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ABSTRACT

We apply the generalized likelihood ratio (GLR) methods in Peng et al. (2018) and Peng et al. (2021) to
estimate quantile sensitivities. Conditional Monte Carlo and randomized quasi-Monte Carlo methods are
used to reduce the variance of the GLR estimators. The proposed methods are applied to a toy example and
a stochastic activity network example. Numerical results show that the variance reduction is significant.

1 INTRODUCTION

Quantile, also known as value-at-risk (VaR), is an important risk measure. Quantile sensitivity estimation
has been actively studied in simulation due to its centrality in risk management. A seminal work is Hong
(2009), which proposes a conditional infinitesimal perturbation analysis (IPA). Jiang and Fu (2015) avoid
the need of computing the conditional expectation for some special cases. Liu and Hong (2009) propose a
kernel-based estimator for estimating the quantile sensitivity, which can be extended to estimate sensitivities
of conditional VaR (CVaR) (Hong and Liu 2009). A conditional Monte Carlo (CMC) method is applied
to estimate quantile sensitivity in Fu et al. (2009). Heidergott and Volk-Makarewicz (2016) propose a
measure-valued differentiation (MVD) estimator for quantile sensitivity. CMC and MVD for quantile
sensitivity rely on estimating two distribution sensitivities, i.e., the derivatives of the distribution function
with respect to both argument and parameters in the stochastic model.

The difficulty in distribution sensitivity estimation lies in the discontinuity introduced by the indicator
function. Recently, Peng et al. (2018) propose a generalized likelihood ratio (GLR) method to handle
discontinuities for a wide scope of sample performance in sensitivity analysis. Peng et al. (2020) develop
GLR estimators for any distribution sensitivity, and use it to calculate maximum likelihood estimation for
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complex stochastic models. Peng et al. (2021) derive a GLR estimator for stochastic models with uniform
random numbers as input, relaxing a requirement in Peng et al. (2018) that the tails of the input distribution
of the stochastic model go smoothly to zero fast enough. Peng et al. (2017) apply GLR to estimate quantile
sensitivity, and Peng et al. (2019) extend the GLR quantile sensitivity estimator to stochastic model with
correlations and jumps. Glynn et al. (2021) use the GLR estimators for distribution sensitivities to estimate
derivatives of distortion risk measures, which cover VaR and CVaR as special cases.

CMC methods can reduce the variance and smooth the performance function in simulation by conditioning
on certain events or random variables and then integrating out the remaining randomness (Asmussen and
Glynn 2007). Fu et al. (2009) uses CMC to smooth the discontinuity introduced by the indicator function,
after which IPA is applied to differentiate the conditional expectation. GLR does not need smoothing
to obtain an unbiased distribution sensitivity estimator, but CMC can be applied afterward to reduce the
variance for GLR.

Randomized quasi-Monte Carlo (RQMC) methods, which can also reduce variance, replace the vectors
of uniform random numbers that drive independent simulation runs by dependent vectors of uniform random
numbers that cover the space more evenly. When estimating an expectation, they can provide an unbiased
estimator with its variance converging to zero at a rate that is faster than with Monte Carlo (Lemieux 2009;
Dick and Pillichshammer 2010). Such a faster rate can be proved when the estimator inside the expectation
is sufficiently smooth as a function of the underlying uniform random numbers. When the estimator is not
smooth (e.g., discontinuous), the convergence rate may not be improved, but RQMC could still reduce the
variance by a constant factor. We show, through simulation experiments, that the variance of the quantile
sensitivity estimator by GLR can be significantly reduced by appropriately combining the method with
CMC and RQMC. Similar use of CMC and RQMC for reducing the variance of quantile estimation can
be found in Nakayama et al. (2020).

The rest of the paper is organized as follows. Section 2 introduces the quantile sensitivity estimation
problem and the GLR method. Variance reduction by CMC and RQMC is discussed in Section 3. Section
4 provide applications and simulation experiments. The last section offers conclusions.

2 QUANTILE SENSITIVITY ESTIMATION

For 0 ≤ α ≤ 1, the α-quantile (also known as value-at-risk) of an output random variable Yθ = h(X ;θ)
with input random variables X = (X1, . . . ,Xn) and cumulative distribution function (cdf) F(·;θ) is defined
as

qα(θ) := arg inf{y : F(y;θ)≥ α}. (1)

When F(·;θ) is continuous, qα(θ) = F−1(α;θ). Our goal is to estimate the derivative of the α-quantile
with respect to parameter θ , i.e., dqα(θ)/dθ , which is referred to as quantile sensitivity. Assume h(X ;θ)
is a continuous r.v. with a positive and continuous density f (y;θ) on (qα(θ)−ε,qα(θ)+ε), ε > 0. Using
the formula for the derivative of an implicit function, we have (Fu et al. 2009)

d
dθ

qα(θ) =−
∂F(y;θ)

∂θ

∣∣∣∣
y=qα (θ)

/
f (qα(θ);θ).

