
Proceedings of the 2021 Winter Simulation Conference
S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo, and M. Loper, eds.

REFLECTIONS ON SIMULATION OPTIMIZATION

Shane G. Henderson

School of Operations Research and Information Engineering
Cornell University

Ithaca, NY 14850, U.S.A.

ABSTRACT

I provide some perspectives on simulation optimization. First, more attention should be devoted to the
finite-time performance of solvers than on ensuring convergence properties that may only arise in asymptotic
time scales that may never be reached in practice. Both analytical results and computational experiments
can further this goal. Second, so-called sample-path functions can exhibit extremely complex behavior that
is well worth understanding in selecting a solver and its parameters. Third, I advocate the use of a layered
approach to formulating and solving optimization problems, whereby a sequence of models are built and
optimized, rather than first building a simulation model and only later “bolting on” optimization.

1 INTRODUCTION

The simulation optimization (SO) problem as explored in this tutorial is to minimize some real-valued
function f (x) over a domain D ⊆ Rd , where f (x) = E f (x,ξ ) can only be estimated through (stochastic)
simulation replications f (x,ξ1), f (x,ξ2), . . . , f (x,ξn), say. Here ξ1,ξ2, . . . are assumed to be independent
random elements that each have the same distribution as ξ , and x is a vector of decision variables. This
formulation is very general, since the vector of decision variables x can encompass both distributional and
structural parameters, and the sequence (ξ1,ξ2, . . .) can be viewed as the U(0,1) random numbers that drive
the simulation. Still, the formulation is not completely general, since it omits non-expectation objectives
such as quantiles and other functionals. Many, but certainly not all, of the viewpoints herein extend to such
objectives. Also, the formulation excludes stochastic constraints.

My goal is to highlight a few perspectives that I believe merit more attention from the SO research
community.

1. Convergence has been over-emphasized in the SO literature; we should strive to design SO solvers
(implementations of algorithms) that make rapid progress in reducing the objective function, but
not be as concerned with devising solvers to converge to a global minimizer as the iteration count
increases without bound. Even convergence to a local minimizer is not, practically speaking, as
important as rapid progress in early parts of the search. This perspective may seem odd, but is more
fully explicated and defended in Section 2, where I also promote the use of analytical results that
shed light on the early stages of SO solver runs, using stochastic approximation and trust-region
methods as extended examples to reinforce the key ideas.

2. Analytical results that shed light on early progress of SO solvers can be complemented by simulation
experiments that compare a set of SO solvers on a suite of test problems. There has been substantial
recent progress in defining metrics for comparing SO solvers (Eckman et al. 2021a) and in improving
SimOpt (Pasupathy and Henderson 2006; Pasupathy and Henderson 2011b; Eckman et al. 2019)
to support such comparisons (Eckman et al. 2021b). Section 3 surveys some of those metrics.
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3. SO solvers can often benefit from the use of common random numbers (CRN), because CRN can
allow one to more accurately estimate the difference in objective function values of two solutions.
The use of CRN across the solution space yields what I call sample-path functions. The behavior
of these sample-path functions is very interesting and has implications for the design of, e.g.,
trust-region methods as explored through examples in Section 4.

4. Finally, Section 5 discusses some modeling philosophy, proposing that SO not be considered the
approach to solving a practical problem. Rather, in line with the views of several experienced
modelers, I advocate working with a succession of models that all address the problem under
consideration, where not all models need to be simulation models. Moreover, I advocate trying
to build optimization-facilitating structure such as convexity into the SO problem from the outset,
only abandoning structure when it cannot be maintained without sacrificing essential model fidelity.

As should now be clear, this paper is not a survey. Readers interested in an introduction to SO could
consult Jian and Henderson (2015). Fu (2014) provides a more advanced and comprehensive treatment.
Fu and Henderson (2017) provides an historical perspective in relatively compact form. Recent tutorials
in the Winter Simulation Conference include Sanchez and Sanchez (2020), which provides a perspective
on robustness in discrete optimization problems and Newton et al. (2018), which reviews key ideas in
stochastic gradient descent that are highly relevant in the SO context.

2 IS CONVERGENCE OVERRATED?

Why should we design SO solvers to be convergent? This question may seem almost nonsensical. After
all, an enormous literature is devoted to proving convergence of optimization algorithms. Naturally, we’d
like an optimization solver to solve the problem for which it is designed if given sufficient time, and
convergence to an optimal solution is certainly a reasonable way to define the term “solve.” However, if
the relevant time scales over which convergence or near convergence is achieved are so long that we will
never reach that point in practice, then why establish convergence results?

Despite posing this question, I believe convergence proofs are important and worthwhile. First, they
can represent a serious theoretical challenge that may uncover new avenues of algorithm analysis. Second,
they provide some assurance that a solver will behave reasonably; if the solver converges to an optimal
solution in the long run, then one might expect it to make progress towards an optimal solution over shorter
time scales. And if it fails to converge, how then does it behave? Third, they may help clarify the time
scales over which convergence is expected; if this time scale is very long then one might naturally turn
attention to the early behavior of the solver. Fourth, they may motivate the specialization of the solver to
problems that exhibit structure, such as convexity, under which convergence times are more palatable.

These perspectives are amplified when one draws a contrast between global convergence and local
convergence. Proofs of the former in the absence of structure tend to embed the principle that global
convergence arises when all solutions have been sampled infinitely often. (With an appropriate structural
modification of this principle for problems with an infinite number of solutions, e.g., through Lipschitz
continuity in the case of continuously parameterized problems, and growth conditions outside a compact
set for problems with unbounded domains.) The central difficulty with this principle is that the time scales
over which all solutions are visited is typically enormous. A delightful word I learned from Peter Glynn to
describe such out-of-reach time scales is “asymptopia.” In essence, the convergence proof is correct, but
is only relevant in asymptopia.

Local convergence proofs do not suffer to the same extent from this time-scale malady. I applaud the
effort to develop local convergence proofs that are relevant on practical time scales. Examples of such results
include those for COMPASS (Hong and Nelson 2006), ADALINE (Ragavan et al. 2021) and ASTRO-DF
(Shashaani et al. 2018). Even so, some SO solvers, when modified to ensure even local convergence, can
perform less reliably as discussed below in the case of stochastic approximation.
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In light of this discussion, perhaps a better positioning of the question that opened this section, which
was deliberately provocative, is instead “Is convergence overrated when the time scale over which we can
reasonably expect convergence or near-convergence is likely beyond our computational reach?” I believe
the answer is “yes.”

When convergence cannot be expected on a practical timeframe, then we should not view it as a critical
goal in the design of solvers that are meant to be used in practice. But then, what should be the goal of
a solver? A reasonable goal seems to be that a solver should be able to improve over an initial solution
at some reasonable rate, at least for some time. (This rather vague statement will be made precise in two
examples below.)

This philosophy aligns with many of the SO solvers deployed in off-the-shelf simulation packages.
Those solvers are typically based on some meta-heuristic search principle that can be expected to make at
least some progress on many problems, but that does not provide convergence guarantees. (Such solvers
are also well equipped to tackle problems with little or no structure that are often posed by simulation
users.) These solvers have been highly successful, partly because they provide improvements in an objective
function over computational budgets that are relevant in practice.

What kind of theory might be developed to yield practical insight for solvers that either don’t converge,
or that converge only in asymptopia? One class of results relates to the progress that can be made over
the initial iterations of the solver. Here we present two extended examples, both of which use arguments
closely related to Lyapunov functions.

2.1 Stochastic Approximation

There are two primary methods for analyzing stochastic approximation (SA). The first is sometimes called
the ordinary-differential-equation (ODE) method that exploits the notion that when suitably scaled, the
usual SA recursion converges in a suitable sense to the solution to an ODE; see, e.g., Asmussen and Glynn
(2007), Ch. VIII. The second method is to directly analyze the error in the estimated solutions and can
be found in many places, including Wright and Recht (2021) and Bottou et al. (2018). What follows is a
repeat of this argument, very closely following the presentation in Nemirovski et al. (2009).

Suppose we are minimizing f (x) = E f (x,ξ ) over a non-empty convex compact subset D ⊂ Rd for
some d < ∞. We assume that f (·,ξ ) is convex and continuously differentiable for each fixed ξ and that
f (·) inherits these properties. (I am skipping some technicalities; see Nemirovski et al. 2009 for details.)
Assume we have an unbiased estimator g(x,ξ ) of the gradient of f (·) at x, i.e., Eg(x,ξ ) = ∇ f (x) for
all x ∈ D. Since f (·) is continuous, it attains its minimum on D at some point x∗ say. Let ΠD denote
projection onto the set D, so that ΠDx = argminy∈D ‖x− y‖. Unless otherwise specified, we use the usual
`2 norm throughout. Then ΠD is a contraction, i.e., ‖ΠDx−ΠDy‖ ≤ ‖x− y‖ for all x,y ∈ Rd . The usual
SA recursion, for a given stepsize sequence (γ j : j ≥ 0), starting from some initial point X0 ∈ D is

X j+1 = ΠD(X j− γ jg(X j,ξ j))

for j ≥ 0, where ξ0,ξ1, . . . are iid replicates of ξ .
Let A j =

1
2‖X j− x∗‖2 and a j = EA j. Then, since ΠD is a contraction, for j ≥ 0,

A j+1 =
1
2
‖ΠD(X j− γ jg(X j,ξ j))− x∗‖2

=
1
2
‖ΠD(X j− γ jg(X j,ξ j))−ΠDx∗‖2

≤ 1
2
‖X j− γ jg(X j,ξ j)− x∗‖2

= A j +
1
2

γ
2
j ‖g(X j,ξ j)‖2− γ j(X j− x∗)>g(X j,ξ j). (1)
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Now, for j ≥ 0, ξ j is independent of F j−1 = σ(X0,ξ0,ξ1, . . . ,ξ j−1), taking F−1 = σ(X0). Thus, for
j ≥ 0, ξ j is independent of X j, so using the tower property of expectation,

E[γ j(X j− x∗)>g(X j,ξ j)] = γ jE[E[(X j− x∗)>g(X j,ξ j)|F j−1]]

= γ jE[(X j− x∗)>E[g(X j,ξ j)|F j−1]]

= γ jE[(X j− x∗)>∇ f (X j)].

Taking expectations through (1) we therefore get

a j+1 ≤ a j +
1
2

γ
2
j E[‖g(X j,ξ j)‖2]− γ jE[(X j− x∗)>∇ f (X j)].

Now assume that the gradient estimators have uniformly bounded second moment in the domain D,
so that E[‖g(X j,ξ j)‖2]≤M for some M < ∞. Also, now suppose that the function f (·) is strongly convex
on D, which, together with our earlier assumption of differentiability, ensures that there exists a constant
c > 0 such that for all x,y ∈ D,

f (y)≥ f (x)+(y− x)>∇ f (x)+
c
2
‖y− x‖2,

or, equivalently, that
(y− x)>(∇ f (y)−∇ f (x))≥ c‖y− x‖2. (2)

Strong convexity ensures that x∗ is unique, and since x∗ is optimal

(x− x∗)>∇ f (x∗)≥ 0

for all x ∈ D. (In the case where x∗ lies in the interior of D then ∇ f (x∗) = 0, but x∗ could lie on the
boundary.) Combining this with (2) gives

E[(X j− x∗)>∇ f (X j)]≥ E[(X j− x∗)>(∇ f (X j)−∇ f (x∗)]≥ cE[‖X j− x∗‖2] = 2ca j.

Summarizing, we now have that for j ≥ 0,

a j+1 ≤ (1−2cγ j)a j + γ
2
j
M
2
. (3)

Typically, one now chooses γ j = θ/( j+1) for some θ > 0. Instead, fixed-steplength SA chooses γ j
to be constant in j, say γ j = γ > 0 with γ so small that 2cγ < 1. Then, (3) ensures that the mean-squared
error in X j as an estimator of x∗ decreases geometrically, at least for j so small and the initial error a0
so large that the error measure a j is still decreasing. Related ideas are mentioned briefly in Newton et al.
(2018), attributing the result to Bottou et al. (2018).

To explore this point a little more, we unfold (3) to get, for j ≥ 1,

a j ≤ β
ja0 + γ

2 M
2
(1+β +β

2 + · · ·+β
j−1),

where β = 1−2cγ .
This conclusion nicely encapsulates the dynamics of the SA recursion for fixed γ . Indeed, for fixed

steplength γ , (X j : j ≥ 0) is a (general state space) Markov chain and the argument leading to (3) is
essentially a proof that V (x) = 1

2‖x− x∗‖2 is a Lyapunov function satisfying a geometric drift condition.
Provided that the chain is appropriately irreducible, it follows that the chain is positive (Harris) recurrent
(Meyn and Tweedie 1993, Theorem 16.0.1). This is intuitive, since the dynamics are such that when X0 is
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far from x∗, the chain is attracted to x∗ but cannot converge because our steplengths do not decrease to 0.
The choice of steplength dictates how quickly errors are reduced initially (through the term β ja0) but also
how closely the chain eventually “orbits” the optimal point x∗ through the term γ2 M

2 (1+β +β 2 + · · ·).
Here we are mostly focused on the dynamics for a modest number of iterations, and in that setting the

error E[‖X j− x∗‖2] decreases geometrically rapidly.
This is an extremely encouraging result, suggesting rapid improvement in the objective function, with

two provisos. First, this rapid improvement can only be expected when we are initially “far” from the
optimal point x∗. Still, that is exactly the regime we are focusing on here. Second, the reduction comes
provided we can choose a step size γ > 0 such that 1−2cγ ≥ 0. It is not at all clear how to choose a step
size γ ∈ (0,1/2c), since c is rarely known, even approximately, which is the essence of the fragility of
SA. Moreover, this fragility is clearly on show when attempting to select an adaptive stepsize sequence to
ensure (local) convergence; see Asmussen and Glynn (2007), Ch. VIII.

In any event, it should be clear that the error in SA can be analyzed with some fidelity for short runlengths,
supporting its use in practice provided a reasonable choice of (fixed) stepsize γ can be identified.

2.2 Trust Region Methods

Trust-region methods are a powerful class of methods for nonlinear optimization methods. They have their
origin in deterministic optimization problems, but have seen extension to simulation optimization, e.g.,
Deng and Ferris (2006), Chang et al. (2007), Shashaani et al. (2016), Shashaani et al. (2018), Blanchet
et al. (2019). The idea behind these methods is to solve optimization problems by maintaining, in each
iteration, a current iterate Xk ∈D and a trust-region radius ∆k. In each iteration a local metamodel is fit to
the objective function f (·) that is assumed to be a useful model in the ball B(Xk,∆k) centered at Xk with
radius ∆k. One then approximately minimizes the metamodel within the ball to generate a proposed new
point Yk say, and the function value f (Yk) is estimated. If the predicted improvement in objective function
value from the metamodel approximately matches the directly estimated improvement in objective function
value (the estimated value of f (Xk)− f (Yk)) then the proposed new solution is accepted (Xk+1 =Yk) and the
trust-region radius is enlarged (∆k+1 = r∆k for some r > 1). (The radius is capped at some maximal radius.)
If not then the new solution is rejected (Xk+1 = Xk) and the trust-region radius is reduced (∆k+1 = ∆k/r).

Trust-region methods may vary slightly from this description, but this is the essence of the idea. The
trust region radius is adjusted to ensure a good match between the metamodel and the true function within
the ball. Taylor’s theorem ensures that for a sufficiently small radius a good match is possible between a
linear or quadratic metamodel and the true function, though it is desirable to maintain a larger radius to
enable more rapid progress.

Blanchet et al. (2019) develop an elegant approach to the analysis of trust-region methods using
supermartingales. They seek to understand the number of iterations T = inf{k≥ 0 : ‖∇ f (Xk)‖ ≤ ε} needed
to reach a point with a sufficiently small (in norm) gradient, for some fixed ε > 0. They define a potential
function, which for one of their analyses takes the form V (x,δ ) = v f (x)+ (1− v)δ 2, for some suitable
v ∈ (0,1). It will be convenient for us to adjust this definition slightly to

V (x,δ ) = v( f (x)− f (x∗))+(1− v)δ 2,

where x∗ minimizes f . This modified definition differs from theirs only by a constant. Their Theorem 3
shows that under suitable conditions, if Gk = σ(X0,X1, . . . ,Xk,∆0,∆1, . . . ,∆k), then

E[V (Xk+1,∆k+1)−V (Xk,∆k)|Gk]≤−b∆
2
k , (4)

for some b > 0 on the event that k < T , i.e., on the event that the algorithm is yet to reach a point with
small (in norm) gradient. (Strictly speaking, they employ a different sigma field, but this will suffice
for our discussion.) Why is this relevant to our discussion? This result yields a bound on ET through
a stopping-time argument. The idea is that V (Xk,∆k) is nonnegative, so cannot go negative. Since, on



Henderson

average, it decreases by b∆2
k on each step prior to T , the number of iterations T cannot grow so large that

bE∑
T−1
k=0 ∆2

k > EV (X0,∆0).
To give a sense of the more rigorous argument, let x∗ be a minimizer of f and define M0 =V (X0,∆0) =

v( f (X0)− f (x∗))+(1− v)∆2
0. Let a∧b = min{a,b}. For k ≥ 1 define

Mk =V (XT∧k,∆T∧k)+
T∧k−1

∑
j=0

∆
2
j .

Equation 4 implies that (Mk : k ≥ 0) is a super martingale with respect to the filtration (Gk : k ≥ 0). This
implies that for any k ≥ 0, EMk ≤ EM0, i.e., that

EV (XT∧k,∆T∧k)+E
T∧k−1

∑
j=0

∆
2
j ≤ EV (X0,∆0).

Now,
EV (XT∧k,∆T∧k) = v(E f (XT∧k)− f (x∗))+(1− v)E∆

2
T∧k ≥ 0,

so

E
T∧k−1

∑
j=0

∆
2
j ≤ EV (X0,∆0).

Taking the limit as k→ ∞, monotone convergence ensures that

E
T−1

∑
j=0

∆
2
j ≤ EV (X0,∆0).

Blanchet et al. (2019) use a separate analysis to show that the trust-region radius stays above some
threshold sufficiently frequently that the left-hand-side of this expression is linear in ET (with explicit
constants), and this then yields a bound on ET that is O(ε−2).

The analysis permits the trust-region method to occasionally make “mistakes” (as all SO solvers will
do when simulation noise is involved), provided that the probability of such mistakes is controlled. The
probability of a mistake is kept small by choosing the sample size employed to estimate the metamodel
on the kth iteration. Essentially, the sample size needs to be of the order ∆

−4
k in terms of the trust-region

radius ∆k. The true computational complexity of the trust-region procedure should take into account the
number of samples required to identify a point with small normed gradient, rather than just the number of
iterations as discussed here. It seems likely that some such result might be obtained, because the analysis
in the paper identifies a biased random-walk-like behavior of the sequence of trust-region radii that keeps
them from getting too small, which might prove tractable, but such an analysis is not given therein. A
second weakness with this analysis, yet one that seems less central than the first, is that the stopping time
T when the norm of the (true) gradient drops below ε is unobservable, so the trust-region method may not
know that it has identified a high-quality solution.

This supermartingale-style argument looks likely to be useful in analyzing other SO algorithms, as the
authors point out. The key insight needed is the identification of an appropriate potential function.

3 FINITE-TIME METRICS

Theoretical analyses such as those we have sketched in the previous section often require strong assumptions
to enable the analysis to go through. Such assumptions can weaken the overall conclusion relative to observed
practice. Accordingly, these analyses can be buttressed with empirical comparisons of solvers on a library
of test problems. In fact, if it proves difficult or impossible to develop theoretical analyses, then empirical
comparisons may be the primary method for comparison of solvers.
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Eckman et al. (2021a, 2021b) develop, respectively, metrics for empirical comparisons of multiple
solvers on multiple test problems and a new version of the testbed SimOpt (Pasupathy and Henderson
2006, 2011b, 2011a; Eckman et al. 2019). The new version is a significant improvement over previous
versions, with the main innovations being

1. a conversion to python;
2. the use of github;
3. development of support for random instances of problems;
4. multiple SO problems built from a single simulation model;
5. careful exercise and automation of CRN control through wrapper functions that set up and use a

newly implemented version of the generator described in L’Ecuyer et al. (2002) with 3 levels of
streams instead of 2; and

6. the introduction and automation of many plots that provide an evaluation of the performance of
multiple solvers on multiple problems.

