P1) t−1/2

∑
t−1
i=1 ‖∆i‖2→ 0 almost surely (a.s.) as t→∞. P2) ‖φ t

s‖ ≤ K for some K ∈ (0,∞).
P3) ∑

t
s=1 ‖φ t

s‖= O(tr). We comment that P3 is not provided in (Polyak and Juditsky 1992). We establish
it in Lemma 2.

We are now ready to establish the functional level convergence results for each part in the decomposition.
For J(0), from (5), we have tn1/2J(0)(nt)→ 0 in D(0,∞) as n→ ∞. For J(1), we have

sup
0≤t≤T

‖tn1/2J(1)(nt)‖ ≤ sup
0≤t≤T

n−1/2
nt−1

∑
s=1
‖((∇2H(x∗))−1 +φ

t
s)(∇H(Xs)−∇

2H(x∗)∆s)‖

≤ (‖∇2H(x∗)‖−1 +K)C2 sup
0≤t≤T

n−1/2
nt−1

∑
i=1
‖∆i‖2 by P2 and Assumption 1

≤ C2(‖∇2H(x∗)‖−1 +K)T 1/2((nT )1/2)−1
nT−1

∑
i=1
‖∆i‖2→ 0 a.s. as n→ ∞ by P1.

Thus, tn1/2J(1)(nt)⇒ 0 in D(0,∞) as n→ ∞.
For J(2), let Mn(t) := n−1/2

∑
nt
s=1 ξs. We next establish FCLT for Mn: there exists a matrix U such that

Mn(t)⇒UB(t) in D(0,∞) as n→ ∞. (8)

Under Assumption 2, ξt’s are Martingale differences. From Theorem 8.1 in (Pang, Talreja, and Whitt
2007), to establish (8), we only need to verify the following two conditions:

C1) For each t > 0, limn→∞ E[J (Mn, t)] = 0, where J is the maximum jump function, i.e. J (x, t) :=
sup{‖x(s)− x(s−)‖ : 0 < s≤ t}.

C2) For each (i, j), 1≤ i, j ≤ d, there exists a constant Ui j, such that [Mn,i,Mn, j](t)⇒Ui jt as n→ ∞,
where Mn,i denotes i-th entry of Mn, and [Mn,i,Mn, j] is the square-bracket process.

For C1), under the boundedness condition of the Martingale differences (Assumption 2),

E[J (Mn,T )] = E
[
n−1/2 sup

0<s≤T n
‖ξs‖

]
≤M/n1/2→ 0 as n→ ∞.

For C2), we have

[Mni,Mn j](t) =
t
nt

nt

∑
s=1

ξsiξs j =
t
nt

nt

∑
s=1

(ξsiξs j−E[ξsiξs j|Fs−1])︸ ︷︷ ︸
(a)

+
t
nt

tn

∑
s=1

E[ξsiξs j|Fs−1]︸ ︷︷ ︸
(b)

.
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For (a), under Assumption 2, ∑
nt
s=1(ξsiξs j −E[ξsiξs j|Fs−1]) is again a martingale. We can thus apply

martingale law of large numbers (Csörgő 1968):

1
nt

nt

∑
s=1

(ξsiξs j−E[ξsiξs j|Fs−1])⇒ 0 as n→ ∞.

For (b), under Assumption 2, we have

t
nt

tn

∑
s=1

E[ξsiξs j|Fs−1]⇒Ui jt as n→ ∞.