Notice that

∂F(y;θ)

∂θ
=

∂E [1{h(X ;θ)≤ y}]
∂θ

, f (y;θ) =
∂E [1{h(X ;θ)≤ y}]

∂y
. (2)

From Peng et al. (2020), we have the GLR estimators for these distribution sensitivities: G1,i(X ;y,θ) :=
1{h(X ;θ)≤ y}ψ1,i(X ;θ) and G2,i(X ;y,θ) := 1{h(X ;θ)≤ y}ψ2,i(X ;θ), i = 1, . . . ,n, such that

∂F(y;θ)

∂θ
= E [G1,i(X ;y,θ)] , f (y;θ) = E [G2,i(X ;y,θ)] ,
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where

ψ1,i(x;θ) =
∂ log fX(x;θ)

∂θ

−
(

∂h(x;θ)

∂xi

)−1
[

∂h(x;θ)

∂θ

(
∂ log fX(x;θ)

∂xi
− ∂ 2h(x;θ)

∂x2
i

(
∂h(x;θ)

∂xi

)−1
)
+

∂ 2h(x;θ)

∂θ∂xi

]
,

ψ2,i(x;θ) =

(
∂h(x;θ)

∂xi

)−1
(

∂ log fX(x;θ)

∂xi
− ∂ 2h(x;θ)

∂x2
i

(
∂h(x;θ)

∂xi

)−1
)
,

with fX(·;θ) being the (joint) density of the vector of input random variables X . From Peng et al. (2021),
we have the GLR estimators for distribution sensitivities when X is a vector of uniform random numbers
U = (U1, . . . ,Un):

G̃1,i(U ;y,θ) := 1{h(U i;θ)− y≤ 0}ri(U i;θ)−1{h(U i;θ)− y≤ 0}ri(U i;θ)+1{h(U ;θ)− y≤ 0}d(U ;θ),

where

ri(u;θ) =

(
∂h(u;θ)

∂ui

)−1
∂h(u;θ)

∂θ
,

d(u;θ) =

(
∂h(u;θ)

∂ui

)−1
[(

∂h(u;θ)

∂ui

)−1
∂h(u;θ)

∂θ

∂ 2h(u;θ)

∂u2
i
− ∂ 2h(u;θ)

∂ui∂θ

]
,

and

G̃2,i(U ;z,θ) := 1{h(U i;θ)− y≤ 0}r̃i(U i;θ)−1{h(U i;θ)− y≤ 0}r̃i(U i;θ)+1{h(U ;θ)− y≤ 0}d̃(U ;θ),

where U i := (U1, . . . , 1−︸︷︷︸
ith element

, . . . ,Un), U i := (U1, . . . , 0+︸︷︷︸
ith element

, . . . ,Un) with x− and x+ being the limits taken

from left-hand side and right-hand side of x, respectively, and

r̃i(u;θ) =−
(

∂h(u;θ)

∂ui

)−1

d̃(u;θ) =−
(

∂h(u;θ)

∂ui

)−2
∂ 2h(u;θ)

∂u2
i

.

Let X ( j), j = 1, . . . ,m, be i.i.d. realizations of X , and F̂m(·;θ) be the empirical distribution of h(X ( j);θ),
j = 1, . . . ,m. The empirical α-quantile F̂−1

m (α;θ) is the inverse of the empirical cdf evaluated at α , defined
as in (1) with F−1 replaced by F̂−1

m . Then the quantile sensitivity can be estimated by

−
∑

m
j=1 1{h(X ( j);θ)≤ y}ψ1,i(X ( j);θ)

∑
m
j=1 1{h(X ( j);θ)≤ y}ψ2,i(X ( j);θ)

∣∣∣∣
y=F̂−1

m (α;θ)
. (3)

This is a ratio of averages as a function of y evaluated at a random estimate, used to estimate a ratio of
expectations. Even if each term in the ratio (3) is an unbiased estimator of the corresponding expectation,
the ratio (3) is not an unbiased estimator of the ratio of expectations. There is also another source of bias
for the sensitivity: the quantile estimator itself is also biased. Also, the two terms in (3) and quantile
estimators are not independent because they are estimated by a same batch of inputs and outputs: X ( j) and
h(X ( j);θ), j = 1, . . . ,m. The strong consistency and a central limit theorem for (3) have been established
in Peng et al. (2017) using an empirical process theory. The asymptotic results for a CMC estimator of
quantile sensitivity can also be found in Peng et al. (2017).
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Here we present results for the GLR estimators of two more general stochastic models, the details
of which are referred to previous work. Peng et al. (2018) consider sensitivity analysis for more general
stochastic models:

∂

∂θ
E[ϕ(g(X ;θ))], (4)

where ϕ : Rn→R is a measurable function not necessarily continuous, g(x;θ) = (g1(x;θ), . . . ,gn(x;θ))T

is a vector of functions with sufficient smoothness for x ∈ Rn, and X = (X1, . . . ,Xn) is a vector of input
random variables with a joint density fX(x;θ) supported on Ω⊆ Rn. The Jacobian of g(·;θ) is

Jg(x;θ) :=


∂g1(x;θ)

∂x1

∂g1(x;θ)
∂x2

· · · ∂g1(x;θ)
∂xn

∂g2(x;θ)
∂x1

∂g2(x;θ)
∂x2

· · · ∂g2(x;θ)
∂xn

...
...

. . .
...

∂gn(x;θ)
∂x1

∂gn(x;θ)
∂x2

· · · ∂gn(x;θ)
∂xn

 .

The Jacobian matrix is required to be invertible almost everywhere, which justifies local invertibility of
function g by the implicit function theory. The conditions for justifying unbiasedness are referred to Peng
et al. (2018) and Peng et al. (2021). Let ei be the i-th unit vector. We define

d(x;θ) :=
n

∑
i=1

eT
i J−1

g (x;θ)(∂xiJg(x;θ))J−1
g (x;θ)∂θ g(x;θ)

− trace
(
J−1

g (x;θ)∂θ Jg(x;θ)
)
−
(
J−1

g (x;θ)∂θ g(x;θ)
)T

∇x log fX(x;θ),

where and ∂yM(y) is the matrix obtained by differentiating M with respect to y element-wise. From Peng
et al. (2018), when the tails of fX(·;θ) go smoothly to zero fast enough, then, under certain regularity
conditions, it can be shown that an unbiased GLR estimator for (4) is given by

G(X ;θ) := ϕ(g(X ;θ))w(X ;θ) with w(x;θ) :=
∂ log fX(x;θ)

∂θ
+d(x;θ). (5)

As a particular stochastic activity network (SAN) example, the output could be the maximum of the durations
of activities on different paths. By the GLR method under general framework (5), we can consider quantile
sensitivity for maxi=1,...,n gi(X ;θ), which has a distribution function expressed as

E
[

1
{

max
i=1,...,n

gi(X ;θ)≤ y
}]

= E

[
n

∏
i=1

1{gi(X ;θ)− y≤ 0}
]
,

with ϕ(y) = ∏
n
i=1 1{yi ≤ 0}. Peng et al. (2021) consider the case when X is a vector of uniform random

numbers U = (U1, . . . ,Un) such that Ω = (0,1)n and ∂ log fX(x;θ)/∂θ = 0. Then under certain regularity
conditions, we have the following unbiased GLR estimator for (4):

G̃(U ;θ) :=
n

∑
i=1

[
ϕ(g(U i;θ))ri(U i;θ)−ϕ(g(U i;θ))ri(U i;θ)

]
+ϕ(g(U ;θ))d(U ;θ), (6)

where

ri(x;θ) :=
(

J−1
g (x;θ) ∂θ g(x;θ)

)T

ei, i = 1, . . . ,n.
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3 VARIANCE REDUCTION

CMC methods can reduce the variance and smooth the performance function in simulation by conditioning
on certain events or random variables and then integrating out the remaining randomness (Asmussen and
Glynn (2007)). For an estimator H(Z), we have

E[H(Z)] = E[Ĥ(Ẑ)],

where Ĥ(Ẑ) := E[H(Z)|Ẑ], with Ẑ being a subset of input random variables in Z. The variance reduction
for the conditional estimator Ĥ(Ẑ) can be seen from the following variance decomposition formula:

Var(H(Z)) = Var(E[H(Z)|Ẑ])+E[Var(H(Z)|Ẑ)]
≥ Var(Ĥ(Ẑ)).

Typically, Ĥ(Ẑ) is smoother than H(Z), due to the integration taken in the conditional expectation.
Quasi-Monte Carlo (QMC) refers to a class of deterministic numerical integration methods in which

the integrand is evaluated at a fixed set of m points, and the average is used as an approximation. One
limitation of the method is that it is very hard to estimate the approximation error in practice. RQMC takes
the QMC points and randomizes them in a way that each point has the uniform distribution over (0,1)n,
so that each randomized point represents a proper realization of U while the set of m points still covers
the unit hypercube (0,1)n more uniformly than typical independent random points (so the points are not
independent) (L’Ecuyer 2018). RQMC performs particularly well in the case when the effective dimension
is low and the integrant is smooth (see Lemieux 2009). Thus, the smoothing effect of CMC can improve
the performance of RQMC.

In general, for a given function p, RQMC estimates the integral µ =
∫
(0,1)n p(u)du by the average

µ̂m :=
1
m

m

∑
j=1

p(U ( j)),

where U (1), . . . ,U (m) form an RQMC point set. The most common types of QMC point set constructions
are lattice rules, polynomial lattices rules, and digital nets (Dick and Pillichshammer 2010; L’Ecuyer 2009).
For lattice rules, an appropriate randomization is a random shift modulo 1, which adds a single uniform
random point to all the lattice points, and retains the shifted points that are in (0,1)n as the m RQMC
points. This randomization preserves the lattice structure, and there are explicit expressions for Var[µ̂m] in
terms of the Fourier coefficients of h, and computable bounds on this variance for certain classes of smooth
functions (L’Ecuyer and Lemieux 2000; L’Ecuyer and Munger 2012; L’Ecuyer and Munger 2016). When
the mixed derivatives of p are sufficiently smooth, the variance can converge at a faster rate than O(m−1),
sometimes nearly O(m−2) and even faster in some cases. When p is not smooth (e.g., discontinuous),
these convergence rate results do not apply, although weaker results do apply (He and Wang 2015), and
even when the convergence rate is not improved, the variance is often reduced by a constant factor. For
polynomial lattices rules and digital nets in general, which include Sobol’ points, the random shift does
not preserve the structure and net properties, but other appropriate randomizations do, including nested
uniform scrambling, some affine scrambles, and random digital shifts. Variance bounds and convergence
rate results are also available for these rules (Dick and Pillichshammer 2010; L’Ecuyer 2009).

Our model formulation (6) in terms of a function of independent U (0,1) random variables makes it
an obvious candidate for the application of RQMC, which is designed exactly for this type of formulation.
For formulation (5), suppose X can be generated by Γ(U), and RQMC can be applied. For example, when
X1, . . . ,Xn are independent random variables with marginal distribution functions F1, . . . ,Fn, then they can
be generated by Xi = F−1

i (Ui), i = 1, . . . ,n. For the α-quantile sensitivity estimation, the cdf F(·;θ) of
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p(U) can be estimated by its empirical RQMC counterpart

Fm(y) :=
1
m

m

∑
j=1

1{p(U ( j))≤ y},

where {U (1), . . . ,U (m)} is an RQMC point set, and the quantile qα(θ) can be estimated by the pseudo-inverse
F−1

m (α). We can also use RQMC points in the sensitivity estimate (3).

4 NUMERICAL EXPERIMENTS

We apply the proposed method to two applications. GLR is compared with the finite difference method(
F̂−1

m (α;θ +δ )− F̂−1
m (α;θ)

)
/δ using common random numbers (FDC(δ )) in generating output random

variables under perturbed parameter for estimating quantile. The GLR method together with CMC is called
conditional GLR (CGLR), and CGLR together with RQMC is denoted as CGLRQ. For RQMC, we use
the Sobol sequence scrambled by the algorithm of Matousek (1998) in Matlab. In the two examples,
the sample size for estimating quantile sensitivities are set as m = 215 for the standard Monte Carlo and
RQMC estimators, and the quantile senstivities and standard errors of the estimators are estimated by 104

independent experiments.

4.1 TOY EXAMPLE

To illustrate, we estimate quantile sensitivity of a simple stochastic model θX1 +X2 +U , where X1,X2 are
standard normal random variables with the common cdf Φ(·), and U is an independent uniform random
variable U (0,1). In the stochastic model for deriving GLR estimators, the input random variable could
either be taken as the normal random variables X1,X2 or uniform random number U . If we choose U to be the
input random variable, then h(u;θ ,x1,x2) = θx1+x2+u, ∂h(u;θ ,x1,x2)/∂u = 1, ∂h(u;θ ,x1,x2)/∂θ = x1,
and other derivatives in (6) are zeros, so GLR estimators for distribution sensitivities are given by

G̃1,1(U ;θ ,X1,X2) = 1{θX1 +X2 +1≤ y}X1−1{θX1 +X2 ≤ y}X1,

G̃2,1(U ;θ ,X1,X2) = 1{θX1 +X2 ≤ y}−1{θX1 +X2 +1≤ y}.

By conditioning on X1, we have

E[G̃1,1(U ;y,θ ,X1,X2)] = E
[
E
[

1{θX1 +X2 +1≤ y}X1−1{θX1 +X2 ≤ y}X1

∣∣∣∣X1

]]
= E[(Φ(y−θX1−1)−Φ(y−θX1))X1],

E[G̃2,1(U ;y,θ ,X1,X2)] = E
[
E
[

1{θX1 +X2 ≤ y}−1{θX1 +X2 +1≤ y}
∣∣∣∣X1

]]
= E[Φ(y−θX1)−Φ(y−θX1−1)].

We can take the expressions inside the expectations on the right-hand sides of the above equations as
conditional GLR estimators. From this derivation, three quantile sensitivity estimators of the form (3) using
GLR, CGLR, and CGLRQ to estimate distribution sensitivities in (2) are referred to as GLR-1, CGLR-1,
and CGLRQ-1, respectively.

If we choose X1 to be the input random variable, then h(x1,x2;θ ,u) = θx1+x2+u, ∂h(x1,x2;θ ,u)/∂x1 =
θ , ∂h(x1,x2;θ ,u)/∂θ = x1, ∂ 2h(x1,x2;θ ,u)/∂θ∂x1 = 1, ∇x log fX(x1,x2) =−(x1,x2), and the other deriva-
tives in (5) are zeros, so GLR estimators for distribution sensitivities can be given by

G1,1(X1,X2;y,θ ,U) =
1
θ

1{θX1 +X2 +U ≤ y}(X2
1 −1),

G2,1(X1,X2;y,θ ,U) =− 1
θ

1{θX1 +X2 +U ≤ y}X1



Peng, Fu, Hu, L’Ecuyer, and Tuffin

Table 1: Sensitivity estimates for α-quantile (mean± standard error) based on 104 independent experiments
for numerical example in Section 4.1.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
GLR-1 −0.888 ± 1.4×10−4 −0.363 ± 1.0×10−4 0 ± 1.0×10−4 0.363 ± 1.0×10−4 0.887 ± 1.4×10−4

CGLR-1 −0.888 ± 1.0×10−4 −0.363 ± 8×10−5 0 ± 7×10−5 0.364 ± 8×10−5 0.888 ± 1.0×10−4

CGLRQ-1 −0.888 ± 4.7×10−5 −0.363 ± 4.1×10−5 0 ± 3.9×10−5 0.363 ± 4.1×10−5 0.888 ± 4.7×10−5

GLR-2 −0.888 ± 2.3×10−4 −0.363 ± 1.8×10−4 0 ± 2.1×10−4 0.363 ± 2.9×10−4 0.890 ± 7.3×10−4

CGLR-2 −0.888 ± 2.0×10−4 −0.363 ± 1.8×10−4 0 ± 2.0×10−4 0.364 ± 2.8×10−4 0.889 ± 7.2×10−4

CGLRQ-2 −0.888 ± 4.9×10−5 −0.363 ± 4.1×10−5 0 ± 3.9×10−5 0.363 ± 4.1×10−5 0.888 ± 4.9×10−5

FDC(0.01) −0.888 ± 1.2×10−3 −0.364 ± 8.5×10−4 0 ± 7.9×10−4 0.365 ± 8.6×10−4 0.890 ± 1.2×10−3

FDC(0.1) −0.911 ± 3.9×10−4 −0.373 ± 2.7×10−4 0 ± 2.6×10−4 0.372 ± 2.8×10−4 0.910 ± 3.9×10−4

Figure 1: A SAN with seven activities.

By conditioning on X1,U , we have

E[G1,1(X1,X2;y,θ ,U)] = E
[
E
[

1
θ

1{θX1 +X2 +U ≤ y}X2
1

∣∣∣∣X1,U
]]

=
1
θ
E[Φ(y−θX1−U)X2

1 ],

E[G2,1(X1,X2;y,θ ,U)] = E
[
E
[
− 1

θ
1{θX1 +X2 +U ≤ y}X1

∣∣∣∣X1,U
]]

=− 1
θ
E[Φ(y−θX1−U)X1].

We can take the expressions inside the expectations on the right-hand sides of the above equations as
conditional GLR estimators. From this derivation, three quantile sensitivity estimators of the form (3) using
GLR, CGLR, and CGLRQ to estimate distribution sensitivities are referred to as GLR-2, CGLR-2, and
CGLRQ-2, respectively.

