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ABSTRACT

More than two decades ago, Butler and Finelli examined the problem of experimentally demonstrating
the reliability of safety critical software and concluded that it was impractical. We revisit this conclusion
in the light of recent advances in computer system virtualization technology and the capability to link
virtualization tools to simulation models of physical environments. A specific demonstration of testing for
reliability is offered using software that is part of a building control system. Extrapolating the results of
this demonstration, we conclude that experimental demonstrations of high reliability may now be feasible
for some applications.

1 INTRODUCTION

Butler and Finelli (1993) examined the problem of testing software for reliability, and they concluded that
the cost and time required to execute sufficient numbers of tests precluded practical demonstrations of
mean time to fail. To illustrate the problem, Butler and Finelli offered a simple model of the time required
to demonstrate a mean time to failure . The testing protocol involves creating n replicates of the system
to be tested and allowing these to run until » < n are observed to fail. When a failure occurs, a new test is
started so that there are n active tests at any time n. Having observed r failures over a total time of operation
t, the mean time to fail is estimated by ¢/r. Increasing r and n improves the statistical significance of this
estimate. The total testing time D needed to observe these r failures is

D:uz. (1)

This estimate relies on several simplifying assumptions concerning the statistical process of failures.
For example, failures must be uniformly distributed over the space of possible software inputs and the
consequent binomial failure process in time is adequately approximated by an exponential distribution. It
also overlooks the difficult problem of test case design. Regardless of these issues, Equation (1) illuminates
a primary obstacle to demonstrate large i, which is the need for a very large n to make D practical.

Replicating software does not pose a serious challenge to achieving large n. Rather, the challenge is
to have many instances of the environment where the software works. We may have as many instances of
a simulation model of the environment as needed and so having such a model overcomes the challenge
in principle. However, the simulation is hobbled by either: (i) the need to run quickly enough to simulate
software running on actual hardware, or (ii) interactions with a model of the software, or some subset of
the software that can be incorporated into a model, rather than the software as it will be put into operation.

These two problems can be solved by executing the software as it will be put into operation on a
model of its computational hardware. Because the simulated hardware can become a part of the simulation
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model of the environment, n is limited only by the availability of computational resources for running
simulations. This idea was proposed by Hu and Zeigler (2005) and given the name model continuity. They
developed a technical approach by which software is developed as part of a simulation model and then
seamlessly transitioned into the operational system. A constraint of this solution is the specialized software
development environment that supports the transition.

Over the last decade there has been considerable progress made towards simulating computer hardware
with sufficient speed and fidelity to execute complete software stacks - comprising operating system, device
drivers, and applications - within a larger, simulated environment. In principle, this can eliminate the need
for specialized software development tools while still enabling the model continuity concept.

Recent work towards building these types of simulations has taken two approaches. One is to modify
a hypervisor, turning it into a simulation engine (Lee et al. 2014; Yoginath et al. 2015; Gupta et al. 2011).
The other is to use a computer system emulator that has simulated hardware advancing in step with an
overarching simulation clock (Chiang et al. 2011; Monton et al. 2007; Monton et al. 2009; Kurimoto
et al. 2013; Mueller and Pétrot 2011; Weingértner et al. 2008). The purpose of these prior efforts was
to avoid modeling elements of a software system. For instance, the ability to insert fielded software into
a simulation is essential for simulating attacks on computer systems and for writing software that uses
hardware which is not yet available (Pantoquilho 2010; Shankar et al. 2014).

Here we examine how this type of technology could be used to test for software reliability. For this
purpose, we have modified the QEMU (Quick Emulator) computer system emulator (QEMU 2019) for use
as a component in a general purpose discrete event simulation, and then we present a case study in which
this emulator is used to exercise a control system. By extrapolating the results of this exercise, we look
at the time and computational resources that would be necessary to experimentally demonstrate a specific
mean time to fail.

2 THE QEMU COMPUTER SYSTEM EMULATOR

QEMU is a computer system emulator for executing real software on simulated hardware. The simulated
hardware includes memory, system buses, timers and clocks, and peripheral equipment such as disks,
network cards, video cards, mice, keyboards, and serial ports. The simulation time for these subsystems
is managed with a future event list called the virtual timer, and it is used just like the event queue in a
discrete event simulation. When the time of the next future event is reached, QEMU stops execution of
the emulated computer and invokes an event handler. Execution of the emulated computer resumes when
the event handler returns.

Crucial for our purposes is that: (i) event handlers manage the states of simulated timing hardware,
and (ii) the emulated microprocessor is halted while an event handler is running. Following an approach
similar to the one used in QBox (Mueller and Pétrot 2011) to synchronize the virtual timer within QEMU
with the simulation clock of a SystemC simulation tool (IEEE Standards Association 2012), we exploit
the virtual timer to use QEMU as a component in a discrete event simulation.

The emulated microprocessor in QEMU can execute instructions in one of two ways. In the first, a
sequence of machine instruction sequence is broken into chunks called translation code blocks. These
are passed to a just in time compiler that translates the code blocks into instruction sequences for the
computer on which QEMU is executing. In the second, QEMU passes instructions to the Linux Kernel
Virtual Machine (KVM) for direct execution on the available hardware.

The just-in-time compiler is enabled when QEMU operates in its icount mode. In this mode, time within
the emulator is advanced by a fixed (usually one) number of nanoseconds for every machine instruction
that is executed. When an event handler is invoked, the emulated microprocessor stops immediately and,
because time is advanced by the execution of instructions, the instruction execution rate does not deviate
from the desired rate.

The icount mode can be configured such that when the emulated computer has no work to do, the
simulation proceeds forward in time to the next event in the virtual timer’s event list. Hence, when the
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emulated hardware is idle, QEMU proceeds as a discrete event simulation by making instantaneous jumps
through virtual time. This mode is particularly interesting because it allows software that is frequently idle
to believe it is running in real time even though the simulation clock advances faster than real time.

On the other hand, the execution of a each instruction by the emulated microprocessor requires numerous
instructions for the physical processor on which the just in time compiler executes. Hence, computationally
active instruction sequences will cause the simulation to run much slower than real time.

The KVM overcomes this problem by using the physical microprocessor as the emulated microprocessor,
thereby skipping the translation step and achieving near real time execution speeds. In this mode, time
advances at the wall clock rate while the emulated microprocessor is processing instructions. To synchronize
time with a discrete event model, we halt the emulated microprocessor while the synchronization protocol
is executing. This is done by asking the operating system to suspend threads that are processing guest
instructions.

The delay between this request and the operating system acting upon it can cause the emulated
microprocessor to overrun the time of next event. So while this mode of execution offers near real time
performance, it admits the possibility of intermittent error in the relationship between simulation time and
time as perceived by software running on the emulated microprocessor.

QEMU was designed as a stand alone virtualization tool, without need for a capability to coordinate its
internal simulation clock (called a virtual clock by the QEMU documentation) with some other simulation
system. Therefore, it was necessary to retrofit the QEMU software with this capability (a patch to add this
new feature in QEMU 2.11 is available at https://web.ornl.gov/~nutarojj/adevs/qemu-2.11.0.patched.zip).
The protocol for coordinating advancement of time within QEMU and another discrete event simulator is
illustrated by the sequence diagram in Figure 1. On start up, the modified QEMU software attaches to a
UNIX domain socket, which we will call the synchronization socket, that has been created by the discrete
event simulator. QEMU waits for a time advance value to be written to this socket by a model within
the discrete event simulation that is QEMU’s proxy. Upon receiving the time advance, QEMU schedules
a virtual timer event for that interval into the future. The emulator executes instructions until that virtual
timer event occurs.

When the event happens, QEMU halts the emulated microprocessor, records the simulation time that
has actually elapsed when execution halts, and writes that time to the socket. In the icount mode, this time
will match the scheduled event time; with KVM, the elapsed time may exceed the scheduled event time.
In the latter case, the error is corrected by scheduling a catch up event in the discrete event simulator and
then allowing QEMU to execute again after the catch up event has occurred. This process repeats until the
simulation is terminated.

The software executing on the emulated computer can interact with a simulated environment via an
emulated serial port and network interface card. Communication between these QEMU device models and
the discrete event simulator also occurs through a UNIX domain socket. During the execution of a time
advance by QEMU, the simulated devices may write data to this socket. In the case of the network card,
these data are Ethernet frames sent by the software executing on the emulated computer. In the case of the
serial port, these data are sequences of characters written to the serial device by the software running on
the emulated computer. When QEMU completes its time advance, the discrete event simulator reads these
data from the appropriate UNIX domain sockets and it writes to these sockets any frames or characters
that have been transmitted to the emulated computer.

If large amounts of data are to be exchanged between QEMU and the discrete event simulator, it
is possible that the buffers backing the UNIX domain sockets will become full and cause the sender to
block. This will cause the simulation time to stop advancing if the intended recipient is waiting for a time
advance to complete before reading from the socket. This problem is eliminated by having the discrete
event simulator dedicate a thread to reading and writing each socket.

The reading thread loops on a blocking read of the socket. As messages become available, these are
placed into a queue from which the discrete event simulator will extract them at the next synchronization
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Figure 1: Time synchronization between QEMU and the overarching simulator.

point. The writing thread accepts data to be sent to the QEMU device and queues this for transmission. It
writes queued messages to the socket using a blocking write. In this way there is always a thread available
to extract data from the buffer and to write data to the buffer while the simulator advances.

When using this synchronization protocol, timing errors can result from two sources. One source of
error is the timer overrun that can occur when using KVM. The other source of error is a delay of messages
exchanged between the emulated computer and discrete event simulator. With the proposed scheme, data
is exchanged at the points of synchronization between QEMU and the simulator. A necessary consequence
of this approach is that messages will experience a delay between zero and single time advance plus the
overrun. This error could be further exacerbated by delays imposed by the UNIX domain sockets and the
scheduling of threads that monitor those sockets. If these delays are longer than the real time required to
execute a time advance, then the difference will cause an undesired delay in the data exchange equal to
the number of time advances that elapse while communication operations are completed.

3 TEST ENVIRONMENT FOR A BUILDING CONTROL APPLICATION

The software under test is a control system that coordinates the operation of air conditioning (HVAC)
units within a building to maintain the temperature of each air conditioned zone near its set point while
satisfying a limit on the number of units operating simultaneously. The effect of the control is to reduce
peak electrical load (Nutaro et al. 2016). The control system is realized by a centralized software system.
The centralized control software communicates with thermostats in the building via a serial line to read
the temperature set point and temperature sensor and to turn the air conditioning unit on or off.
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For the simulation based test, a building model was constructed based on the four zone building in
which we have deployed the control system. This building and its model are described in (Ozmen et al.
2017). The building model was developed in Modelica and exported as a Functional Mock-up Unit (FMU).
This mathematical model relates the zone temperatures to time varying outdoor air temperature and solar
irradiance incident on the building, insulation and heat capacity of the building structure, and heat removed
by the air conditioning units when they are cooling. The MODBUS RTU232 protocol is used as a serial
communication interface between the control application and physical environment. Therefore, the building
model includes an emulation of the serial port communication protocol by which the control software and
real thermostats interact. Our modified QEMU contains an image of the control system software and its
operating system.

Figure 2 shows the components of the simulated test environment. A Discrete EVent system Simulator
(ADEVS) is used as the overarching simulation environment (Nutaro 2011). The modified QEMU is a
component model within ADEVS, as are models of the MODBUS enabled thermostats and the FMU
that implements the physical dynamics of the building. The FMU equations are solved using numerical
algorithms for hybrid systems that are part of the ADEVS simulation package.
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Figure 2: Components of the simulated test environment.

3.1 TEST PROTOCOL AND RESULTS

The test has two purposes. The first is to quantify the frequency and extent to which the control software
cannot meet its goals of limiting the number of simultaneously operating units while keeping the temperature
near the set point. To this end, we track two metrics: (i) the proportion of time any zone stayed one
degree Kelvin above the temperature set point (294 K, that is approximately 69.5 Fahrenheit); and (ii) the
proportion of time that more than two units run simultaneously.

The second purpose of the test is to demonstrate that the modified QEMU interacting with a model
building can exercise the control system in a faster than real time simulation. This is relevant to our specific
control system because it is prohibitively expensive to spend a week or more observing the system in
the field to understand the full impact of a software change. More generally, the combined capability to
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replicate the test and to execute it faster than real time is what can enable testing for high reliability, which
we consider later in Section 4.

Historical weather data for Chicago, Illinois is used in the simulated environment (O’Hare Airport,
2013). Three tests are run, with each set covering part of a 30 day segment in the summer season (July
15 - August 15). The first test operates the system over the first ten days, the second test operates the
system over 20 days, and the third test over the full 30 days. Because the tests are performed in a simulated
summer, only cooling performance is considered. HVAC relay settings and the temperature readings are
recorded at one second intervals and the collected data is aggregated to the aforementioned metrics over a
test period.

Figure 3(a) presents the mean temperatures of the zones around the set temperature (red dashed line),
and Figure 3(b) presents the mean number of units running around the maximum number of units the
control software aims to limit (red dashed line). One processor and one gigabyte of memory is provided for
the emulated computer, the time advance for the emulator is 1,/10 seconds, and the processor is simulated
using the icount mode.
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Figure 3: Simulation-based testing results.

Table 1 shows statistics from each test for the proportion of time any zone was one degree Kelvin above
the set point temperature during the test. The confidence interval for the performance metric naturally
shrinks with an increasing number of test days. Similarly, Table 2 shows shrinking confidence intervals
for our estimate of the proportion of time the number of simultaneously running units is above two.

Table 1: Proportion of testing time that software has not fully satisfied the comfort (temperature) needs.

Testing Period Mean Std. Deviation 95% Confidence Interval

10 days 0.0836 0.4877 0.0010
20 days 0.0555 0.4834 0.0007
30 days 0.0372 0.4731 0.0006
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Table 2: Proportion of testing time that peak load was greater than 2.

Testing Period Mean Std. Deviation 95% Confidence Interval

10 days 0.0130 0.6922 0.0015
20 days 0.0071 0.7190 0.0011
30 days 0.0047 0.7771 0.0009

What is most significant about these tests is the real time needed to obtain the given periods of simulated
operation. The 30 day test required only 1.25 days of actual execution time, which is approximately 24
times faster than real time.

4 IMPLICATIONS FOR SAFETY CRITICAL SOFTWARE

For safety critical software, a mission duration m is typically between one and ten hours (Butler and Finelli
1993). For these types of systems, Butler and Finelli used Equation (1) to estimate the required hours
of experimental operation that would be needed to demonstrate a given failure rate. A requirement for
ultra-reliability would make the probability p of system failure during a mission on the order of 10~7 to
10~°. The Butler and Finelli estimates assume an exponentially distributed time to obtain

m
In(1—p)
Suppose we wish to test for no more than one failure per y hours of operation and we want to observe

r such failures. If each of n replicated simulations runs s times faster than real time, then the number of
real hours needed to demonstrate the desired failure rate is

‘LL:

D= ,ué hours. (2)

Assuming a ten hour mission time and p = 10~%, we have u ~ 10'° hours, which is 1,141,550 years.
Estimates using Equation (2) for several p assuming m = 10, s ~ 10 (as was demonstrated in Section 3.1),
and » = 1 are shown in Table 3.

Table 3: Expected test duration for » = 1 and s = 10.
Replicates m) D forp=10" Dforp=10"" D forp=10—"°

1 114,155 yr 1,142 yr 11.4 yr
10 11,416 yr 114.2 yr 1.15 yr
100 1,142 yr 11.4 yr 42 days

1,000 114.2 yr 1.15 yr 4.2 days
10,000 11.4 yr 42 days 10 hours

From these estimates we can infer the number of replications n of the simulated testing environment
that would be needed to obtain an experimental result within some time bound D, assuming the simulations
execute an order of magnitude faster than real time. This analysis suggests that testing for the reliability
of safety critical software with p near 10~/ may be feasible with modern, high performance computing
systems, which have on the order of 10* general purpose cores with significant GPU support for simulating
complex, physical environments. Even if the software application has a computationally active instruction
sequences forcing s ~ 1, these numbers indicate that reliability of 10~ would still be possible.

5 CONCLUSIONS

Simulation based testing of the type described here is not entirely new, with emulators playing a large
role in testing embedded applications and mobile software. The new, emerging capability is for those
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emulators to interact with detailed, dynamical models of the environment in a fast as possible simulation.
When coupled with the availability of vast computational resources this approach to testing could have a
transformative effect on software reliability by enabling the relatively inexpensive accumulation of vast
numbers of testing hours in a simulated, but still relevant, operational environment.

Testing in the proposed manner is predicated on the availability of simulation models that represent the
physical environment with sufficient fidelity. If adequate models are available from prior work on system
design, then construction of the model does not impose additional costs during testing. Otherwise, the
testing budget must include model construction in practical applications.

The specific types of emulation technology - hypervisors or computer system emulators - best suited to
bringing operational software into a constructive simulation remains an open question. While an argument
is made by Yoginath et al. (2015) to avoid solutions that synchronize the passage of real time in the
emulator to simulation time in the model (see pg. 442, Section 1.3.2; their argument seems to implicitly
include some forms of time dilation, such as discussed in (Grau et al. 2009)), this caution leaves space for
a wide range of potential solutions.

Much ongoing research into the use of virtualization technologies to enable software testing, and
particularly in regards to integrating virtualization into simulated environments, has focused on commercially
relevant desktop and server hardware. This focus necessarily limits the capabilities of the simulation systems,
which must use modern computing hardware to emulate modern computing hardware. Moreover, because
of the tremendous complexity of modern computing hardware, research focuses on repurposing existing
virtualization tools. Because these were not designed with simulation applications in mind, they impose
technical constraints, such as timing errors when communicating between QEMU and the discrete event
simulator that are described in Section 2.

We make two observations concerning these technical constraints. The first is that KVM appears to offer
enough information about the state of the emulated microprocessor that run faster than real time simulations
are possible, and this would be done just as it is with the icount mode (see the KVM documentation at
https://www.kernel.org/doc/Documentation/virtual/kvm/api.txt). This information is not used by QEMU,
likely because faster than real time simulations are not particularly relevant to a virtualization tool.
Nonetheless, future enhancements of QEMU, or some other future tool intended specifically for software
testing, could exploit this KVM feature.

The second observation is that for many safety critical systems, it may be possible to simulate the
microprocessor in faster than real time. For example, avionics computers use hardware that is designed
for high reliability, and this precludes some of the sophistication seen in modern, general purpose micro-
processors. The Orion spacecraft, which began flight tests in 2014, has at the heart of its flight computer
an IBM PowerPC 750FX (Whitwam, R. 2014). This computer processor has not appeared in commodity
products since the early 2000’s. It features a single core and an order of magnitude less computational
power than the most modern microprocessors.

It is conceivable that a faster than real time simulation of the Orion flight computer could be constructed
using a modern workstation computer. Coupled with relevant models governing the flight dynamics, it may
be possible to experimentally demonstrate a given level of reliability for the flight control software. An
approach like this is described by Shankar et al. (2014) for the Indian Mars Orbiter. Similar opportunities
may exist for many, if not most, safety critical software systems.
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