Then, setting G = ∇2H(x∗)−1U , we have tn1/2J(2)(nt)⇒ GB(t) in D(0,∞) as n→ ∞, i.e., (8).
For J(3), by Assumption 2, we have for any δ > 0 and n large enough,

P

(
sup

1≤t≤nT

∥∥∥∥∥n−1/2
t

∑
i=1

φ
t
i ξi

∥∥∥∥∥≥ δ

)
= P

(
sup

1≤t≤nT

∥∥∥∥∥(2MK)−1
t

∑
i=1

φ
t
i ξi

∥∥∥∥∥≥ n1/2
δ (2MK)−1

)

≤
nT

∑
t=1

2exp

(
1− (n1/2

δ (2MK)−1−1)2/

(
2

t

∑
s=1

M2(2MK)−2‖φ t
s‖2

))
by Lemma 1

≤
nT

∑
t=1

2exp

(
1−2K2(δ (2MK)−1−n−1/2)2/

(
n−1

t

∑
s=1
‖φ t

s‖

))

≤
nT

∑
t=1

2exp
(

1−2K2(δ (2MK)−1−n−1/2)2/
(
n−1C′tr)) for some C′ > 0 by P3

≤ 2nT exp
(

1−2K2(δ (2MK)−1−n−1/2)2(C′T r)−1n1−r
)
→ 0 as n→ ∞.

Thus, tn1/2J(3)(nt)⇒ 0 in D(0,∞) as n→ ∞.

We note from Theorem 2 that if we fix t = 1, then n1/2(X̄n− x∗)⇒ N(0,G) as n→ ∞. This implies
that the FCLT we established is stronger than the large sample central limit theorem. We also comment
that FCLT is required for a more general class of cancellation methods known as the standardized time
series (Glynn and Iglehart 1990).

5.2 Non-degeneracy of gm(B,w)

For the batch means method to be valid, we require that the number of batches m≥ d+1. This is because
when m≤ d, the estimated covariance matrix, Sm(T ), is likely to be degenerate. Specifically, from Theorem
2, we have that for any m ∈ Z+, T Sm(T )⇒ Ggm(B,w)GT as T → ∞. The following lemma characterizes
the behavior of gm(B,w) for different values of m, including m≤ d.
Lemma 3 For w ∈ Rm

+, when m ≥ d + 1, gm(B,w) is positive definite with probability 1; when m ≤ d,
gm(B,w) is degenerate with probability 1.

Proof. Recall that wi = ci− ci−1. Let Ni = w−1/2
i (B(ci)−B(ci−1)) and

ri = [−w1/2
1 , . . . ,−w1/2

i−1, w−1/2
i −w1/2

i , −w1/2
i+1, . . . ,−w1/2

m ]T ,

for i = 1,2, . . . ,m. Then,

gm(B,w) = (m−1)−1N

(
m

∑
i=1

rirT
i

)
NT = (m−1)−1NV NT ,
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where N = [N1, . . . ,Nm] is a d×m matrix whose columns are independent and identically distributed d-
dimensional standard Gaussian random vectors, and V is an m×m matrix with Vii = 1/wi−2+mwi and
Vi j = −(wi/w j)

1/2− (w j/wi)
1/2 +m(wiw j)

1/2 for i 6= j. Let Vi = [Vi1, . . . ,Vim]. In what follows, we shall
prove that V has rank m−1.

We first note that because ∑
m
i=1 w1/2

i Vi = 0, rank(V )≤ m−1. We next look at the ‘upper-left corner’
(m−1)×(m−1) sub-matrix of V , which we denoted as Ṽ . We can decomposition Ṽ as Ṽ = Ṽ 1+∆, where
Ṽ 1

i j = Ṽi j for i 6= j, and Ṽ 1
ii = (m−1)/(mwi)−2+mwi; ∆i j = 0 for i 6= j, and ∆ii = (mwi)

−1 > 0. Let

w̃i =
m

m−1
wi, r̃i =

[
−w̃1/2

1 , . . . ,(w̃i)
−1/2− (w̃i)

1/2, . . . ,−(w̃m−1)
1/2
]T

,

for i = 1, . . . ,m− 1. Then we have Ṽ 1 = ∑
m−1
i=1 r̃ir̃T

i . This suggests Ṽ 1 is positive semi-definite. As ∆ is
strictly positive definite, Ṽ is positive definite. This indicates that rank(V )≥m−1. Thus, rank(V ) = m−1.