For our experiments, we took θ = 1 and five probability levels: α = 0.1, α = 0.3, α = 0.5, α = 0.7,
and α = 0.9. From Table 1, we can see that the quantile sensitivity estimates by GLR-1, CGLR-1,
CGLRQ-1, GLR-2, CGLR-2, CGLRQ-2, and FDC(0.01) are statistically indistinguishable, whereas the
quantile sensitivity estimates by FDC(0.1) lie outside of the 90% confidence intervals of other methods.
GLR leads to smaller variance than FDC, the variances of GLR-1, CGLR-1, CGLRQ-1 are smaller than
GLR-2, CGLR-2, CGLRQ-2, respectively, and the CMC and RQMC lead to significant variance reduction.

4.2 STOCHASTIC ACTIVITY NETWORK (SAN)

We estimate quantile sensitivity for a simple SAN. There are three different paths representing the tasks to
reach the final stage of a project, i.e., (1,4,6), (2,5,6), (1,3,5,6). The completion time for the entire
project is Y := max(Y1 +Y4 +Y6,Y2 +Y5 +Y6,Y1 +Y3 +Y5 +Y6), and the sample performance for the cdf of
the completion time is

1{max(Y1 +Y4 +Y6,Y2 +Y5 +Y6,Y1 +Y3 +Y5 +Y6)≤ y} .

We assume that the first three activities follow independent exponential distributions: Yi = − 1
λi

log(Ui),
i = 1,2,3, and the other three activities follow independent log-normal distributions, Yi = exp(µi +σiXi),
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i = 4,5,6, where Xi’s are standard normal random variables. Let λ1 = θ . The distribution function F(y;θ)
of the completion time Y is

F(y;θ) = E[1{Y1 +max(Y4,Y3 +Y5)+Y6− y≤ 0}1{Y2 +Y5 +Y6− y≤ 0}].

If we keep the original indicator above, then the image of g is in R3 and we need three inputs. With
the rewriting, the image of g is in R2 and we select two inputs in a way that the Jacobian is invertible.
To estimate the two distribution sensitivities, we can view (U1,U2) as the input random variables in the
stochastic model of Peng et al. (2021), and we have

g1(U1,U2;θ ,y,U3,X4,X5,X6) =−
1
λ1

logU1 +max(Y4,Y3 +Y5)+Y6− y,

g2(U1,U2;θ ,y,U3,X4,X5,X6) =−
1
λ2

logU2 +Y5 +Y6− y,

∂θ g(u1,u2;θ ,y,u3,x4,x5,x6) =
(

logu1/λ
2
1 ,0
)T

, ∂yg(u1,u2;θ ,y,u3,x4,x5,x6) =−
(
1,1
)T

.

The Jacobian matrix and its inverse are

Jg(u1,u2;θ ,y) =−

(
1

λ1u1
0

0 1
λ2u2

)
, J−1

g (u1,u2;θ ,y) =−
(

λ1u1 0
0 λ2u2

)
,

∂u1Jg(u1,u2;θ ,y) =

(
1

λ1u2
1

0

0 0

)
, ∂u2Jg(u1,u2;θ ,y) =

(
0 0
0 1

λ2u2
2

)
, ∂θ Jg(u1,u2;θ ,y) =

(
1

λ 2
1 u1

0

0 0

)
and

r1(u1,u2;θ) =
1
λ1

u1 logu1, r2(u1,u2;θ) = 0, d(u1,u2;θ) =
1
λ1

(logu1 +1),

r̃1(u1,u2;θ) = λ1u1, r̃2(u1,u2;θ) = λ2u2, d̃(u1,u2;θ) =−λ1−λ2.

Then the GLR estimator of ∂F(y;θ)/∂θ is given by

G1(U1,U2;θ ,y,U3,X4,X5,X6) =

(
1
λ1
−Y1

)
1{max(Y1 +Y4 +Y6,Y2 +Y5 +Y6,Y1 +Y3 +Y5 +Y6)≤ y} ,

and the GLR estimator of ∂F(y;θ)/∂y is given by

G2(U1,U2;θ ,y,U3,X4,X5,X6) = λ11{max(Y4 +Y6,Y2 +Y5 +Y6,Y3 +Y5 +Y6)≤ y}
+λ21{max(Y1 +Y4 +Y6,Y5 +Y6,Y3 +Y5 +Y6)≤ y}
− (λ1 +λ2)1{max(Y1 +Y4 +Y6,Y2 +Y5 +Y6,Y1 +Y3 +Y5 +Y6)≤ y} .

Furthermore, we have

E[G1(U1,U2;θ ,y,U3,X4,X5,X6)] = E[E[G1(U1,U2;θ ,y,U3,X4,X5,X6)|Y1, . . . ,Y5]]

=E
[(

1
λ1
−Y1

)
Φ

(
1

σ6

(
log[(y− Ỹ )+]−µ6

))]
,
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and

E[G2(U1,U2;θ ,y,U3,X4,X5,X6)] = E[E[G2(U1,U2;θ ,y,U3,X4,X5,X6)|Y1, . . . ,Y5]]

=λ1E
[

Φ

(
1

σ6

(
log[(y−max(Y4,Y2 +Y5,Y3 +Y5))

+]−µ6
))]

+λ2E
[

Φ

(
1

σ6

(
log[(y−max(Y1 +Y4,Y5,Y1 +Y3 +Y5))

+]−µ6
))]

− (λ1 +λ2)E
[

Φ

(
1

σ6

(
log[(y− Ỹ )+]−µ6

))]
,

where Ỹ = max(Y1 +Y4,Y2 +Y5,Y1 +Y3 +Y5). We can take the expressions inside the expectations on the
right-hand sides of the above equation as conditional GLR estimators. From this derivation, the three
quantile sensitivity estimators of the form (3) using GLR, CGLR, and CGLRQ to estimate distribution
sensitivities in (2) are referred to as GLR-1, CGLR-1, and CGLRQ-1, respectively.

On the other hand, we have

F(y;θ) = E[1{Y4 +Y1 +Y6− y≤ 0}1{Y5 +max(Y2,Y1 +Y3)+Y6− y≤ 0}],

and we can also let (X4,X5) be the input random variables in the stochastic model of Peng et al. (2018),
leading to

g1(X4,X5;θ ,y,U1,U2,U3,X6) = exp(µ4 +σ4X4)+Y1 +Y6− y,

g2(X4,X5;θ ,y,U1,U2,U3,X6) = exp(µ5 +σ5X5)+max(Y2,Y1 +Y3)+Y6− y,

∂θ g(x4,x5;θ ,y,u1,u2,u3,x6) = logu1/λ
2
1
(
1,1{logu1/λ1 + logu3/λ3 < logu2/λ2}

)T
,

∂yg(x4,x5;θ ,y,u1,u2,u3,x6) =−
(
1,1
)T

,

∇ log f(X4,X5)(x4,x5) =−
(
x4,x5

)T
.

The Jacobian matrix and its inverse are

Jg(x4,x5) =

(
σ4eµ4+σ4x4 0

0 σ5eµ5+σ5x5

)
, J−1

g (x4,x5) =

(
1

σ4
e−µ4−σ4x4 0

0 1
σ5

e−µ5−σ5x5

)
,

∂x4Jg(x4,x5) =

(
σ2

4 eµ4+σ4x4 0
0 0

)
, ∂x5Jg(x4,x5) =

(
0 0
0 σ2

5 eµ5+σ5x5

)
,

and

d(x4,x5;θ) =
logu1

λ 2
1

[(
1+

x4

σ4

)
e−µ4−σ4x4 +1

{
logu1

λ1
+

logu3

λ3
<

logu2

λ2

}(
1+

x5

σ5

)
e−µ5−σ5x5

]
,

d̃(x4,x5;θ) =−
(

1+
x4

σ4

)
e−µ4−σ4x4−

(
1+

x5

σ5

)
e−µ5−σ5x5 .

Then the GLR estimator of ∂F(y;θ)/∂θ is given by

G1(X4,X5;θ ,y,U1,U2,U3,X6) =−1{Y ≤ z} Y1

λ1

[(
1+

X4

σ4

)
1
Y4

+1
{

Y1 +Y3 > Y2

}(
1+

X5

σ5

)
1
Y5

]
.
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Table 2: Sensitivity estimates for α-quantile (mean± standard error) based on 104 independent experiments
for numerical example in Section 4.2.

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9
GLR-1 −0.456 ± 1.0×10−4 −0.697 ± 1.3×10−4 −0.907 ± 2.0×10−4 −1.136 ± 3.9×10−4 −1.374 ± 1.6×10−3

