
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

Learning to Simulate Sequentially Generated Data via Neural Networks and Wasserstein Training

Tingyu Zhu

Yuanpei College
Peking University

No.5 YiHeYuan Road, Haidian District
Beijing, 100871, CHINA

Zeyu Zheng

Department of Industrial Engineering
and Operations Research

University of California, Berkeley
Berkeley, CA 94720, USA

ABSTRACT

We propose a new framework of a neural network-assisted sequential structured simulator to model,
estimate, and simulate a wide class of sequentially generated data. Neural networks are integrated into
the sequentially structured simulators in order to capture potential nonlinear and complicated sequential
structures. Given representative real data, the neural network parameters in the simulator are estimated
through a Wasserstein training process, without restrictive distributional assumptions. Moreover, the
simulator can flexibly incorporate various kinds of elementary randomness and generate distributions with
certain properties such as heavy-tail. Regarding statistical properties, we provide results on consistency and
convergence rate for estimation of the simulator. We then present numerical experiments with synthetic
and real data sets to illustrate the performance of our estimation method.

1 INTRODUCTION

In many applications, such as finance, transportation and service systems, stochastic simulation models
(simulators) that have a sequential structure are widely used to create sample paths and capture the dynamics
of relevant multi-dimensional random objects. A sequential-structured simulator typically involves multiple
discrete time periods at a certain resolution and models a stochastic process with multi-dimensional state
variables. In each time period, the simulator takes the state from the previous time time period and some
new randomness as input, and maps the input to a new state passing on the next time period. Such simulators
are used to simulate sequentially generated data, which are in turn used to evaluate system performances or
support decision making tasks. For example, in financial applications, a simulator may be used to simulate
sequential data that represents the dynamics of prices and volatilities for multiple correlated assets, possibly
as well as other relevant factors that impact the asset prices. The simulated data can then be used to evaluate
the risks and performances of a portfolio that are composed of these assets.

For some applications, representative real data are available that record the dynamics of some but maybe
not all dimensions of the stochastic process modeled by the simulator. With the real data in hand, there is
a natural need to tailor the simulator such that the sequentially generated data from the simulator “match”
the real data in the corresponding dimensions. In this work, we propose a new framework assisted by
neural networks and Wasserstein training to address this need. Our framework has two features. First, the
framework integrates neural networks (NNs) into the simulator and the NNs are specifically used in each
time period to capture the potential non-linear and complicated dependence of the dynamics on the previous
state. Other than this, the sequential structure of the simulator and the randomness used by the simulator are
chosen by users. In particular, the randomness can be chosen as a Gaussian random vector or a heavy-tailed
random vector, depending on the domain knowledge and real need of the application. Second, without
imposing any specific parametric distribution assumption, our framework applies Wasserstein training to
meet the goal that the (possibly high-dimensional) joint distribution of the simulated data should match that

978-1-6654-3311-2/21/$31.00 ©2021 IEEE

Zhu and Zheng

of the real data. Apart from deriving the framework, we discuss its statistical aspect, which involves two
research questions: What types of underlying sequential structured simulation model can be consistently
learned by such framework? What is the statistical rate of convergence if consistency is achieved? To the
best of our knowledge, such theoretical guarantees do not exist for general sequential-structure simulators
assisted by neural networks, especially when the associated distributions have unbounded support.

The modeling and simulation of sequential generated data has been introduced and intensively studied
in many literature. An important class of models are based on parametric assumptions to capture the
dependence structure in the sequences, of which one most representative example is the stochastic volatility
model (SVM). As Shephard and Andersen (2009) points out, a key intuition in the SVM literature is
that the variations in the level of activity is directed by an underlying stochastic process. As an early
example of discrete-time stochastic volatility modeling, Taylor (1982) models the risky part of returns as a
product process, integrating an underlying indicator of volatility which follows a non-zero mean Gaussian
linear process. Later, continuous-time SVMs formalized as diffusion processes, such as the Heston model
presented by Heston (1993), become more favorable in portfolio choice and derivatives pricing. The
multivariate generalizations of SVMs are presented by Asai et al. (2006). Estimating such models poses
substantial challenge due to difficulties in evaluating the exact likelihood function. Broto and Ruiz (2004)
conclude that there are mainly three categories of estimation techniques to address the challenge, namely
estimators based on the method of moments, such as Melino and Turnbull (1990); estimators based on
the maximum likelihood principle, such as Shephard (1993) and estimators based on an auxiliary model,
such as Bansal et al. (1994). A most representative application of auxiliary models is model calibration,
which uses current information such as the option price in parameter estimation, see Aı et al. (2007)
for example. However, these techniques can become intractable or computationally demanding when the
dimension becomes even moderately high. Moreover, considerable assumptions are required, rendering
these techniques vulnerable to model mis-specifications.

An alternative way of modeling sequential data and estimating such models is to use the neural network
framework. A representative class of models are recurrent neural networks (RNN), which, along with other
variants, aim to capture the transition between the state vectors in the time-series. Recently, variational
autoencoders (VAE) provided by Kingma and Welling (2013) are combined with RNNs to model and
estimate sequentially generated data with a latent stochastic process, see Luo et al. (2018), Yeo and Melnyk
(2019) and Cen et al. (2020) for examples. Such frameworks adopt a likelihood-based statistical inference
method, using VAEs to learn the posterior distributions of latent process variables whose prior distribution
and randomness-generation distribution need to pre-specified. Different from such frameworks, our work
adopts a training process which directly learns the distributions of both the observed and latent variables
using only partially observed data. Moreover, our simulator differs from RNN and its variants in that the
time-dependence captured by the latent process can be more explicitly explained by the original sequential
structured model, and the randomness unincorporated in the neural networks induces a more significant
and flexible impact on the simulated distribution. Such deviations from RNN are fundamental, from both
computational and theoretical aspects. The Wasserstein training of our neural network-based simulator
is inspired by generative adversarial networks (GAN) (Goodfellow et al. (2014)), Wasserstein generative
adversarial networks (WGAN) (Arjovsky et al. (2017)) and the doubly stochastic WGAN framework by
Zheng and Zheng (2020). Bai et al. (2018), Chen et al. (2019) and Chen et al. (2020) are representative
theoretical works in this area, and serve as fundamentals of the proof of our theorem. The general idea
of adversarial training is also applicable to model calibration, see Cuchiero et al. (2020) for example.
Such methods require additional information such as option price, and are more restricted to estimation of
financial models.

The rest of this paper is organized as follows. Section 2 discusses the model setup of the simulator.
Section 3 discusses the estimation framework. Section 4 discusses the statistical theory for the estimation
method. Section 5 provides numerical experiments.

Zhu and Zheng

2 MODEL SETUP

We consider a class of simulators that are used to simulate sequentially generated data. A simulator consists
of two functions µ(·, ·) and Σ(·, ·), which take current information as input to generate information about
the next step, and incorporate a sequence of elementary randomness, denoted as {ηk}, which contributes
to all the randomness in the simulation process. Such simulator generates the dynamics of a stochastic
process (Xk : k = 0,1,2, . . .) that takes value in a d-dimensional multi-dimensional real space. That is,
Xk ∈ Rd for any k. The simulator sequentially updates (Xk : k = 0,1,2, . . .) according to

Xk+1 = µ(lk,Xk)+Σ(lk,Xk)ηk+1, k = 0,1,2, . . . , (1)

in which lk is a real-valued deterministic label that can be used to represent the time-of-day effect or
seasonality associated with time period k. The notion µ(·, ·) is a d-dimensional function of the label
and the state of the stochastic process in the previous time period. Similarly, Σ(·, ·) has the same input
variables as µ(·, ·) that outputs a d×d′ matrix. The expressions of µ(·, ·) and Σ(·, ·) can be further specified
to incorporate background knowledge. The notion ηk+1 is referred to as elementary randomness, which
represents a d′-dimensional mean-zero random vector that is used by the simulator in the time period k+1.

We consider practical applications in which the probability distribution of the elementary randomness
ηk’s are specified by the users according to background domain knowledge, whereas both µ(·, ·) and Σ(·, ·)
are unknown functions that need to be estimated from empirical data. For many applications, not all
dimensions of Xk and not all time periods of data can be observed. Therefore, we consider a flexible
data framework for which only the first d1 ≤ d dimension of Xk can be observed at selected time periods.
Specifically, we write Xk as (Sk,Yk)

>, where Sk denotes the d1-dimensional observed process, and Yk denotes
the (d−d1)-dimensional latent process that is not observed in empirical data. In terms of generality, suppose
that the sequence of Sk’s can only be observed at p selected time periods labeled as 0≤ k1 < k2 < · · ·< kp.
Set SSS = (Ski : i = 1,2, . . . , p). We presume that the empirical data is composed of n copies of SSS, denoted as

SSS1,SSS2, . . . ,SSSn,

which are n identically distributed copies of SSS. The copies of SSS do not need to be mutually independent
in practice. Our goal is to provide a statistical and computational framework to train (or equivalently, to
estimate) the simulator given by (1) such that the sequentially generated data (Xk : k = 0,1,2, . . .) match
the joint distribution of SSS on the corresponding dimensions and time periods.

Before discussing the statistical and computational framework, we briefly describe two examples to
demonstrate the relevance of the class of simulators of interest, given by the form of (1). The first example
is given by the multivariate stochastic volatility model (MSVM) formulated by a stochastic differential
equation, which is widely used within the fields of financial economics and mathematical finance to capture
the dynamics of asset prices. Specifically, the vector of state variables Xt follows a multivariate diffusion
process,

dXt = µc(Xt)dt +Σc(Xt)dWt , t ∈ [0,T], (2)

where Xt = (St ,Yt)
>, with St denoting the observed price process and Yt denoting the latent volatility

process, and (Wt : t ∈ [0,T]) is a canonical multi-dimensional Brownian motion. Most practical simulation
tools for multi-dimensional diffusion model use the idea of discretization, at a user-specified discretization
resolution. Using the Euler-Maruyama discretization scheme for example, once a discretization resolution
∆t is selected, the simulation process fits into the general simulator considered in (1). Specifically, we have

µ(lk,Xk) = Xk +µc(Xk)∆t,

Σ(lk,Xk) = Σc(Xk)
√

∆t,

ηk+1 ∼N (0, Id′).

(3)

Zhu and Zheng

Namely, (Xk : k = 0,1,2, . . .) is sequentially generated according to

Xk+1 = Xk +µc(Xk)∆t +Σc(Xk)
√

∆tηk+1, (4)

where ηk,k = 1,2, . . . are independent standard d′-dimensional multi-variate normal random variables. We
additionally remark that, when the empirical data process follows a stationary pattern, we can always set
lk as a constant, which is often the case in practical applications. Therefore, in the rest of this work we
mostly consider stationary cases where lk = c, and µ(·, ·) and Σ(·, ·) are viewed as functions of Xk only.
Besides that the simulator considered in (1) covers the simulation process of MSVM, our data framework
also accommodates a practical possibility that the resolution at which data is observed can be lower than
the resolution at which the simulation process is conducted.

The second example is a simulator for sequential data with heavy-tailed distributions. This simulator
sequentially updates (Xk,k = 0,1,2, . . .) according to

Xk+1 = Xk +µh(Xk)∆t +Σh(Xk)∆ξk+1, (5)

where ∆t can be any given resolution, and ∆ξk,k = 1,2, . . . are i.i.d. variables with some given heavy-
tailed distribution, such as t or Pareto. This simulator can be used for data modeling within the fields of
spectroscopy, particle motion and finance, etc, where heavy-tailed behaviors are frequently observed.

3 METHOD

In this section, we use a new framework to estimate the simulator in consideration to match its simulated
data with real data. More specifically, we use neural networks (NN) to approximate µ(·) and Σ(·) of the
simulator, and update the NN parameters to minimize the distance between the joint distribution of the
simulated data and the joint distribution of the real data. To achieve this, we need to specify how the output
distribution is generated by the NN-based simulator, how the distance between the two distributions is
formalized and computed, and how the NN parameters are updated according to the computed distance. In
the following part of this section, Subsection 3.1 provides answers to the first two questions, and formulates
the estimation problem into a minimax optimization problem. Subsection 3.2 answers the third question
by discussing the training process to solve the optimization problem.

3.1 Framework

Recall that SSS = (Sk1 ,Sk2 , . . . ,Skp) represents the observed sequence. Let πS denote true joint probability
distribution of SSS. The training data are n identically distributed copies of SSS, given by SSS1,SSS2, . . . ,SSSn. These
sequences can be either independent or weakly correlated. Let π̃S denote the empirical distribution of the
data.

The neural network-based simulator generates a sequence of state vectors (Xk : k = 1,2, . . .) according
to

Xk+1 = µθ (Xk)+Σφ (Xk)ηk+1, (6)

where ηk,k = 1,2, . . . are given d′-dimensional random vectors, µθ (·) is a d-dimensional function of Xk, and
Σφ (·) is a d×d′-dimensional function of Xk which outputs a d×d′ matrix. Both functions adopt the neural
network (NN) architecture, parameterized by NN parameters θ and φ , and are approximations of µ(·) and
Σ(·) of the simulator. We refer to Zheng and Zheng (2020) for a detailed description of the functional
form. We let X0 be a given constant or a random vector with a given probability distribution. Recall that
Xk = (Sk,Yk), where Sk is the d1-dimensional observed process, and Yk is the (d−d1)-dimensional latent
process. We additionally remark that even though µ(·) and Σ(·) of the underlying true model are assumed to
be stationary, it is still necessary to generate a full sequence instead of modeling a single step of transition.
This is due to our assumption of an existing latent process (Yk : k = 1,2, . . .), which is intractable and
has to be sequentially simulated. Finally, the joint probability distribution of the generated d-dimensional

Zhu and Zheng

observed sequence at the measured data points ŜSS = (Ŝk1 , Ŝk2 , . . . , Ŝkp), denoted as π̂S, is taken as the output
of the generator. Note that π̂S and ŜSS are also functions of θ and φ , and are therefore sometimes denoted
as π̂S(θ ,φ) and ŜSS(θ ,φ).

Next, we introduce the Wasserstein distance, which is used to quantify the distance between two given
distributions. The Wasserstein distance of the generated distribution π̂S and the real distribution πS is given
by

W (π̂S,πS) = inf
γ∈Π(π̂S,πS)

E(ŜSS,SSS)∼γ
E[‖ ŜSS−SSS ‖2], (7)

where Π(π̂S,πS) denotes the set of all joint distributions of which the marginals are respectively π̂S and
πS, and ‖ · ‖ denotes the L2 norm. Since Wasserstein distance in high dimensions does not have a closed
form for computation, we often resort to the Kantorovich-Rubinstein duality given by

W (π̂S,πS) = sup
‖ f‖L≤1

EŜSS∼π̂S
[f (ŜSS)]−ESSS∼πS [f (SSS)], (8)

where ‖ f ‖L≤ 1 denotes the class of all 1-Lipschitz functions f , i.e., | f (xxx1)− f (xxx2)| ≤‖ xxx1− xxx2 ‖2 for
any xxx1,xxx2 ∈Rdπ . The supreme f over all 1-Lipschitz functions is still intractable, but we can use a neural
network fψ to approximate f , and search over all such approximations parameterized by NN parameters
ψ . The detailed description of the functional form of fψ is also presented in Zheng and Zheng (2020). In
the framework of the classical Wasserstein Generative Adversarial Network (WGAN), a function with the
same purpose as fψ is known as the discriminator.

Our method aims to match the generated distribution to the real distribution, which can be achieved
through minimizing the Wasserstein distance of the two distributions. We formulate the estimation method
as solving the following minimax optimization problem:

min
θ∈Θ,φ∈Φ

max
ψ∈Ψ

EŜSS∼π̂S(θ ,φ)
[fψ(ŜSS)]−ESSS∼πS [fψ(SSS)]. (9)

The empirical version of problem (9) is given by

min
θ∈Θ,φ∈Φ

max
ψ∈Ψ

1
n

n

∑
j=1

fψ(ŜSS j(θ ,φ))−
1
n

n

∑
j=1

fψ(SSS j). (10)

3.2 Training

In this section, we discuss the training process for model estimation optimization problem (10). We adopt
a classical training strategy to solve the minimax problem, which is to alternately update the parameters of
the NN-based discriminator and the simulator. Updating the discriminator increases the difference between
the two summation terms of (10), which is then attenuated by updating parameters of the simulator. During
this process, the discriminator converges to the supreme f over the class of candidate functions, while the
output distribution of the simulator converges to the empirical distribution.

We apply the stochastic gradient descent (SGD) (Gulrajani et al. (2017)) method for the training process,
which is based on computing gradients of the objective functions to the model parameters. The gradient
∇θ ,φ fψ(ŜSS(θ ,φ)) is evaluated through backpropagation using the chain rule, which involves differentiating
the entire process of simulation. Such computation is illustrated in the following Figure 1.

4 STATISTICAL PROPERTIES

In this section, we discuss the statistical property of the estimation method. We prove that the framework
proposed in section 3 can effectively learn distributions of a wide class of sequentially generated data,
if the neural network architectures are properly chosen, and the number of copies of SSS, denoted as n,

Zhu and Zheng

ηk+1ηk+2ηk+3

NN-based

µθ ,Σφ

NN-based

µθ ,Σφ

NN-based

µθ ,Σφ

Yk

Sk

Yk+1

Sk+1

Yk+2

Sk+2

Yk+3

Sk+3

Empirical distribution πS Output distribution π̂S

NN-based fψ

objective function (10)

Figure 1: Backpropogation diagram (red dashed line) on the gradient evaluation of fψ(ŜSS(θ ,φ)) with respect
to the parameters θ ,φ in the simulator neural network µθ ,Σφ .

is large enough. We assume an underlying true model that sequentially generates the empirical data
SSS j = (S j,k0 ,S j,k1 ,S j,k2 , . . . ,S j,kp), j = 1,2, . . . ,n according to

Xk+1 = µ(Xk)+Σ(Xk)ηk+1, k = 0,1,2, . . . (11)

where Xk = (Sk,Yk)
>is the d-dimensional state process, Sk is the d1-dimensional observed process, and Yk

is the (d− d1)-dimensional latent process. To simplify the problem, we assume that X0 is a fixed given
constant.

Classical theoretical results of neural network approximation require the input of the neural network
to have bounded support, while in our framework the sequence (ηk : k = 1,2, . . .) is often set to follow
the Gaussian distribution or some heavy-tailed distribution, resulting in unboundedness of the generated
sequence (Xk : k = 1,2, . . .). To address the challenge due to unboundedness, we perform clipping methods
on both the empirical data and the simulated data. Specifically, we transform the empirical data into its
bounded version SSSB0

j according to

SB0
j,ki

=

{
S j,ki , if S j,ki ≤ B0;
B0, else.

i = 0,1,2, . . . p, j = 1,2, . . . ,n,

and the bounded version of simulated data is simulated with bounded elementary randomness given as

η
B
k =

{
ηk, if ηk ≤ B;
B, else.

k = 1,2, . . .

where B0 is a given constant, and B is selected to ensure that each generated Xk falls into the range of
[−B0,B0]

d . Both constants are allowed to increase along with the increase in the width and depth of the
neural networks µθ , Σφ and fψ . We denote the the bounded versions of the empirical data and the simulated

Zhu and Zheng

data as SSSB0
j and ŜSS

B
j , and their distributions as π

B0
S and π̂B

S . The empirical optimization problem (10) is then
transformed into the bounded version:

min
θ∈Θ,φ∈Φ

max
ψ∈Ψ

1
n

n

∑
j=1

fψ(ŜSS
B
j (θ ,φ))−

1
n

n

∑
j=1

fψ(SSS
B0
j). (12)

It can be proved that the Wasserstein distance between the bounded distributions, denoted as W (πB0
S , π̂B

S),
can be controlled. As the size of NN goes to infinity, B0 and B also increase to infinity, which, with
certain restrictions on ηk that will be presented in the following assumption, results in the convergence
of the bounded distribution towards its unbounded origin, i.e., π

B0
S → πS. This convergence enables the

controlling of W (πS,π
B0
S), and thus W (πS, π̂

B
S).

We make the following assumption on the underlying true model and the generated empirical data:
Assumption 1 The following conditions are satisfied for the generation process of empirical data (11):

1. All sequences SSS j are independent and identically distributed (i.i.d.).
2. µ : Rd → Rd and Σ : Rd → Rd×d0 are Lipschitz continuous and bounded on Rd .
3. The tail order of the probability density function of every random variable in the sequence of

elementary randomness (ηk : k = 1,2, . . .) is no more than x−
1

3+α , for some α > 0. Namely,
pηk(x) = O(x−

1
3+α), for all k = 1,2,

The first condition is assumed in order to effectively control the statistical error (see Chen et al. (2020)
for a detailed explanation), which is given as

sup
‖ f‖L≤1

ESSS∼πS [f (SSS)]−EŜSS∼π̃S
[f (S̃SS)]+ sup

ψ∈Ψ

ESSS∼πS [fψ(SSS)]−EŜSS∼π̃S
[fψ(S̃SS)] (13)

where πS denotes the real underlying distribution and π̃S denotes the empirical distribution of the n data
points. The two requirements of the second condition are interpreted as follows: the Lipschitz continuous
requirement for µ(·) and Σ(·) ensures that they can be sufficiently approximated within a bounded area
by neural networks with proper architectures. The bounded requirement for µ(·) and Σ(·) restricts the
output, and thus every Xk in the sequence, to a bounded area, when the sequence of elementary randomness
(ηk : k = 1,2, . . .) is also bounded or clipped to its bounded version. The third condition is imposed for
controlling the bounding error, which is defined as the Wasserstein distance between the real distribution
and its bounded counterpart, i.e., W (πS,π

B0
S). We additionally remark that such assumptions, as well as

the bounding strategies, are imposed only to guarantee statistical convergence in the following theorem,
and are unnecessary in practical applications. For example, there is no need to perform clipping on the
empirical data or the elementary randomness, and the empirical observations of SSS do not need to be mutually
independent in practice.

The main result of statistical analysis is presented as follows:
Theorem 1 Suppose that n copies of i.i.d. data are available and that the underlying generation model
satisfies Assumption 1. Under appropriate specifications of the neural network architecture, let θ ∗ and φ ∗

be the parameters that solve the optimization problem given as (12), the clipping boundaries B and B0

approach infinity along with n, by order B0 =C1 ·B = O(n
1

(2+α)(pd1+2)). We have

EW (πS, π̂
B
S (θ

∗,φ ∗))≤C ·n−
1+α

(2+α)(pd1+2) (logn)
3
2 , (14)

where α has the same meanings as in assumption 1, p is the length of the observed sequence, d1 is the
dimension of the observed process, C and C1 are both constants that are independent of n, but relevant
to pd1, α , the Lipschitz constants and bounds of µ(·) and Σ(·), and the length of the simulated sequence
(Xk : k = 0,1,2, . . .).

Zhu and Zheng

Due to length limit, we defer the detailed proofs of the theorem to a future work. The essence of
the proof is summarized as follows. We first decompose the error into three parts, namely the bounding
error, the network approximation error and the statistical error. The bounding error is controlled using
a coupling technique. The discriminator approximation error ‖ f − fψ ‖∞ and generator approximation
errors ‖ µ−µθ ‖∞ and ‖ Σ−Σφ ‖∞, together referred to as the network approximation error, are controlled
using function approximation theory provided by Chen et al. (2019) and Chen et al. (2020). Further,
the accumulated error in the sequentially generated data distribution, which is induced by the generator
approximation errors, is controlled using the law of total expectations. The statistical error is then balanced
with the network approximation errors, using theories of empirical process and network approximation.

We briefly discuss the implications of Theorem 1. Theorem 1 shows that with appropriately chosen
neural network architectures, for an arbitrary sequential stochastic model, if the underlying real generation
structure has µ(·), Σ(·) and ηk satisfying certain properties, the proposed estimation method can provide
consistent estimation of the simulator in that the simulated distribution converges to the underlying real
distribution under the Wasserstein distance measurement. To the best of our knowledge, this is the first
statistical theory on using neural networks to estimate and simulate sequentially generated data with
unbounded elementary randomness.

5 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the simulator estimated by our proposed framework, using
two sets of synthetic data (Subsection 5.1 and Subsection 5.2) and one set of real data (Subsection 5.3)
as the training data. In all experiments, we illustrate the use of the simulator by considering scenarios
where the simulator is applied to generate sequences of prices of multiple correlated assets. Our proposed
framework then aims to estimate the simulators such that the joint distribution of the simulated data has
a close Wasserstein distance compared to that of the training data. To demonstrate the performance of
estimated simulators in their practical use, we consider the task of evaluating the distribution of the maximal
drawdown (MDD) for a portfolio that is formed by a combination of all assets in consideration. In each
experiment, we consider the distribution of the MDD of a portfolio which consists of all observed dimensions
of the sequential data. We compare the MDD distribution of the simulated data-based portfolio against
the MDD distribution of the empirical data-based portfolio. The simulator that simulates the sequential
price data is estimated by our proposed method. In this way, we aim to demonstrate the performance of
our method from an operational performance point of view. We first present the definition of maximal
drawdown, which is derived from Chekhlov et al. (2005):
Definition 1 Let (Hi ∈ R : i = 0,1,2, . . . , p) be a portfolio sequence, and let Hi be the portfolio value at
time step i. The portfolio drawdown at time step i is defined by

Di = max
0≤l≤i

Hl−Hi

Hi
, (15)

and the maximal drawdown of a sequence is the maximum value of Di over all time steps i = 0,1,2, . . . , p,
namely, M = max0≤i≤p Di.

5.1 Multi-dimensional Heston Model

In this subsection, we use a synthesized data set of three stock prices and the maximal drawdown distribution
of a portfolio to evaluate the performance of our estimated simulator.

5.1.1 Underlying Model for Synthetic Data: Multi-dimensional Heston

The observed data is 3-dimensional. For each dimension, the underlying stochastic process is formulated
by a stochastic differential equation known as the Heston model (see Aı et al. (2007), which also presents

Zhu and Zheng

r d σ ρ κ γ

d1 0.04 0.015 0.25 −0.8 3 0.1
d2 0.04 0.015 0.2 −0.75 2.7 0.11
d3 0.04 0.015 0.15 −0.85 3.3 0.09

Table 1: Parameters of the underlying multi-dimensional Heston model

the values of the model parameters):

d
(

St

Yt

)
=

(
µSt

κ(γ−Yt)

)
dt +

(
St
√
(1−ρ2)Yt ρSt

√
Yt

0 σ
√

Yt

)
dWt (16)

where µ,κ,γ,ρ,σ are given parameters, St is the observed price process, Yt is the latent volatility process,
and Wt is the 2-dimensional canonical Brownian motion. We use a matrix L to induce correlation among
the three stochastic processes, namely, we let

d

 X1,t
X2,t
X3,t

=

 µ1,t
µ2,t
µ3,t

dt +(L⊗ I2) ·

 Σ1,t 0 0
0 Σ2,t 0
0 0 Σ3,t

d

 W1,t
W2,t
W3,t

 , (17)

where

Xi,t =

(
Si,t

Yi,t

)
, µi,t =

(
µiSi,t

κi(γi−Yi,t)

)
, Σi,t =

(
Si,t

√
(1−ρ2

i)Yi,t ρiSi,t
√

Yi,t

0 σi
√

Yi,t

)
.

The model parameters are set as in table 1. Additionally, we have µ = r−d, and L is the Cholesky
decomposition of P, given as

LL> = P =

 1 0.3 0.2
0.3 1 0.4
0.2 0.4 1

 .

We next describe how the data set is synthesized. The initial values are given by SSS0∼N ((100,100,100) ,
70 ·P), and YYY 0 = (0.1,0.1,0.1). There are n = 500 sequences generated in total, each having p = 15
transitions, with the weekly frequency ∆ = 7/365 as the resolution for observation. We use an Euler
discretization of the process, setting 30 sub-intervals between every two observations, which implies that
the resolution for generation is set as 7/(365×30). This synthetic data set is then used as input data for
the discriminator.

5.1.2 Training Process and Results

We specify the structure of the simulator as

Xk+1 = Xk +µθ (Xk)∆t +Σφ (Xk)ηk+1
√

∆t (18)

where ηk : k = 1,2, . . . are independent 6-dimensional canonical normal variables, ∆t is set as 7/(365×30),
which is the same as the length of the sub-intervals used in synthetic data generation. The parameterization
of µθ is given by L = 4, ñ= (n1,n2,n3,n4) = (10,10,10,6), the parameterization of Σφ is given by L = 4,ñ=
(n1,n2,n3,n4) = (80,80,80,36), and the parameterization of fψ is given by L = 4, ñ = (n1,n2,n3,n4) =
(500,500,500,1). The initialization of all the parameters of the weight matrices Wl’s of µθ , Σφ , fψ are
given by independent Gaussian random variables with mean 0 and variance 0.1. The vectors bl’s are
initialized as constant 3. The gradient penalty coefficient for fψ is set as 10, and the batch size for sampling

Zhu and Zheng

from synthetic data and for simulator generation is set as 256. The initial values SSS0 of each simulation
process is set to be the same as the initial values of the sample batch, and YYY 0 is also set as (0.1,0.1,0.1).
The training process is carried out with 500 iterations using the Adam optimizer (Kingma and Ba (2014))
with coefficients β1 = 0.5 and β2 = 0.9. Within each iteration, fψ is updated 5 times. The learning rate of
µθ and Σφ decays exponentially from 5e−4 to 1e−7, and the learning rate of fψ decays exponentially
from 1e−4 to 1e−7. The training takes about 34 minutes. The final Wasserstein distance between the
simulated distribution and the synthesized empirical distribution is 6.16.

We next evaluate the training results. We define a portfolio Ht = (S1,t +S2,t +S3,t)/3. The comparison
between the distribution of the maximal drawdown of synthesized stock price-based Ht and that of the
simulated stock price-based Ht is illustrated in the following figure 2a. The sizes of the synthesized data
set and the simulated data set used for comparison are both 500.

(a) Comparison of the smoothed his-
tograms of synthesized and simulated
maximal drawdowns in experiment 1.

(b) Comparison of the smoothed his-
tograms of synthesized and simulated
maximal drawdowns in experiment 2.

(c) Comparison of the smoothed his-
tograms of real and simulated maximal
drawdowns in experiment 3.

Figure 2: numerical results

5.2 Multi-dimensional Polynomial Model

In this subsection, we use a synthesized data set generated by a nonlinear SDE-based stochastic process.
We also use the maximal drawdown distribution of a portfolio to evaluate the performance of our estimated
simulator.

5.2.1 Underlying Model for Synthetic Data: Multi-dimensional Polynomial

The underlying stochastic process is formulated by a stochastic differential equation given by:

d (SSSt ,YYY t)
> = µ(SSSt ,YYY t)dt +Σ(SSSt ,YYY t)dWt (19)

where

µ(SSSt ,YYY t) =
(

S0.2
1,t +S0.2

2,t +1 S0.3
2,t +0.02S1,tS3,t S0.25

3,t +0.01S1,t Y2,t +Y3,t Y3,t +Y1,t Y1,t +Y2,t
)>

and

Σ(SSSt ,YYY t) =



0.3S1.2
1,t Y1,t 0.01S1,tS2,tY2,t 0.02Y3,tS1,tS3,t 0.1S1,tY1,t 0.5S1,tY2,t 0.7S1,tY3,t

0.02S1,tY2,t 0.7S1.1
2,t Y3,t 0.05Y1,tS2,tS3,t 0.1S2,tY1,t 0.2S2,tY2,t 0.2S2,tY2,t

0.05S1,tS2,tY3,t 0.08S2,tS2,tY1,t 0.1S0.9
3,t Y2,t 0.2S3,tY1,t 0.6S3,tY2,t 0.3S3,tY3,t

Y1,t 0 0 Y2,tY3,t Y3,tY1,t Y1,tY2,t
0 Y2,t 0 Y1,tY3,t Y1,tY2,t Y3,tY2,t
0 0 Y3,t Y2,tY1,t Y3,tY2,t Y1,tY3,t



Zhu and Zheng

We next describe how the data set is synthesized. The initial values are given by Si,0 ∼N (0,1),
where all three dimensions are independent and identically distributed, and YYY 0 = (0.1,0.2,0.15). There
are n = 1000 sequences generated in total, each having p = 25 observed points with frequency ∆ = 0.01
as the resolution for observation. We use an Euler discretization of the process, setting 15 sub-intervals
between every two observations , which implies that the resolution for generation is set as ∆t = 0.00067.
This synthetic data set is then used as input data for the discriminator.

5.2.2 Training Process and Results

We specify the structure of the simulator to have the same form as (18). The neural network parameterization
and initialization of µθ , Σφ and fψ , as well as the iterative optimization process are similar to those of
the first experiment. The training takes about 8 minutes with one Nvidia Quadro P4000 GPU. The final
Wasserstein distance between the simulated distribution and the synthesized empirical distribution is 0.29.

We next evaluate the training results.The portfolio Ht has the same definition as in the first experiment.
Comparison between the distribution of the maximal drawdown of synthesized data-based Ht and that of
the simulated data-based Ht is illustrated in the following figure 2b. The sizes of the synthesized data set
and the simulated data set used for comparison are both 1000.

5.3 Stock Price

5.3.1 The Real Data Set

In this subsection, we use a real data set from a data vendor from a platform Wind to test the performance of
our estimated simulator. The data set consists of the price variations of a stock (Facebook) from Oct. 8th,
2020 to Mar. 22nd, 2021. The observation frequency is 15 minutes, and 26 data points (Ŝi : i= 0,1,2, . . . ,25)
are recorded for every transaction day. The empirical data is processed as follows. We first subtract the
initial value of each day from intra-daily sequences, i.e., let Si = Ŝi− Ŝ0, for i = 0,1,2, . . . ,25. Then, we
remove S0, which now equals 0, from every sequence. All sequences now begin with S1, and are regarded
as weakly correlated identical copies of an underlying real distribution. After removing the sequences with
missing data, we retain n = 186 such copies.

5.3.2 Training Process and Results

We specify the structure of the simulator to have the same form as (18), but set ηk : k = 1,2, . . . as
independent 2-dimensional random variables, each dimension following the t distribution with 2.8 degrees
of freedom. The neural network parameterization and initialization of µθ , Σφ and fψ , as well as the iterative
optimization process are similar to those of the first experiment. The training takes about 5 minutes with
one Nvidia Quadro P4000 GPU. The final Wasserstein distance between the simulated distribution and the
real distribution is 0.33.

We next evaluate the training results. Since the stock price is 1-dimensional, we take itself as the
portfolio, i.e., Ht = Ŝt . Note that in order to avoid 0 as the dominator in equation (15), we add back the value
of the first observation S0 of each sequence and set Ht’s as the real stock prices. The comparison between
the distribution of the maximal drawdown of real data-based Ht and that of the simulated data-based Ht is
illustrated in the following figures 2c. The sizes of the real data set and the simulated data set used for
comparison are both 186.

6 CONCLUSION

We propose a new framework of a neural network-based sequential structured simulator to model, estimate,
and simulate a wide class of sequentially generated data. In our future work, we plan to demonstrate
through more numerical experiments and measurements the flexibility of our proposed structure of the
simulator. We also plan to further study the simulation of heavy-tailed sequential data.

Zhu and Zheng

REFERENCES
Aı, Y., R. Kimmel et al. 2007. “Maximum likelihood estimation of stochastic volatility models”. Journal of Financial

Economics 83(2):413–452.
Arjovsky, M., S. Chintala, and L. Bottou. 2017. “Wasserstein generative adversarial networks”. In International Conference on

Machine Learning, 214–223. PMLR.
Asai, M., M. McAleer, and J. Yu. 2006. “Multivariate stochastic volatility: a review”. Econometric Reviews 25(2-3):145–175.
Bai, Y., T. Ma, and A. Risteski. 2018. “Approximability of discriminators implies diversity in GANs”. arXiv preprint

arXiv:1806.10586.
Bansal, R., A. R. Gallant, R. Hussey, and G. Tauchen. 1994. “Computational aspects of nonparametric simulation estimation”.

In Computational Techniques for Econometrics and Economic Analysis, 3–22. Springer.
Broto, C., and E. Ruiz. 2004. “Estimation methods for stochastic volatility models: a survey”. Journal of Economic

Surveys 18(5):613–649.
Cen, W., E. A. Herbert, and P. J. Haas. 2020. “Nim: modeling and generation of simulation inputs via generative neural networks”.

In Proceedings of the 2020 Winter Simulation Conference, edited by Bae, K., Feng, B., Kim, S., Lazarova-Molnar, S.,
Zheng, Z., Roeder, T., and Thiesing, R., 584–595. Piscataway, New Jersey: Institute of Electrical and Electronic Engineers,
Inc.

Chekhlov, A., S. Uryasev, and M. Zabarankin. 2005. “Drawdown measure in portfolio optimization”. International Journal of
Theoretical and Applied Finance 8(01):13–58.

Chen, M., H. Jiang, W. Liao, and T. Zhao. 2019. “Nonparametric Regression on Low-Dimensional Manifolds using Deep
ReLU Networks: Function Approximation and Statistical Recovery”. arXiv preprint arXiv:1908.01842.

Chen, M., W. Liao, H. Zha, and T. Zhao. 2020. “Statistical guarantees of generative adversarial networks for distribution
estimation”. arXiv preprint arXiv:2002.03938.

Cuchiero, C., W. Khosrawi, and J. Teichmann. 2020. “A generative adversarial network approach to calibration of local stochastic
volatility models”. arXiv.

Goodfellow, I. J., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. “Generative
adversarial networks”. arXiv preprint arXiv:1406.2661.

Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. 2017. “Improved training of wasserstein GANs”. arXiv
preprint arXiv:1704.00028.

Heston, S. L. 1993. “A closed-form solution for options with stochastic volatility with applications to bond and currency
options”. The Review of Financial Studies 6(2):327–343.

Kingma, D. P., and J. Ba. 2014. “Adam: A method for stochastic optimization”. arXiv preprint arXiv:1412.6980.
Kingma, D. P., and M. Welling. 2013. “Auto-encoding variational bayes”. arXiv preprint arXiv:1312.6114.
Luo, R., W. Zhang, X. Xu, and J. Wang. 2018. “A neural stochastic volatility model”. In Proceedings of the AAAI Conference

on Artificial Intelligence, Volume 32.
Melino, A., and S. M. Turnbull. 1990. “Pricing foreign currency options with stochastic volatility”. Journal of Econometrics 45(1-

2):239–265.
Shephard, N. 1993. “Fitting nonlinear time-series models with applications to stochastic variance models”. Journal of Applied

Econometrics 8(S1):S135–S152.
Shephard, N., and T. G. Andersen. 2009. “Stochastic volatility: origins and overview”. In Handbook of Financial Time Series,

233–254. Springer.
Taylor, S. J. 1982. “Financial returns modelled by the product of two stochastic processes-a study of the daily sugar prices

1961-75”. Time Series Analysis: Theory and Practice 1:203–226.
Yeo, K., and I. Melnyk. 2019. “Deep learning algorithm for data-driven simulation of noisy dynamical system”. Journal of

Computational Physics 376:1212–1231.
Zheng, Y., and Z. Zheng. 2020. “Doubly Stochastic Generative Arrivals Modeling”. arXiv preprint arXiv:2012.13940.

AUTHOR BIOGRAPHIES
TINGYU ZHU is an undergraduate student majoring in mathematics from Yuanpei College at Peking University. Her current
research interest is in stochastic process. This is her first research project. Her email address is 1800017813@pku.edu.cn.

ZEYU ZHENG is an assistant professor in the Department of Industrial Engineering & Operations Research at University
of California Berkeley. He received his Ph.D. in Management Science and Engineering, Ph.D. minor in Statistics and M.A.
in economics from Stanford University, and a B.S. in Mathematics from Peking University. He has done research in simu-
lation, nonstationary stochastic modeling and decision making, data analytics, and financial technology. His email address is
zyzheng@berkeley.edu and his website can be found at https://zheng.ieor.berkeley.edu/.

mailto://1800017813@pku.edu.cn
mailto://zyzheng@berkeley.edu
https://zheng.ieor.berkeley.edu/

	INTRODUCTION
	MODEL SETUP
	METHOD
	Framework
	Training

	STATISTICAL PROPERTIES
	NUMERICAL EXPERIMENTS
	Multi-dimensional Heston Model
	 Underlying Model for Synthetic Data: Multi-dimensional Heston
	 Training Process and Results

	Multi-dimensional Polynomial Model
	 Underlying Model for Synthetic Data: Multi-dimensional Polynomial
	 Training Process and Results

	Stock Price
	 The Real Data Set
	 Training Process and Results

	CONCLUSION