For m≤ d, rank(gm(B,w))≤ rank(V )≤ m−1 < d, Thus, gm(B,w) is degenerate.
For m > d, define P(N) = det(NNT ), which is a polynomial function over entries of N. Because all

entries of N are independent and identically distributed standard Normal random variables, {X ∈ Rd×m :
P(X) = 0} has Lebesgue measure 0, i.e., P(P(N) = 0) = 0. This indicates that N has rank d a.s.. Since
V has rank m−1 and is positive semi-definite, we can decompose it as V = PΛPT , where Λ is a diagonal
matrix with Λii > 0 for i = 1,2, . . . ,m−1 and Λmm = 0, P is an orthogonal matrix. Next, note that

NPΛ
1/2 d

= NΛ
1/2 = [Ñ,0] where Ñ = [

√
Λ1N1, . . . ,

√
Λm−1Nm−1].

The elements of Ñ are independent and identically distributed standard Normal random variables. Thus,
rank(Ñ) = d a.s. as well. Lastly, because

gm(B,w) = (m−1)−1NV NT d
= (m−1)−1ÑÑT and rank(Ñ) = d a.s.,

gm(B,w) is positive definite a.s..

5.3 Proof of Theorem 1

Proof of Theorem 1. Recall that B denotes a d-dimensional BM. The proof builds on verifying the
following conditions for gm(x,c) in Theorem 1 of (Munoz and Glynn 2001):

a. gm(Gx,w) = Ggm(x,w)GT for any non-singular d×d matrix G.
b. gm(x−βη ,w) = gm(x,w) for x ∈C[0,1]d and β ∈ Rd , where η(t) := t, 0≤ t ≤ 1.
c. gm(B,w) is positive definite and symmetric almost surely.
d. P(B ∈ D(gm(·,w))) = 0 where D(gm(·,w)) is the set of discontinuities of gm(·,c).

For (a), we note that

gm(Gx,w) =
1

m−1

m

∑
i=1

(
Gx(ci)−Gx(ci−1)

ci− ci−1
−Gx(1)

)(
Gx(ci)−Gx(ci−1)

ci− ci−1
−Gx(1)

)T

=
G

m−1

m

∑
i=1

(
x(ci)− x(ci−1)

ci− ci−1
− x(1)

)(
x(ci)− x(ci−1)

ci− ci−1
− x(1)

)T

GT = Ggm(x,w)GT .

For (b), we have

gm(x−βJ,w) =
1

m−1

m

∑
i=1

(
x(ci)− x(ci−1)

ci− ci−1
− x(1)

)(
x(ci)− x(ci−1)

ci− ci−1
− x(1)

)T

= gm(x,w).
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(c) follows from Lemma 3. Because gm(·,w) is continuous on C[0,1]d , (d) is also satisfied.
Let ȲT (u) = T−1

∑
uT
i=1 Xi, 0 ≤ u ≤ 1. Note that Sm(T ) = gm(ȲT ,w). From Theorem 2, ȲT (t)⇒ GB(t)

in D[0,1] as T → ∞. Then, from Theorem 1 in (Munoz and Glynn 2001), we have

ΓT = m(m−d)/(d(m−1))(X̄T − x∗)T S−1
m (T )(X̄T − x∗)⇒ m(m−d)/(d(m−1))BT (1)gm(B,w)−1B(1)

as T → ∞. Moreover, we note that

B(ci)−B(ci−1)

ci− ci−1
−B(1) =

1
ci− ci−1

(B(ci)− ciB(1)− (B(ci−1)− ci−1B(1))) .

Because B(u)−uB(1), 0≤ u≤ 1, is independent of B(1), gm(B,w) independent of B(1).

REFERENCES
Agarwal, A., P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. 2012. “Information-theoretic lower bounds on the oracle

complexity of stochastic convex optimization”. IEEE Transactions on Information Theory 58(5):3235–3249.
Chen, X., J. D. Lee, X. T. Tong, and Y. Zhang. 2020. “Statistical inference for model parameters in stochastic gradient descent”.

The Annals of Statistics 48(1):251–273.
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