CGLR-1 −0.456 ± 6.8×10−5 −0.696 ± 1.0×10−4 −0.907 ± 1.7×10−4 −1.136 ± 3.6×10−4 −1.374 ± 1.5×10−3

CGLRQ-1 −0.456 ± 5.0×10−5 −0.696 ± 5.6×10−5 −0.907 ± 6.8×10−5 −1.135 ± 1.1×10−4 −1.377 ± 3.1×10−4

GLR-2 −0.456 ± 1.0×10−4 −0.700 ± 6.7×10−4 −0.911 ± 1.1×10−3 −1.163 ± 2.9×10−3 −0.094 ± 7.4×10−1

CGLR-2 −0.456 ± 3.0×10−4 −0.698 ± 5.4×10−4 −0.913 ± 1.0×10−3 −1.161 ± 2.5×10−3 −1.026 ± 2.5×10−1

CGLRQ-2 −0.456 ± 2.6×10−4 −0.697 ± 4.4×10−4 −0.910 ± 7.9×10−4 −1.145 ± 1.7×10−3 −1.957 ± 2.0×10−1

FDC(0.01) −0.453 ± 9.5×10−4 −0.690 ± 9.8×10−4 −0.897 ± 1.2×10−3 −1.123 ± 1.6×10−3 −1.366 ± 3.3×10−3

FDC(0.1) −0.423 ± 2.9×10−4 −0.639 ± 3.0×10−4 −0.826 ± 3.6×10−4 −1.024 ± 5.0×10−4 −1.223 ± 1.0×10−3

the GLR estimator of ∂F(y;θ)/∂y is given by

G2(X4,X5;θ ,y,U1,U2,U3,X6) =−1{Y ≤ z}
[(

1+
X4

σ4

)
1
Y4

+

(
1+

X5

σ5

)
1
Y5

]
.

Furthermore, we have

E[G1(X4,X5;θ ,y,U1,U2,U3,X6)] = E[E[G1(X4,X5;θ ,y,U1,U2,U3,X6)|Y1, . . . ,Y5]]

=−E
[

Y1

λ1

[(
1+

X4

σ4

)
1
Y4

+1
{

Y1 +Y3 > Y2

}(
1+

X5

σ5

)
1
Y5

]
Φ

(
1

σ6

(
log[(y− Ỹ )+]−µ6

))]
.

and

E[G2(X4,X5;θ ,y,U1,U2,U3,X6)] = E[E[G2(X4,X5;θ ,y,U1,U2,U3,X6)|Y1, . . . ,Y5]]

=−E
[(

1
Y4

+
X4

σ4Y4
+

1
Y5

+
X5

σ5Y5

)
Φ

(
1

σ6

(
log[(y− Ỹ )+]−µ6

))]
.

We can take the expressions inside the expectations on the right-hand sides of the above equations as
conditional GLR estimators. From this derivation, the three quantile sensitivity estimators of the form
(3) using GLR, CGLR, and CGLRQ to estimate distribution sensitivities in (2) are referred to as GLR-2,
CGLR-2, and CGLRQ-2, respectively.

In the experiment, we set λi = 1, i = 1,2,3, µ j = 0, σ j = 1, j = 4,5,6, and test five probability levels
at α = 0.1, α = 0.3, α = 0.5, α = 0.7, and α = 0.9. From Table 2, we can see that the quantile sensitivity
estimates by GLR-1, CGLR-1, CGLRQ-1, GLR-2, CGLR-2, CGLRQ-2 are statistically indistinguishable,
FDC(0.01) appears to be slightly biased, and FDC(0.1) exhibits a significant bias compared to the GLR
method. The variances of GLR-1, CGLR-1, CGLRQ-1 are smaller than GLR-2, CGLR-2, CGLRQ-2,
respectively. The variances of all quantile sensitivity estimators go up as the probability levels grow up,
and in particular, the variances of GLR-2, CGLR-2, CGLRQ-2 go up dramatically when the probability
levels grow up from α = 0.7 to α = 0.9. The variances of GLR-1, CGLR-1, CGLRQ-1 are smaller than
those of FDC(0.1) and FDC(0.01), and the CMC and RQMC lead to significant variance reduction.

5 CONCLUSIONS

We combine GLR methods in Peng et al. (2018) and Peng et al. (2021) with CMC and RQMC to reduce
the variance of quantile sensitivity estimation, and apply the proposed methods to a toy example and a
SAN example. In both examples, the GLR method in Peng et al. (2021) leads to a better performance
than the GLR method in Peng et al. (2018), and the variance reduction by CMC and RQMC is significant.

However, the variance reduction by RQMC for estimator (3) after smoothing the GLR estimators for
two distribution sensitivities by CMC are not as substantial as that for distribution sensitivity estimators
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themselves (see Peng et al. 2021). The reason may be due to that the quantile estimator by order statistics
is discontinuous with respect to the input random variables. This discontinuity issue can be treated by
smoothing the empirical distribution function by certain kernel method, which could be a future work.
Combining variance reduction technique for quantile estimate with the variance reduction techniques for
distribution sensitivities could also reduce the variance for quantile sensitivity estimation.
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