Here we focus on the last point above, giving examples of the plots and discuss how they can be interpreted,
referring the reader to Eckman et al. (2021a) for a more complete discussion. The plots below are inspired
by related ideas from the literature, with important references including Dolan and Moré (2002), Gould
and Scott (2016), Moré and Wild (2009), Ali et al. (2005) and Beiranvand et al. (2017).

We use the term “macro-replication” to refer to a single run of a single solver on a single problem,
restricting the solver to use at most a predefined problem-specific budget, b say, of simulation replications.
The progress of the solver as it works to solve the problem can be visualized through a progress curve,
which is essentially a rescaled version of plots that are commonly used to indicate progress. We rescale
the horizontal axis to indicate the fraction of the budget b expended, so that it runs from 0 to 1. We
rescale the vertical axis to indicate the fraction of the initial optimality gap that remains, so that it also runs
from 0 to 1. More precisely, let Xt denote the (random) solution the solver recommends after a fraction
t ∈ [0,1] of the budget b has been expended, starting from a fixed initial solution x0. Let f (x∗) indicate
the optimal objective function value of the problem. (If f (x∗) is unknown then a bound or estimate can be
used in lieu.) A progress curve plots ν(t) = ( f (Xt)− f (x∗))/( f (x0)− f (x∗)) as a function of t. If exact
function values are not available, then estimates are used; those estimated function values are obtained
from so-called post-replications that are needed to avoid optimization bias as described in, e.g., Mak et al.
(1999). Macro-replications are needed to gain a sense of the variability in performance of the solver on
the problem. We can aggregate the performance of the solver on multiple macro-replications through
aggregated progress curves that indicate the mean or a quantile at each time t. In the hypothetical plot in
Figure 1a the solver makes steady progress, eventually reducing the optimality gap to 20% of its initial
value.

There are two levels of simulation in these evaluations: macro-replications and post-replications.
Accordingly, the estimators of aggregated progress curves are two-level estimators. Eckman et al. (2021a)
discusses the implications of the use of two-level estimators and advocates the use of bootstrapping to
obtain error estimates.

The (random) area under a progress curve, A =
∫ 1

0 ν(t)dt, provides a sense of how rapidly a solver
solves a problem; if the area A is small, then the solver rapidly identifies high-quality solutions. These
areas depend heavily on the choice of budget b due to the use of rescaling in the plots; if b is too large then
the progress curve will drop rapidly to 0 and the area A will be nearly 0. If b is too small then the progress
curve will not decrease much and the area A will be nearly 1. Thus, the budget b needs to be chosen with
some care. The mean and standard deviation of A can be estimated from multiple macro-replications, with
the mean indicating overall performance and the standard deviation indicating variability in performance.
Two-level simulation is needed when the function f (·) cannot be evaluated exactly. The performance of
a solver on a suite of problems can be summarized in a scatter plot, where the coordinates of each point
in the plot are the mean and standard deviation of the area under a progress curve for a single problem.
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Multiple solvers are readily compared using these scatter plots or superimposed versions thereof. In the
hypothetical plot in Figure 1b, the solver indicated by blue x’s tends to have both a lower mean and a lower
standard deviation over 10 problems, but the standard deviation varies more from problem to problem.

Progress curves provide a sense of how a solver is progressing over time, but they do not directly indicate
how long a solver takes to solve a problem. To that end we can define τ(α) = inf{t ∈ [0,1] : ν(t)≤ α} to
be the α-solve time, i.e., the fraction of the budget b needed to obtain a solution with an optimality gap
that is at most a fraction α of the initial optimality gap. If no such solution is found then τ(α) = ∞. Thus,
τ(α) is an extended random variable.

In comparing solvers on a suite of problems P we can compute, or estimate, the distribution of τ p,s(α),
the α-solve time for each solver s on each problem p ∈P . Then we can compute the average likelihood
of Solver s solving problems in the set P within a fraction t ∈ [0,1] of each problem’s budget by

ρ
s(t) =

1
|P| ∑

p∈P
P(τ p,s(α)≤ t),

using estimators in place of exact values when needed. We call the curve (ρs(t) : t ∈ [0,1]) the solvability
profile of the cdf (cumulative distribution function) of the α-solve times. Like the area scatter plot
mentioned above it provides a summary of Solver s performance across the entire suite of problems P .
In the hypothetical plot in Figure 1c, after half the budget is expended, the solver has on average (over
problems) a 20% chance of α-solving the problem, with this value increasing to 85% after a little over
80% of the budget is expended. Beyond this point the solver makes no further progress.

Sometimes we want to single out a solver, s0 say, for special attention. For example, s0 may be a
new solver we have developed that we want to compare to a collection of existing solvers. Or s0 may
be a benchmark solver that has, in past experiments, exhibited good overall performance. In such cases,
it may be of interest to look at solvability difference profiles, henceforth termed “difference profiles.”
Difference profiles are simply differences of solvability profiles. For solvers s and s0, the difference profile
is (ρs(t)−ρs0(t) : t ∈ [0,1]), which at each value of t takes values in [−1,1]. Solver s does better than the
benchmark s0 if the difference profile mostly lies above 0. In the hypothetical plot in Figure 1d, Solver
s0 makes better progress than Solver s up until about 60% of the budget is expended, but then Solver s
outperforms Solver s0 from then on.

Difference profiles allow us to compare two solvers in detail. The same information can be obtained
by looking at two solvability profiles, one for each solver, so why introduce difference profiles? Mainly,
they highlight differences between solvers. Also, they allow us to exploit CRN in estimating the difference
in solver performance, reducing estimator variance; see Eckman et al. (2021a).

4 SAMPLE-PATH FUNCTIONS CAN BE MESSY

A fundamental problem in SO involves comparing two solutions, x1 and x2 say, to see which has the lower
objective function value. Such comparisons are usually greatly facilitated by the use of CRN, where we
estimate f (x1)− f (x2) by

1
n

n

∑
i=1

[ f (x1,ξi)− f (x2,ξi)],

with (ξ1,ξ2, . . . ,ξn) being an iid sample from the distribution of ξ . This is an unbiased estimator of
f (x1)− f (x2), the sign of which can be used to assess which of x1 and x2 is the better solution.

Taking this idea to an extreme, we can estimate the entire function f (·) at any point x by

1
n

n

∑
i=1

f (x,ξi),

using a single iid sample (ξ1,ξ2, . . . ,ξn) that is common to all points x. This is the central idea behind
sample-average approximation (Shapiro 2003; Kim et al. 2015), where one then minimizes this sample-
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(c) A solvability profile.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ob

ab
ili

ty
 D

iff
er

en
ce

Time

Difference Profile
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Figure 1: Example plots in SimOpt (hypothetical).

path function to obtain an estimator X∗n of a true minimizer x∗ of f (·). It is also closely related to the
score-function optimization method (Rubinstein and Shapiro 1990) where one uses a change of measure to
estimate the entire function f (·) using a single sample. There are also close links to recent work in the use of
regularization and related ideas in stochastic optimization, e.g., Sutter et al. (2021). Moreover, trust-region
methods use simulation replications at x values in some local neighborhood to fit a local metamodel; if
CRN is used then these metamodels are built from the sample-path function values in that neighborhood.
Accordingly, it is well worth understanding how these sample-path functions behave.

It turns out that the sample-path functions often, or even usually, exhibit discontinuities in x. Such
discontinuities can arise when events in a simulation model change their order in time as x is perturbed; see
discussion of the commuting condition in Glasserman (1991) and Kim et al. (2015) for a recent exploration.
In some models, an exchange in the order of events does not bring about a discontinuity. This happens,
for example, in the newsvendor model and many others; see Glasserman (1991) and Kim et al. (2015).
This is an important observation underlying much of the development in Fu and Hu (1997). However, the
typical situation in practice is that the sample path functions are discontinuous.

In the remainder of this section we explore such discontinuities in two examples, with the goal of
improving our understanding of the nature of such discontinuities. In these examples, the discontinuities
become dense in the domain D as the number of samples n grows, but the size of the discontinuities is of
stochastic order n−1. Intuitively, we say that a sequence of random variables (ζn : n≥ 1) is of stochastic
order g(n) if ζn “looks like” g(n)ζ̃n, where the random variables (ζ̃n : n≥ 1) are uniformly bounded. More
rigorously, we say that a sequence of random variables (ζn : n ≥ 1) is of stochastic order g(n) for some
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deterministic positive-valued function (g(n) : n≥ 1) and write ζn = Op(g(n)) if the set of random variables
(ζn/g(n) : n≥ 1) is tight, i.e., for all ε > 0 there exists an M > 0 such that P(|ζn/g(n)|> M)≤ ε for all
n≥ 1. We will see that in these examples, the sample-path functions exhibit many discontinuities, but the
size of those discontinuities shrinks as the sample size n grows. Moreover, any point in the domain will
typically have a discontinuity within a distance that is Op(n−1).

This is an important observation in the context of, e.g., trust region methods using CRN, since one
should ensure that the solutions on which one builds the metamodel should be spaced to “step over” some
number of these discontinuities to avoid being misled by very local curvature that is not indicative of the
overall shape of the function. These observations suggest that the neighborhood should have a radius that is
of larger order than n−1. The central issue is precisely the same as that which leads to derivative estimators
such as those obtained from infinitesimal perturbation analysis (IPA) being biased. In that case, one can
think of the discontinuities in the sample-path function as being “corrections” to account for the bias in
the gradient estimators. Closely related ideas are explored from a different perspective in Eckman and
Henderson (2020).

4.1 Bus Departures

This is a standard example; see, e.g., Ross (1996), p. 68 for the derivation of the exact function value and
Kim et al. (2015) for a closely related discussion. Passengers arrive to a bus terminal over the interval [0,1]
according to a Poisson process with constant rate λ . One bus is scheduled to depart at time 1 and we are
selecting the time, x, at which to schedule a second bus to depart. Both buses have infinite capacity. We
want to choose x to minimize the expected value of the sum of the expected waiting times of passengers,
where the wait for a passenger begins when they arrive and ends when their bus leaves. The order-statistic
property allows us to conclude, as in Ross (1996), that

f (x) =
λ

2
(x2 +(1− x)2),

so that f (·) is smooth and convex.
As for the sample-path functions, let ξ = (N,T1,T2, . . . ,TN) include the random number N of passenger

arrivals over [0,1] and the ordered arrival times of those N passengers. Define I(·) to equal 1 if its argument
is true and 0 otherwise. The sample-path function, f (x,ξ ), for a single realization of ξ can be written as

N

∑
i=1

[xI(Ti ≤ x)+ I(Ti > x)−Ti].

The behavior of the sample-path function f (x,ξ )when viewed as a function of x is interesting; see the left
panel of Figure 2. The function is piecewise linear with jumps at each arrival time Ti, i = 1,2, . . . ,N. Within
the interval [Ti,Ti+1) the function increases with slope equal to i, i = 0,1,2, . . . ,N, where, for convenience,
we define T0 = 0 and TN+1 = 1. The jump at time Ti is a decrease of size 1−Ti, for i = 1, . . . ,N, because
the passenger arriving at time Ti has to wait till time 1 when the bus departs just before their arrival, but
leaves immediately when the bus departs at their arrival time.

Now consider what happens when we compute the sample-path function averaged over n iid replications
of ξ , as in Figure 2. Again there is a discontinuity of size −(1−x)/n at all points x at which a passenger
arrives on one of the n simulated paths, and at points x in between passenger arrivals on any of the sample
paths the function is linear with slope Nn(x)/n, where Nn(x) is the number of passengers who arrive by time
x over all n realizations. Thus, there is a jump discontinuity of size Op(1/n) at the time of any passenger
arrival over the n paths. The number of such jumps has a Poisson(λn) distribution which is Op(n), and
the individual passenger arrival times are uniformly distributed over [0,1]. Thus, the distance from any
arbitrary point to the nearest discontinuity is Op(n−1).
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Figure 2: Sample-path function in the bus-scheduling problem for n = 1,3,10 with λ = 5.

4.2 Ambulances

The following example has only a tenuous connection to the reality of ambulance simulation, but the name
is at least suggestive. Calls for ambulance service arise according to a Poisson process at constant rate
λ calls per hour (h). Call locations are uniformly distributed in the square [0,20]2 where distances are
measured in kilometers (km). Two ambulances serve this demand. When a call is received, the closer
available ambulance travels to the call at a speed of s km/h, traveling in a straight line. If both ambulances
are unavailable at the time of the call, the call is queued and calls are then served in first-in-first-out order.
Ambulances spend a random amount of time at the scene of the call. Scene times are assumed to be iid.
After the scene time is complete the ambulance returns to its base, being instantaneously redirected to the
next call if the next call is received before the ambulance reaches its base. Upon arrival at the base it
becomes available to handle additional calls. Ambulance 1 is based at the point (15,15), while the position
of Ambulance 2, (x1,x2) is to be selected so as to minimize the expected value of the sum of the response
times over all calls received over a 24 hour period. The response time of a call is the length of the time
interval from when the call arrives till an ambulance arrives at scene. I have used very similar examples
in previous articles, most recently in Eckman and Henderson (2020).

If we use just one ambulance in this problem, then the sample-path functions are continuous. The
sample-path behavior of this model with two ambulances is much more interesting. In essence, we get
discontinuities in the sample-path functions whenever 1) both ambulances are available when a call is
received; 2) the location of the second ambulance base is such that both ambulances are the same travel
distance from the call; and 3) The next call arises before the current call is completed and the responding
ambulance can return to base. With reference to the left panel of Figure 3, the orange point is the location
of Base 1 at (15, 15). Assume that both ambulances are available at their bases when a call is received
at the plus sign (+). If Base 2 lies on the indicated circle, then both bases are equidistant from the call,
and by perturbing the location of Base 2 we can change the choice of ambulance that will attend the call.
Suppose Ambulance 2 attends the call, and while that ambulance is busy, a second call is received that
is closer to Base 2 than to Base 1. Then, since Ambulance 2 is unavailable, Ambulance 1 responds to
the new call. If we had instead perturbed Base 2 so that Ambulance 1 responded to the first call, then
Ambulance 2 would attend to the second call. In these two perturbed situations, the response time for the
second call is different almost surely, since with probability one the second call is not equidistant from
both bases. Any further calls that are received during this “busy period” may also have different response
times, and the cumulative effect of the difference in response times registers as a discontinuity in the sample
function. The size of this discontinuity is bounded by the sum of the potential change in response times
within the replication, which is Op(1), i.e., it is stochastically bounded. When we then average over n
replications, the ensuing discontinuities in the sample-path function are thus Op(n−1), just as we saw with
the bus-scheduling example. Away from the set of discontinuities, the sample-path function is smooth.

This discussion should make clear that discontinuities will arise in the sample function on a union of
circle circumferences or portions thereof within the square; see Figure 3. The number of such circumferences
is bounded above by the number of calls that are received on the sample path. Thus, the set of discontinuities
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Figure 3: Left: The fixed ambulance base is located at the orange dot at the point (15, 15). A call arises
at the location of the plus sign (+) at a distance r from the fixed base. Discontinuities in the sample path
function can then arise anywhere on the circumference of the circle centered at the call location with radius
r. Right: Heat plot of a sample-path function involving 4 calls, where the first and third calls arrive when
both ambulances are available.

is at most a countable union of circle circumferences and has measure 0, just as we saw in the bus-scheduling
example. Moreover, the conditions for a discontinuity to arise have positive probability in any replication,
so with n replications we will see Op(n) circles on which discontinuities will arise. These circles are
centered on call locations and have radius equal to the distance between the call location and the fixed
ambulance base. The union of all such circles completely covers the square, so the discontinuities that
arise will become dense in the square as n→ ∞, just as we saw in the bus-scheduling example. Finally,
the distance from any fixed point x̃ in the square to a discontinuity is Op(n−1). To see why, note that
discontinuities arise on a circle under the 3 conditions mentioned above. Such a circle will intersect the
ball of radius δ centered at x̃ provided that the location of the initial call mentioned in the 3 conditions
falls on the union of the perpendicular bisectors of the line segments that join the fixed base to points in
the ball centered at x̃ with radius δ . This event has positive probability that is of order δ , and therefore
Op(1/δ ) replications are required to get a single instance. Taking n = 1/δ yields the observation.

Thus, the ambulance example shares features with the bus-scheduling example. We use only two
ambulances in this example because we can then visualize the underlying geometry; with more ambulances
we expect similar sample-path behavior but visualization is difficult owing to the number of dimensions.

These two examples do not prove a general principle, but they are at least suggestive that we might
expect similar behavior of sample-path functions in general, namely that discontinuities have magnitude
Op(n−1), are at a distance at most Op(n−1) from any fixed point in the domain and thus become dense in the
domain as n→∞, and away from the set of discontinuities the sample-path functions are piecewise smooth.
Such sample-path functions are highly irregular on a fine scale. Nevertheless, the law of large numbers
ensures that they converge to f (x) at any point x in the domain almost surely as n→ ∞, so assuming f (·)
is reasonably well structured, e.g., smooth, then the overall “shape” of the sample-path functions cannot be
too poor. This suggests that trust-region methods are a suitable tool for optimizing such functions. In this
setting, and assuming one uses CRN in fitting the metamodel in each iteration, one needs to exercise caution
if the trust-region radius shrinks to Op(n−1), since then there is a nontrivial chance that the metamodel is
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being fit to the (very) local structure of the sample-path function that is potentially a poor indicator of the
true nature of the function f (·).

It is worthwhile placing the above observations in context by pointing out that the error in the point
estimate of f (x) will typically be Op(n−1/2) as assured by the central limit theorem under a finite second
moment assumption. Such an error is large compared to the sizes of the discontinuities we have discussed,
which are Op(n−1), at least for a large enough sample size n. Accordingly, the discontinuities we have
mentioned are, for large enough n, small compared to the overall error in the estimated function values.
Yet it is still important to be aware of this sample-path behavior for the reasons we have discussed.

5 MODELING CONSIDERATIONS

Many simulation users first build a simulation model and only afterwards consider the use of optimization.
This can yield highly intractable SO problems with little structure to be exploited by SO solvers. This
observation partially explains the predominance of SO solvers that do not require problem structure.

I instead advocate building a succession of models, analyzing each model in detail including optimization
as appropriate before moving on to a more complex model. This approach has a number of advantages over
“one and done” modeling where a single model is designed and built. First, a succession of models allows
for each model’s predictions to be compared against those of earlier models, which helps verify model
implementation and adds insight. Second, one might be able to stop modeling at an early stage before
building more complex models that can be expensive to build and prone to error. Third, one always has
a model on hand that can provide answers to the questions that originally motivated the modeling effort,
which is a comfort as deadlines approach and more complex models are yet to be completed.

A criticism of this approach is that one may need to perform more modeling and coding effort. This
concern is valid, but consider that if successive model complexity grows rapidly, then the early models
may not represent much of an overhead. For example, if the time to build each successive model grows
exponentially, then the time needed to generate the final model dominates the total time needed to generate
all previous models.

The idea of building a sequence of models has been espoused many times, so in some sense I am merely
echoing the perspective of others. What may be new here is that I advocate thinking about optimization with
every model that is built. Perhaps the principles are clearest through an example, which is only sketched
due to space concerns.

In bike sharing, important quantities include the target inventory levels of bikes in stations at the start
of each day, and, perhaps annually, the number of racks to place at each station. One can begin using
deterministic flow models at each individual station, ignoring station interactions, where the flow rates are
time dependent. A next model could make those flows stochastic, yielding independent queueing models at
each station. The next round of modeling can incorporate station interactions through network fluid models,
and perhaps a final step can move to full simulation of a network of bike stations. These models represent
progressive increases in model complexity and vary in terms of convexity properties and tractability of
optimization. The results from each model can be interpreted in light of the results from the others (Freund
et al. 2019; Freund et al. 2018; Freund et al. 2021; Jian et al. 2016; Jian and Henderson 2015). Space
constraints prevent a full discussion.
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