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ABSTRACT

With increased complexity of customers choice behaviors, practical optimization approaches often involve
decomposing a network revenue management problem into multiple single-leg problems. While dynamic
programming approaches can be used to solve single-leg problems exactly, they are not scalable and require
precise information about the customers’ arrival rates. On the other hand, the traditional heuristics are
often static which do not explicitly consider the remaining time horizon in the optimization. This motivates
us to find scalable and efficient dynamic heuristics that work well with the complex customers choice
models. We develop two expected marginal seat revenue type heuristics for the single-leg dynamic revenue
management problems in airline industry and evaluate its performances using Monte Carlo simulation.
The initial simulation results indicate that our proposed heuristics are computationally efficient and fairly
robust. This study provides a foundation for potential future extensions to solve larger network problems.

1 INTRODUCTION

Revenue management (RM) is a discipline originated in the airline industry, following the deregulation of
the US air travel in 1970s. It applies analytical techniques, such as stochastic optimization and dynamic
programming, to manage demand either through price or product availability so that the revenue performance
is optimized. Today, the theory and practice of RM have been widespread in many other areas such as
cruise lines, care rentals, hospitality and so on.

In airline industry, the revenues of airline companies can be maximized through dynamically determining
the best set of fares to offer to customers. Here, the RM involves bucketing airfares into multiple classes
(i.e., prices from low to high) and managing seat inventory in each fare bucket dynamically. The customer
demand, and seat availability as well as time horizon remaining prior to the flight departure are important
factors in RM decision making. Most of research prior to 2004 is based on independent demand assumption,
that is, the customer demand of any product is independent of the product availability (see Lautenbacher
and Stidham (1999) and Cooper (2002)). In this context, the products refer to the air tickets sold at different
fares. In other words, customers will not substitute one product for another if their preferred one is not
available. However, with the rapid growth of low-cost carriers, e.g., Spirit airlines, Frontier airlines, and
the proliferation of online travel search engines, e.g., Expedia, Priceline, customers’ choice of product is
likely to be influenced by the price and product availability. Therefore, the independent demand assumption
is no longer valid nor reasonable as indicated by Joyner (2007).

Given the updated demand forecasts, seat availability and time prior to flight departure, airlines constantly
change their product availability by opening, closing, and reopening of fare classes. All of these changes
are likely to trigger fare shopping on the consumer side based on the probability of prices going up or
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down prior to flight departure. This new area of RM with dependent demand that incorporates customer
choice behavior has seen significant development in recent years. Four related effects, upsell, downsell,
recapture and competition, need to be considered in airline RM in order to determine the optimal solution
with customer choice behavior. To illustrate the choice behavior, let’s consider a simple example of a
direct flight from Salt Lake City (SLC) to Atlanta (ATL). Figure 1 shows the different customer purchase
behaviors that affect revenue maximization. Tickets on this flight can be sold either at a low fare of $250
or a high fare at $350. The customers who purchased the low fare are called low-fare customers and can
be further divided into two groups, group A consists of customers who purchase the $250 fare and group
B are the ones who prefer $250 but will purchase $350 fare if the low fare is not available. The group
B’s behavior is called upsell, which occurs when a lower fare customer purchase a higher fare on the
same flight if the lower class is unavailable for sale. In general, the only barrier for customer to upsell
is the product price. Similarly, the customers who normally purchase the $350 fare are called high-fare
customers and a fraction them will downsell to low-fare if the low fare $250 is available. Downsell happens
when a higher fare customer purchases a lower fare that is also available for sale. In a mild restriction
environment where very limited restrictions are imposed on the discount fare, downsell effects can be quite
pronounced resulting in significant revenue dilution for airlines. Recapture occurs when customers purchase
an alternative flight from the same carrier if their preferred flight is not available. Demand dependencies are
further complicated by the presence of market competitors. In many cases where an airline closes discount
fares to promote upsell to higher fares, the competing carriers may continue to offer discount alternatives,
and these alternatives impact the airline’s ability to achieve upsell. A two-carrier upsell simulation study
reported by KLM Royal Dutch Airlines, Hartmans (2006) demonstrated this negative effect.

yD $250

$350

upsell

downsell

Airline 1 flights from SLC to ATL 

Flight A

yD $230

$320

recapture

Flight B

Figure 1: Example of usell, downsell and recapure.

While managing airlines’ revenues over a network of flights is at the heart of RM, solving single-leg(a
single flight resource) problems is still crucial because (1) the network RM with customer choice model is
intractable for realistically-sized number of flights in the network, and hence, the methods require solving
a set of single-leg problems are frequently applied; (2) some small airline companies, like charter flight
companies, accept booking requests only for single-leg itineraries.

By incorporating time element into optimization control, dynamic RM models allow an arbitrary order
of demand arrivals. With the assumption of Markovian demand and sufficiently fine discretization of time,
a dynamic model determines whether to accept or reject a particular demand by examining the remaining
capacity and remaining sales horizon. In this case, the decision variables depend on the state of current
system. In the light of customer choice behavior, the demand for each fare product is a function of the set
of fare products available to the customers.

In this paper, we focus on the single-leg dynamic RM with dependent demand as presented in the
seminal publication by Talluri and van Ryzin (2004). Our work expands the current understanding of
this problem by proposing a new heuristic that are computationally efficient and applicable in practice.
Customers choice behavior is modeled using a multinomial logit (MNL) model which allows estimation
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of market share for each of the available airline flight fare classes as well as the subsequent demand shifts
arising from fare class closures as described by van Ryzin and Vulcano (2008) and Gallego et al. (2015).
Instead of solving the dynamic program exactly as in Talluri and van Ryzin (2004), we develop heuristics
to approximate the marginal seat revenue at each state of the system to mitigate the downsell risk and avoid
revenue dilution. The initial numerical study indicates that our proposed heuristics dominate the existing
EMSR-b type heuristic that has been frequently used in the dynamic case by aggregating the total demands
and averaging fares.

The rest of the paper is organized as follows: a brief literature review is presented in section 2, followed
by problem formulation in section 3. In section 4, we describe two heuristics and discuss some of their
properties. Then, we present the results of numerical simulation in section 5 and finally conclude with a
summary in section 6.

2 LITERATURE REVIEW

Our paper is mainly related to three main streams of literature: 1) dynamic revenue management, 2)
multinomial logit (MNL) customer choice model, and 3) expected marginal seat revenue (EMSR) type
heuristic. Dynamic single-leg model was first analyzed by Lee and Hersh (1993) who study a discrete
time Markov model with arbitrary order of demand arrivals. Lautenbacher and Stidham (1999) later
provide further analysis of both static and dynamic models. Liang (1999) study the dynamic model in a
continuous time version. All these work share a common assumption that the demand for each fare product
is independent of the fare classes that are available to the customers.

To overcome the deficiency of independent demand assumption, many researchers have started to
address this issue by incorporating customer choice behavior into their models. Andersson (1998) and
Algers and Besser (2001) apply logit choice model to estimate upsell and recapture effects at Scandinavian
Airline Systems. A milestone work is done by Talluri and van Ryzin (2004) who formulate a dynamic
programming (DP) model of single-leg RM with a general discrete customer choice model. They provide
structural property of the optimal solution and identify that the optimal policy can be characterized by a
sequence of ’efficient’ sets. They also develop an estimation procedure based on expectation-maximization
(EM) method to estimate the choice-model parameters. Feldman and Topaloglu (2017) also investigate
the single-leg RM problem with Markov Chain as the underlying customer choice model. They reach the
same conclusion that the optimal policy can be presented by protection levels.

There are many studies on the second theme of modeling customer choice behavior when facing multiple
substitutable products. The MNL model as described by Ben-Akiva and Lerman (1994) is derived from a
random utility theory and has been used to model discrete choices. The customers utility for each product
and subsequent choice probabilities are measured by certain probability distribution. The MNL models
allow researchers to study various operational decisions with varying customer behaviors. Readers can
refer to Dong et al. (2009) and Wang and Wang (2017) and references therein for more details. In airline
RM, the MNL demand model allows estimation of market share for each of the available airline flight fare
class alternatives as well as the resulting demand shifts arising from class closures. As reported by Mishra
et al. (2005), MNL model can be calibrated using air shopping and purchase activity from a leading travel
reservations system. A recent review by Strauss et al. (2018) offers an excellent overview of theory and
recent development for choice-based revenue management.

The final stream of literature is on EMSR type algorithms. The dynamic heuristics we proposed in
this paper share some similarities with the approximating marginal seat revenue. An EMSR algorithm
appropriate for dependent demands is provided by Brumelle et al. (1990) where they study a simple two fare
class model with dependent demand and focuses on upsells. They show that the state-dependent demands
need to be incorporated to generate the correct solution. Fiig et al. (2005) analyze the downsell effect
in single-leg RM and propose a novel fare adjustment approach known as Displacement Adjusted Virtual
Nesting Marginal Revenue (DAVN-MR) to mitigate the revenue dilution. Gallego et al. (2009) develop
new extensions of the traditional static EMSR-based approach for the single-leg RM with customer choice
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model. They also study the variations of the algorithm under both low-to-high and mixed arrival demand
patterns. For a complete review on static EMSR-type heuristics for airline RM with dependent demand,
we refer readers to Weatherford and Ratliff (2010).

Although DP generates optimal revenue performance for single-leg RM with customer choice behavior,
it is computationally intensive, difficult to scale to large problems, and requires estimations of time dependent
arrival rates. To overcome these shortcomings, the heuristics developed in this paper are designed to mitigate
customer downsell risk and achieve good revenue performance with much less data and computational
effort. Our heuristics are more robust than DP in a sense that they allow us to work with aggregate demands
and forecast updates. Thus, these heuristics are promising candidates to be used as subroutines in a network
optimization where processing speed are much more important.

3 PROBLEM FORMULATION

Similar to Talluri and van Ryzin (2004), we consider a multiple-fare-class, single-leg, revenue management
problem where consumers make selections according to a choice model. The n fares are p1 > p2 > .. . > pn.
We assume that customers arrive to the system at a rate of λ per unit time and that selling occurs over T
periods {0,1, . . . ,T −1} with the plane departing at the beginning of period T . By selecting appropriate
units of time, e.g., by measuring time in days or hours, we can make λ small while keeping λT constant.
In particular, by selecting T such that λ << 1 we can think of λ as the probability that a single customer
arrives in a period. Under this construction the probability of two or more arrivals over a period is negligible.
While this construction is not strictly necessary, it is helpful to write a discrete time dynamic programming
formulation of the problem (the alternative being a continuous time Hamilton Jacobi Bellman formulation).

3.1 Choice Model

We start with a brief description of a customer choice model. The complete set of products is denoted by
N = {1,2, ...,n} with prices p1 > p2 > .. . > pn. For any subset S ⊂ N, let π j(S) be the probability that
alternative j ∈ S is selected where πo(S) denotes the probability that an outside alternative is selected.

As an example, consider the multinomial logit (MNL) choice model where the utility of product j is
derived from the fare p j and other attributes, such as schedule quality, summarized by a vector s j. We
assume homogenous customers choice behavior. Let βs and βp be the schedule and price sensitivities of
fare j respectively, this results in utility u j = βss j +βp p j and attractiveness a j = eφu j for product j ∈ N
where φ is a scale parameter. Let a0 be the attractiveness of the no purchase alternative, then the probability
of selecting j ∈ S under the MNL is given by π j(S) =

a j
a0+a(S) with π0(S) = a0

a0+a(S) where a(S) = ∑ j∈S a j.
This probability arises from a random utility model with U j = u j + ε j where the u j is a deterministic
representative component and the ε j’s are IID mean zero Gumbel random variables. The scale parameter
φ is inversely proportional to the variance of the Gumbel distribution. Note that in this MNL model, the
no-purchase alternative is intended to represent an aggregate attractiveness of all the competitor offerings
in the market. This aggregate no-purchase alternative approach provides a simple means of representing
competitive effects, and by increasing (or decreasing) the attractiveness of the no purchase alternative, the
carrier’s upsell rates can be decreased (or increased). This approach provides a practical means of including
competitive effects with only minimal additional date collection effort.

3.2 Dynamic Programming Formulation

Let V (t,x) be the optimal expected revenue over periods {t, t +1, . . . ,T} starting with x units of inventory
we can write the dynamic programming formulation as

V (t,x) = max
S⊆N

∑
j∈S

λπ j(S)[p j +V (t +1,x−1)]+(1−λ +λπo(S))V (t +1,x), (1)
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where λπ j(S) is the probability that a customer arrives during the period and selects alternative j ∈ S and
1−λ +λπo(S) is the probability of no purchase during a period. It is easy to see that

V (t,x) =V (t +1,x)+max
S⊆N

λ (S)[q(S)−∆V (t +1,x)]

where ∆V (t,x) =V (t,x)−V (t,x−1), λ (S) = λ ∑ j∈S π j(S), r(S) = ∑ j∈S p jλπ j(S) is the revenue rate under
set S and

q(S) =
r(S)
λ (S)

= ∑
j∈S

p j
a j

a(S)

is the average fare conditional on a sale under set S. The boundary conditions of the problem are
V (T,x) =V (t,0) = 0.

Notice that formulation (1) allows the decision maker to open and close fares at any time. In particular,
it implicitly relaxes the traditional assumption that low fare demands arrive before high fare demands.
Alternatively, it is possible to formulate a more restricted (and more difficult to solve) dynamic program if
the fares cannot be opened once they are closed. This is more difficult to solve because there is an option
value that is exercised every time a fare is closed and this option value has to be implicitly computed
in the calculations of the resulting dynamic program. In practice, it leads to smaller booking limits or
equivalently larger protection levels. It is also possible to modify the formulation to put restrictions on the
subsets of fares that are available at time t. This helps, for example, if some fares are not available after a
certain period because of their time of purchase restrictions.

3.3 Efficient Fares

The optimization problem (1) is over all 2n subsets of N. For the MNL, Talluri and van Ryzin (2004) have
shown that only sets of the form S j = { j, . . . ,1} (This is called ’complete set’ in Talluri and van Ryzin
(2004).), j = 1, . . . ,n can be part of the optimal solution. In other words, other subsets of N are inefficient
in the sense that they generate a revenue rate r(S) that can be replicated by a combination of other sets in
such a way that the combination has a consumption rate lower than or equal to λ (S). For simplicity we
will write r j = r(S j), λ j = λ (S j) and q j = q(S j), and for convenience we define r0 = λ0 = 0.

Even though the efficient set can only be of form S j = { j, . . . ,1} under MNL choice model, there is no
guarantee that all these n sets {Sn, . . . ,S1} are efficient. It is possible that some of these sets are inefficient
and thus will not be included in the optimal solution. It helps to identify these sets/fares and narrow the
search region before solving the DP.

Let
u j =

r j− r j−1

λ j−λ j−1
.

Gallego et al. (2009) have proved that that a sufficient condition for all sets S j, j = 1, . . . ,n to be
efficient is that u1 > u2 > .. . > un > un+1 ≡ 0. If this condition does not hold, then there is at least one
inefficient fare that can be removed without loss of optimality. We can continue removing fares until this
condition is satisfied after relabeling the fares.

There are choice models for which the set of efficient fares is nested (i.e., the sets Ŝ1, . . . , Ŝm are called
nested if there is an increasing order of Ŝ1 ⊆ Ŝ2 ⊆ ·· · Ŝm.), although not necessarily nested by fare. For
example, Talluri and van Ryzin (2004) consider a formulation in which the efficient fares are {1},{1,3}
and {1,2,3}. The results of this paper are applicable to this case by reordering the labeling of the products.
Note that performing these checks to eliminate inefficient fare classes is crucial for proper application of
the algorithms presented in this document, and this step should not be bypassed.
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3.4 Linear Programming Formulation and Dual Program

In this section, we study the deterministic linear programming formulation under the assumption that
customers arrive at a constant rate λ and that a fixed fraction, namely πk(S j) select choice k ∈ S j. The
study of this deterministic model will shed light on developing the heuristics in the next section.

Let t j be the length of time we use set S j, j = 1, . . . ,n. The corresponding linear program with decision
variable t j is given by

max ∑
n
j=1 r jt j

s. t. ∑
n
j=1 λ jt j ≤ C,

∑
n
j=1 t j ≤ T,

t j ≥ 0, j = 1, . . . ,n

Notice that this same linear program is valid regardless of the assumptions made in terms of the
flexibility to open and close fares in the stochastic problems.

The dual program is
min Cu+T v
s. t. λ ju+ v ≥ r j j = 1, . . . ,n,

u,v ≥ 0.

So v = max j(r j−λ ju)+ and the program reduces to

min Cu+T max j(r j−λ ju)+,
s. t. u≥ 0.

(2)

Notice that u = un+1 = 0 is optimal if λnT ≤C, resulting in objective function Trn. This corresponds
to tn = T and t j = 0, j < n. Otherwise, let m = m(T,C) = min{i : λiT > C}. Then u = um = rm−rm−1

λm−λm−1
is

optimal as the function (2) is decreasing up to um and is increasing thereafter. As capacity becomes larger,
the index m(T,C) goes up and um goes down, so the marginal value of capacity goes down. Likewise, as
the time horizon becomes larger, the index m(T,C) decreases and um increases, so v decreases.

The primal solution involves only sets Sm−1 and Sm with tm = C−λm−1T
λm−λm−1

and tm−1 = T − tm. Thus
Vd(T,C) =Cum +T (rm−λmum) = rm−1(T − tm)+ rmtm. Moreover, it can be shown that V (t,x)≤Vd(t,x)
for all (t,x). It is well known that V (T,C) ≤ Vd(T,C) proved by Gallego and van Ryzin (1994), so the
deterministic solution gives an upper bound on the expected revenue under any policy.

4 DYNAMIC PROTECTION LEVELS

We analyze two different dynamic models and provide heuristics for them respectively. The first heuristic,
Central Ray Heuristic (CRH), is designed for the dynamic program formulation (1) where fares can open
and close at any given time depending on the state of the system. The other heuristic, Unidirectional Closure
Heuristic (UCH), assumes that the fares can not be reopened once they are closed. The corresponding
dynamic program formulation is different from equation (1). Because of this restriction, the revenue
generated by UCH is generally lower than that of CRH when fares can be opened and closed. The UCH
applies when airlines can not freely reopen lower fares due to certain business constraints.

4.1 Central Ray Heuristic (CRH): Fares Can Be Opened and Closed

Suppose that at state (t,x) we receive a sales request under set Sk. If we accept the sales request and then
follow an optimal policy the resulting expected revenue is given by

Vt+1(x)+λk[qk−∆Vt+1(x)].

If instead we switch to set Sk−1 and then follow an optimal policy, the revenue is given by

Vt+1(x)+λk−1[qk−1−∆Vt+1(x)].
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Taking the difference and manipulating the terms indicates that it is better to switch to set Sk−1 at time t
if and only if

∆Vt+1(x) =Vt+1(x)−Vt+1(x−1)> uk.

It helps to visualize what happens in the deterministic problem before develop a heuristic. If the state
(t,x) is such that λk−1t < x < λkt, then the solution that insists on using set k before set k−1 would sell at
rate λk until the remaining inventory sits on the the ray {λk−1s,s≥ 0} defined by λk−1. When we have the
flexibility of opening and closing set Sk, we find the following alternative solution to the linear program
useful. Indeed, the solution we have in mind is one that switches between efficient set Sk−1 and Sk, using
set Sk when the inventory is above the central ray {λ̃k−1s : s≥ 0} and uses set Sk−1 when the inventory is
below the ray, where λ̃k−1 = (λk−1 +λk)/2.

Once this ray is reached for the first time, the inventory can be drawn down to zero along this ray by
continuously switching between sets k−1 and k, spending half of the time on each. The modified heuristic
that we propose will use the ray λ̃k−1 and the corresponding average fare q̃k−1 = (rk−1 + rk)/(λk−1 +λk)
along this ray instead of λk−1 and qk−1 to approximate the marginal value of capacity. This leads to
following approximation of ∆Vt+1(x).

∆Vt(x)' q̃k−1P(D̃k−1(t)≥ x),

resulting in protection level

ỹk−1(t) = max
{

y ∈N : P(D̃k−1(t)≥ y)>
uk

q̃k−1

}
where D̃k−1(t) is defined as the remaining demand distribution and is Poisson with parameter λ̃k−1(T − t).
Proposition 1 For any fixed k, protection level ỹk(t) is decreasing in t.

Proof. The result is straight-forward since D̃k−1(t) is Poisson with parameter λ̃k−1(T−t), so P(D̃k−1(t)≥
y) is decreasing in t. