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ABSTRACT

Contagion dynamics on networks are used to study many problems, including disease and virus epidemics,
incarceration, obesity, protests and rebellions, needle sharing in drug use, and hurricane and other natural
disaster events. Simulators to study these problems range from smaller-scale serial codes to large-scale
distributed systems. In recent years, Python-based simulation systems have been built. In this work, we
describe a new Python-based agent-based simulator called CSonNet. It differs from codes such as Epidemics
on Networks in that it performs discrete time simulations based on the graph dynamical systems formalism.
CSonNet is a parallel code; it implements concurrency through an embarrassingly parallel approach of
running multiple simulation instances on a user-specified number of forked processes. It has a modeling
framework whereby agent models are composed using a set of pre-defined state transition rules. We provide
strong-scaling performance results and case studies to illustrate its features.

1 INTRODUCTION

1.1 Background and Motivation

Computing contagion dynamics on networks, through simulation, quantifies interactions among members
or agents of a population. In these models, nodes or vertices of networks often represent individuals, and
edges represent pairwise interactions among vertices. However, the strength of network-based approaches
is that the network model is abstract, and hence vertices can represent any entity, such as families (Yang
et al. 2019), with appropriate semantics for edges. These simulation models have been applied to problems
involving worm transmission in computer networks (del Rey 2013), social media and influence (Romero
et al. 2011), and evacuation planning (Zia et al. 2012).

Several software systems exist for computing these contagion dynamics on networks, ranging from
smaller-scale systems (Tisue and Wilensky 2004) to large-scale systems (Collier and North 2012), with
respect to the sizes of problems that such systems can handle. For purposes of discussion, we define smaller
networks as graphs with tens of nodes to 1000 nodes; intermediate networks as graphs with 103 up to 106

nodes; and large networks with numbers of nodes greater than 106 (consistent with (Zia et al. 2012)). The
importance of smaller and intermediate-sized simulation systems is attested to by the popularity of systems
such as NetLogo (Tisue and Wilensky 2004) and Epidemics on Networks (EoN) (Miller and Ting 2019).
These and larger-scale agent-based simulators are discussed in Section 2 (Related Work).
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In this work, we describe CSonNet (Contagion Simulation ON NETworks), a new all-Python agent-
based simulation (ABS) software for computing contagion dynamics on networked populations. CSonNet
is a compromise between small-scale network-based contagion simulation systems and large-scale systems.
The novelty of this work is described in the next subsection, which is followed by our contributions.

1.2 Novelty of Our Work

Our work presents a new simulation system for discrete time, network-based contagion dynamics that
is suitable for graphs with about 105 nodes. First, we introduce a new approach to building models of
agent behaviors that uses an extensible set of state transition mechanisms. These mechanisms can be
composed to yield several well-known models, and new ones. Second, we parallelize the simulator by
forking worker processes that compute simulation instances, to achieve speedups that enable the system
to handle intermediate to large networks with sufficiently fast execution times. Specifically, our goal is
to drive down the total simulation time to about 100 seconds or less, for, say, roughly 100 replicates, so
that the code can be used to run collections of simulations that involve hundreds of parameter sets. Third,
CSonNet will be part of a first-of-its-kind cyberinfrastructure (CI) for network science, called net.science
(Ahmed et al. 2020). The initial version of net.science was released in June 2021 (URL: https://net.science)
and will be updated at regular intervals. This CI will have many features, including the ability to run
agent-based simulations through CSonNet.

1.3 Our Contributions

1. CSonNet Python agent-based simulator. The simulation system performs discrete time simulations
on populations that are represented as networks, where nodes represent entities (such as persons and
organizations) and edges represent pairwise interactions between entities. The simulation module permits
both serial and parallel execution modes. Parallelism is implemented using an embarrassingly parallel
approach. Specifically, one simulation is typically composed of roughly 50 to 100 runs (or iterations),
where each run is a separate instance. The instances are divided among, and run on, worker processes. In
this work, we specify one worker process per core of a multicore commodity hardware node; however, one
can assign multiple worker processes per core. The main process waits for the completion of the worker
processes (which are forked processes in Python), and writes the results to files. CSonNet is designed to be
light-weight so that it can be run on laptops and high performance computing (HPC) clusters, with minimal
setup. Here, our focus is on evaluating the system on networks with up to 105 nodes; in an expanded
version, we will study scalability to larger networks. The current version of CSonNet supports undirected
networks; extensions to directed networks are currently in progress. By late 2021/early 2022, we expect
to make CSonNet public through a GitHub repository.

2. Construction and extensibility of agent models. A key feature of CSonNet, to make it versatile for
a wide range of problems, is to form agent (behavior) models through mechanism composition. That
is, an extensible set of state transition mechanisms is provided. These mechanisms are composed in
user-specified ways to form models; users provide these specifications through configuration files. For
example, in susceptible-infectious-recovered (SIR) models, an agent’s state transition S→ I is dictated by
neighbor influence (i.e., an infectious neighbor can infect a healthy ego node). An agent transition I→ R
is described by a timed transition (i.e., an agent spends a prescribed amount of time in the infectious state).
By composing these two mechanisms, a user obtains an SIR model. Other SIR models can be formed
with different mechanisms. The importance of this approach is that CSonNet is going to be exposed in
the net.science CI. Consequently, users need the ability to compose novel agent-models, through web app
screens within the CI, and we achieve this through mechanism composition.

3. Performance evaluation of the simulation module. The simulation module is run in serial and parallel
execution modes to evaluate the performance improvement due to concurrency. Strong-scaling studies
are performed on four networks. These studies were performed on Dell PowerEdge C6420 2.666 GHz

https://net.science
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hardware nodes, with 384 GB RAM and 40 cores per node. Each core in a node is an Intel Xeon Gold
6148, 2.40 GHz processor with 1280 KiB L1 cache, 20 MiB L2 cache, and 27 MiB L3 cache. We find
that strong scaling continues out through 32 worker processes and cores and that simulations of 100 runs
(i.e., 100 diffusion instances) with 100 time steps per run, on a 75,877-node network (Epinions) can be
completed in 62.5 seconds. The numbers of runs and time steps are fairly onerous; see Section 6. Amortized
over the 100 iterations, this is 0.625 seconds per iteration (i.e., one simulation instance from one set of
initial conditions). The execution time for 32 worker processes represents a factor 15.8 speedup over the
serial code. In the ideal case, one would expect a speedup of about 32. The observed speedup factor of
15.8 is due to Python’s implementation of multi-processing where a worker process is not implemented
as a lightweight threading process which uses the same address space as the parent process. Instead,
Python implements multi-processing concurrency through heavyweight forking of processes that requires
a complete code and data image. The execution times observed in our performance study demonstrate that
hundreds of simulations can easily be run in a day on one compute node, which is one of our goals.

In addition to the above, the paper also includes three cases studies. One uses a Granovetter (1978)
threshold model and two use an SIR model. These case studies encompass many simulations to investigate
the effects of model parameter values and initial conditions.

Paper organization. Section 2 contains related work. Section 3 presents the graph dynamical systems
formalism which the simulation system implements. Section 4 describes the simulation system. Section 5
provides information about the networks used in our experiments. Section 6 provides performance evaluation
in terms of strong scaling, and Section 7 contains case studies for problems that use the CSonNet system.
A summary is in Section 8.

2 RELATED WORK

Many simulators for agent-based models (ABMs) have been developed. Abar et al. (2017) provide a
detailed review of about eighty five simulators that are used in various contexts. Rossetti et al. (2018)
provide an overview of some of these simulators and compare their performance. The simulators differ in
many aspects, including development techniques, programming language, purpose, scalability, usability,
and performance.

Many recent simulation systems have been developed using Python; these systems exploit the large
library of graph algorithms available in NetworkX. For example, the NDLIB simulator (Rossetti et al. 2018)
supports several standard epidemic models (such as SIR, SIS, etc.); it also includes a simulation server
that allows remote execution of experiments. Miller and Teng (2019) discuss the Epidemics on Networks
(EoN) system which was developed for simulating small-scale epidemic models; it supports several popular
epidemic models, including SIS and SIR. Epigrass (Coelho et al. 2008) is mainly intended for large-scale
simulations of epidemics using metapopulation models. Nepidemix1 supports most common epidemic
models and allows a user to save intermediate results (such as disease prevalence and state transitions) that
can provide additional insights about the progression of an epidemic. Epydemics (Dobson 2020) is built
on top of the epyc experiment management library which allows users to run simulations on individual
machines, multicore systems and parallel computing clusters. Mesa2 is another Python framework for
agent-based modeling. New models are added to this framework through Python modules. In contrast,
new models are specified in CSonNet through the composition of state transition rules.

Abar et al. (2017) also discuss a number of small- and medium-scale agent-based simulators (e.g.,
AgentScript, FLAME, NetLogo). Among these, Netlogo (Railsback, Ayllón, Berger, Grimm, Lytinen,
Sheppard, and Thiele 2017) is a popular tool; however, it is not geared for simulations of large social
networks using high-performance computing (HPC) systems. Repast (HPC version)3, discussed by Collier

1http://nepidemix.irmacs.sfu.ca
2https://mesa.readthedocs.io/en/stable/
3http://repast.sourceforge.net/
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and North (2012), is an agent-based modeling framework, where behavior models can be built using
high-level programming abstractions. Swarm4 is an advanced parallel discrete event simulation (PDES)
framework, where behavior models are written in Objective-C and Java. See (Allan 2010) for additional
details regarding these and other frameworks.

3 GRAPH DYNAMICAL SYSTEMS

The underlying model implemented in our simulation system CSonNet is called a graph dynamical system
(GDS). A GDS is a powerful formal model that can simulate Turing machines for specific complexity
classes (Barrett et al. 2011; Barrett et al. 2006; Adiga et al. 2019). We start with the formal model.

3.1 GDS Formalism

A GDS (Mortveit and Reidys 2007), denoted S(G,F,K,R), is comprised of four elements: (i) a network
G(V,E), where V and E denote the vertex and edge sets; (ii) a sequence F of vertex functions; (iii) a set K
of vertex states; and (iv) a specification R of the order in which vertex functions are executed.

The graph G(V,E) represents the interaction network. The vertex set V and edge set E have cardinalities
n = |V | and m = |E|. Agents are vertices and pairwise agent interactions are edges in G. In general, edges
may be directed or undirected. In this paper, for simplicity, we will consider graphs with undirected edges.

Each agent vi ∈V , i ∈ {1,2, . . . ,n−1,n}, has an agent state or vertex state si ∈ K. For many models,
such as independent cascade or linear threshold (Kempe et al. 2003), a Boolean state set is used; i.e.,
K= B= {0,1}, where 0 (respectively, 1), is typically an inactive (respectively, active) state. One epidemic
model is the susceptible, infectious, recovered (SIR) system in which K= {S, I,R}. The system state (also
called a configuration) s = (s1,s2, . . . ,sn) is the sequence of vertex states. Let the local states, denoted by
s[vi], represent the sequence of states of vertex vi and all of its distance-1 neighbors in G. These quantities,
at time t, are denoted by st

i , st , and st [vi] respectively.
Each agent vi has a local function fi ∈ F that quantifies its state transitions. The state of agent vi at

time t +1 is given by
st+1

i = fi(st [vi]) . (1)

Thus, the next state of vi is a function of the current state of vi and those of its distance-1 neighbors in G.
Hence, given an initial system state (initial configuration) at time t = 0, the fi for all i ∈ {1,2, . . . ,n}

are evaluated simultaneously at each t ∈ (1,2, . . . , tmax), up through some specified time tmax. This is a
simulation instance.

In this work, we assume that specification of update order R corresponds to the synchronous update
scheme; that is, all agents evaluate their local functions fi and update their states simultaneously at each time
step; see Equation (1). Among other things, this enables greater parallelization of simulation computations,
leading to more efficient calculations. We now provide an example to make these ideas concrete.

3.2 Example GDS for Epidemic Simulation

Consider the 7-vertex binary tree of Figure 1, wherein all edges are undirected. Each node is a person, and
edges represent face-to-face interactions between pairs of nodes. We model an SIR epidemic process on
this tree. Each vertex is in one of the states K= {S, I,R}, where S is susceptible, I is infectious, and R is
recovered. Each infected person is infectious for tin f = 2 days, after which she transitions to the recovered
state. We assume a uniform edge weight (probability) we = 0.05 for all edges {v j,vk} such that if v j is in
state s j = I and vk is in state sk = S, then the probability that vk contracts the virus and becomes infectious
in the next time step is Pr[st+1

k = I|st
j = I,st

k = S] = we.
To evaluate whether a node vk in state S transitions under these circumstances, we use the following

scheme. A Bernoulli trial is performed for each neighbor v j of vk where s j = I. Assume that vk has q

4http://savannah.nongnu.org/projects/swarm
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Figure 1: Network G(V,E) with n = |V |= 7 and m = |E|= 6 undirected edges.

neighbors. That is, at each time t, a number 0 < p≤ 1 is drawn uniformly randomly for each neighbor v j
with s j = I, and if p≤ we, this is a positive Bernoulli trial (PBT); otherwise, it is a negative Bernoulli trial
(NBT). If any of the trials is a PBT, then vk transitions state from S to I, i.e., S→ I. Otherwise, (i.e., all
of the up-to q trials are NBTs), vk remains in state S. Since the SIR model is stochastic, we describe the
dynamics in our example for a specific sequence of PBTs and NBTs.

Figure 2 provides the dynamics over time steps t = 0 through tmax = 5. The colors of the states S, I,
and R are white, black, and gray, respectively. The initial conditions—the states of vertices at t = 0—are
that all agents are in state S, except v2, which is in state I. At t = 1, Bernoulli trials are performed for v1,
v4, and v5 and they are all NBTs, so no state change occurs. For t = 2, there are PBTs for v1 and v5, but
there is an NBT for v4. Thus, v1 and v5 transition S→ I at the end of t = 2, and v4 remains in state S.
Also, at the end of t = 2, v2 transitions I→ R because tin f = 2. Note the subtlety: v2 is infectious during
t = 2, but at the end of this time period (which is synonymous with the starting conditions for t = 3), v2
is recovered—it is the end of the second time period and the end of the infectious period.

Vertices v1 and v5 will be infectious at t = 3 and at t = 4, but at the end of t = 4, they transition to R.
During t = 3, v1 infects v3 owing to a PBT, and v3 becomes infectious at the end of t = 3. During t = 4
and t = 5, v6 and v7 have only NBTs with respect to the infectious agent v3 and hence these former two
agents do not transition; they remain in state S. Because all vertices are either in state S or R, no more
transitions are possible, and this state is a fixed point for these dynamics. It is important to note that the
contagion dynamics of a GDS are the results of computations of a simulation.

!1
!2 !3

!4 !5 !6 !7
t=1 t=2 t=3 t=4 t=5t=0

Figure 2: Contagion dynamics using an SIR model at each vi ∈ V , where the weight of each edge is we. The states
of nodes S, I, and R are colored white, black, and gray, respectively. At time t = 0, there is one seed node v2 in the
infected state, i.e., s2 = I, and all other nodes are susceptible, i.e., for vi with i ∈ {1,3,4,5,6,7}, si = S. The infectious
duration is tin f = 2 days.

4 SYSTEM DESCRIPTION

4.1 Overview and Algorithms

CSonNet is a discrete time, agent-based simulator (ABS) that computes contagion dynamics on networked
populations. CSonNet implements the GDS framework of Section 3. A simulation consists of a user-
specified number of iterations, and the number of time steps for each iteration. An iteration consists of
assigning initial states st

i (t = 0) to all nodes vi ∈V in the network G, assigning a state transition model to
each vi, and running time forward in discrete steps until a maximum number tmax of steps is completed.
The state transition model Mst

i for vi is the local function fi discussed in Section 3.1. The example in
Section 3.2 is an iteration that is executed for tmax = 5 time steps.
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Algorithm 1: Simulation Process (Main Process)
1 Input: Number of iterations ni. Maximum number of time steps tmax per iteration. Name of the file

containing the network G(V,E). Name of the file containing the initial conditions I for every node in each
iteration. Name of the file containing the state transition model Mst

i for each vi ∈V . Number nwp of worker
processes to fork.

2 Output: For each iteration and each time step t of each iteration, the list of nodes vi that transition states
and their new states st

i .
3 Steps:

A. Read the file containing the network G(V,E).
B. Read the file containing the initial conditions I.
C. Read the file containing the state transition models Mst .
D. Create a pool of nwp worker processes.
E. For each iteration η ∈ [1, ni]:

1. Assign Mst , G, the initial conditions from I for this iteration, η , and tmax to an available worker process,
and start the worker process execution on this iteration, i.e., invoke Algorithm 2.

2. Receive timing data and output file name from the worker process upon its completion of this iteration.

F. Concatenate the output files generated by each of worker processes over all iterations.
G. Print timing data.

Algorithms for the main process and a worker process are given in Algorithm 1 and Algorithm 2,
respectively. Concurrency in CSonNet is implemented by forking worker processes. The CSonNet main
process reads the files containing the network G, initial conditions I file, and the state transition models
Mst . It then forks a user-specified number of worker processes. Each worker process is allocated iterations
by the main process, one at a time; when an iteration completes, the main process assigns another iteration
to that process. This results in slightly better load balancing than assigning up-front an appropriate number
of iterations to each worker process. For a given number nwp of worker processes and a specified number
ni of iterations, the expected number of iterations per worker process is at most dni/nwpe.

Algorithm 2: Worker Process
1 Input: Iteration number η . Maximum number of time steps tmax. Network G(V,E). Initial condition (i.e.,

initial state) for every node in this iteration. State transition models Mst .
2 Output: (i) For this iteration and for each time step t, the list of nodes vi that transitions states and their new

states st
i . These data values are written to a file, named by iteration number η . (ii) Timing data for this

iteration.
3 Steps:

A. Start timer for this iteration.
B. Open the new output file for this iteration.
C. Assign initial state st

i at t = 0 to each vi ∈V , from I. Write initial states to output file.
D. For each time t ∈ [0, tmax−1]:

1. For each node vi ∈V :
a. Compute the next state st+1

i of vi, at time t +1, according to Equation (1).
b. If vi has changed state (i.e., st

i 6= st+1
i ), then write η , t +1, vi, st+1

i to file.

E. Stop timer.
F. Return timing data and output file name to main process.
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Table 1: Illustrations of selected well-known state transition models Mst in CSonNet. For each model, there is one or
more state transition rules.

Name of Model State Transition State Transition Rule

SIR
S→ I Probability influence
I→ R Probability

SIR
S→ I Probability influence
I→ R Discrete

Deterministic Threshold 0→ 1 Threshold

4.2 Agent State Transition Models

Table 1 lists some state transition models in CSonNet. In some cases, a given model can be implemented
in different ways. The SIR model, as an example, can be implemented where an agent transitions from
state I to state R either stochastically (i.e., on each time step, there is a probability of this transition), which
corresponds to state transition rule of Probability in the table, or after a specific number of time steps,
which corresponds to state transition rule Discrete in the table. These and other models are specified within
input files to the simulation code; no code changes are made. The specification of state transition models
through configuration files is an important feature of the system. We present these models because we use
them in the case studies of Section 7.

5 NETWORKS

We used four networks ranging in size from about 200 nodes to 76,000 nodes in our performance evaluation
and case studies. The list of these networks along with their structural properties is shown in Table 2.
These properties were generated with the codes in the net.science cyberinfrastructure (Ahmed et al. 2020).
which contains SNAP (Leskovec and Sosič 2016) and NetworkX (Hagberg et al. 2008) codes.

Table 2: Networks used in performance evaluation and case studies. If there are multiple connected components in a
graph, we use only the giant component. Here, n and m are numbers of vertices and edges, respectively, in the giant
component; dave and dmax are average and maximum degrees; kmax is the maximum k-core; cave is average clustering
coefficient; and ∆ is graph diameter.

Network Type/Domain Edge Direction n m dave dmax kmax cave ∆

Jazz interaction undirected 198 2742 27.7 100 29 0.617 6
Ca-Hepth collaboration undirected 8638 24806 5.74 65 31 0.482 18
Ca-Astroph collaboration undirected 17903 196972 22.0 504 56 0.633 14
Epinions trust on epinions undirected 75877 405739 10.7 3044 67 0.138 14

6 STRONG SCALING PERFORMANCE

We address strong scaling, i.e., how execution time decreases with increasing numbers of compute cores,
for a fixed problem size. Strong scaling results from running CSonNet on the four networks of Table 2
are provided in Figure 3. In both plots, the times are the durations in seconds to complete 100 iterations
of 100 time steps each for an SIR model. Numbers of seed nodes used in each iteration for each network
are given in the figure caption; the values were chosen to generate wide-spread contagion diffusion. For
each network, simulations are performed with numbers nwp of worker processes varying from one to 32
(our hardware nodes have 40 cores each). In Figure 3, the total end-to-end execution time is plotted on the
y-axis. It is seen that for a given network, the execution time decreases as the number of worker processes
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increases. Also, execution times increase with network size. The data show that 100 iterations of 100 time
steps each can be run on the 75,877-node Epinions network in 62.5 seconds.
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Figure 3: Strong scaling results for CSonNet, where execution time (y-axis) is the total end-to-end execution time.
Data are generated on four networks. Each simulation is run for 100 iterations, with each iteration consisting of 100
time steps, using an SIR model with tin f = 12 and we = 0.03. Number of seed nodes ns = 10 for Jazz, 400 for Ca-
Hepth, 500 for Ca-Astroph, and 2000 for Epinions. Each data point is the average of ten measured values. Error bars
at ± one standard deviation indicate that the measured times for a set of conditions are within a tight range. In these
simulations, one worker process is assigned to a dedicated compute core of one compute node. Results show that
CSonNet exhibits strong scaling. For the behavior of the Jazz network, see text.

In Figure 3, the data for Jazz does not demonstrate strong scaling as clearly as the other networks.
This is because the network is small; therefore, the execution times are on the same order as delays in
starting worker processes, giving rise to noisy data.

One hundred iterations was chosen because there is variability in initial conditions or model parameters
that are investigated through many iterations. One hundred time steps is somewhat arbitrary, but for epidemic
simulations, for example, a 3-month (e.g., roughly 100-day) prediction window wherein each time step
is one day, is generally considered a long-running simulation. (Typically, one recalibrates parameters and
runs for much shorter windows, on the order of a week or two.) Thus, the execution times provided here
are for fairly conservative conditions. Table 3 provides representative breakdowns of execution times into
component parts.

Table 3: Selected timing study data to show relative times for computation versus overhead or setup operations. The
setup times will be independent of number nwp of worker processes. The total setup time (last column), including
reading in the graph (second-to-last column) are both small in comparison to the worker process execution times.

Network No. Worker
Processes

Total Execu-
tion Time(s)

Total Worker
Process Time(s)

Time to Read
Graph(s)

Total Setup
Time(s)

Jazz 16 2.86 1.72 0.0064 0.040
Ca-Hepth 16 12.17 10.46 0.069 0.702
Ca-Astroph 16 25.25 22.18 0.49 1.82
Epinions 16 93.77 82.77 1.27 7.38
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7 CASE STUDIES

7.1 Case Study 1: Threshold Model on the Ca-Astroph Network

This is a study of the Granovetter (1978) threshold model to simulate the spreading of information or
opinions on the Ca-Astroph network to produce collective action, for several threshold values between θ = 1
to 14. Five simulations of 100 iterations each are completed with one simulation for each threshold value.
(All nodes have the same threshold for all iterations of one simulation.) Nodes are in state 0 (inactive) or
state 1 (active). In each of the 100 iterations, ns = 500 nodes are uniformly at random set to state 1 at t = 0,
with the remaining nodes in state 0. There is a different seed set for each iteration. A node can transition
state 0→ 1, but once in state 1, it remains active. A node transitions to state 1 when at least a threshold θ

number of its neighbors are already in state 1. Figure 4a shows the number of newly active (i.e., state 1)
nodes as a function of time; such plots are commonly referred to as epi-curves. As the threshold increases,
the peak in numbers of newly active nodes decreases and is pushed out to greater times. The cumulative
number of nodes in state 1 is provided in Figure 4b. Error bars provide ± one standard deviation. For
lesser thresholds, contagion spreads so quickly that the variability in results across the 100 iterations is
very small. The variation increases as θ increases. Since the threshold model is deterministic, variability
comes from the different seed sets over the 100 iterations. In Figure 4c, the final number of active nodes
is plotted against the number ns of seed nodes; in this plot, ns varies from 50 to 500. The results show a
pronounced effect of ns for θ ≥ 4.
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Figure 4: Simulation results for modeling information transmission on the Ca-Astroph network using the threshold
model of (Granovetter 1978). There are ns = 500 seed nodes per iteration in (a) and (b). Seed nodes are chosen
uniformly at random without replacement from all nodes. (a) Epi-curves (i.e., the y-axis is the number of newly
activated nodes at each time t) and (b) Cumulative infection curves (i.e., the y-axis is the cumulative number of
activated nodes at each time t) for different threshold values from θ = 1 to 14. (c) Final numbers of activated nodes as
a function of the seed set size (50 to 500 seed nodes) and θ . Error bars in (b) and (c) denote ± one standard deviation.

7.2 Case Study 2: SIR Model on the Epinions Network

We study the diffusion of information on the Epinions network using an SIR model. This model simulates
the behavior that people will only spread information for a finite time (the infectious duration tin f = 10
days). During this “infectious” period, agents try to spread information to their susceptible neighbors across
edges with probability we = 0.002. In Figures 5a and 5b, epi-curves and cumulative infection curves are
provided for we = 0.002 and ns = 10 to 50 nodes (10n to 50n in the legend). In Figure 5a, the number of
newly infected nodes at t = 0 is the number of seed nodes, and then these numbers drop because far fewer
nodes get infected at t = 1. Overall, spreading increases as ns increases. Figure 5c shows the final number
of nodes that possess the information as edge weight increases from 0.001 to 0.005, for the same numbers



Priest, Kishore, Machi, Kuhlman, Machi, and Ravi

of seed nodes. The results are relatively independent of numbers of seed nodes. But the effect of increasing
edge weight we is pronounced. Surprisingly, in Figure 5c at ns = 50, the effect of we on the total number
of nodes that reaches the infected state I appears to be close to linear, at least for 0.002≤ we ≤ 0.005.
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(b) Cumulative infection curves
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Figure 5: Simulation results for modeling information transmission on the Epinions network using an SIR model.
Different numbers of seeds nodes are ns = 10, 20, 30, 40, and 50. Seed nodes are chosen uniformly at random without
replacement from all nodes. (a) Epi-curves (i.e., the y-axis is the number of newly infected nodes at each time t) and
(b) Cumulative infection curves (i.e., the y-axis is the cumulative number of infected nodes at each time t) for different
sizes of seed node sets. The infectious period is tin f = 10 and the edge weight we = 0.002. (c) Final numbers of
infected nodes as a function of seed set sizes and we in the SIR model. The infectious period is tin f = 10. Error bars
denote ± one standard deviation.

7.3 Case Study 3: Effect of Averaging SIR Model Results on the Epinions Network

The setup for this case study is very similar to the previous one: we use the same SIR model on the same
network. Here, we use we = 0.006, which is greater than previous values. The point of this case study is to
illustrate the effects of averaging the results of multiple iterations, which is routinely done. In Figure 6a,
the 100 epi-curves are displayed, one for each iteration of a simulation. In Figure 6b, the time vs point-wise
average curve resulting from the 100 curves is provided. Note that the average curve has a peak that is
much less (roughly 80% of the maximum from individual iterations).

The importance of this result can be explained with an example. While we use an SIR model here
in a social context because our graph Epinions is an online communication network, it has a power-law
degree distribution like many social networks. If these results are applied to a disease epidemic, and the
average epidemic curve in Figure 6b is used to predict the peak value of the number of hospital beds needed
or of the number of ventilators needed for an epidemic like COVID-19, then the most extreme predicted
outcome, as represented by the top of the red error bars at +1 standard deviation, only represents the
typical outbreak generated by each individual epi-curve in Figure 6a. That is, there is no factor of safety
in the results when considering the worst-case conditions as represented by +1 standard deviation.

8 SUMMARY AND FUTURE WORK

We presented the CSonNet discrete time simulator. Contributions of this work are summarized in Section 1.3.
The system combines the ease of programming system extensions using Python with concurrency. The
CSonNet system supports many state transition models; additional models will be presented in an expanded
version of this work. Performance comparisons with other simulation systems (e.g., NDLIB (Rossetti,
Milli, Rinzivillo, Sirbu, Pedreschi, and Giannotti 2018)) will also be presented in an expanded version of
this paper. In this work, we focus on graph sizes where simulations can be completed in 100 seconds or
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(a) 100 Epi-curves
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Figure 6: Simulation results for modeling information transmission on the Epinions network using an SIR model.
The y-axes are the numbers of newly infected nodes at each time t. All 100 iterations are performed with one seed set
where ns = 20. In the SIR model, tin f = 10 and we = 0.006. (a) 100 epi-curves (i.e., one epi-curve for each iteration)
and (b) the average epi-curve over the 100 iterations, with ± one standard deviation error bars.

less, to accommodate large parametric studies that often involve roughly four dimensions, with, say, five
values per dimension, resulting in 54 = 625 simulations. We will investigate scaling to larger networks as
part of future work.
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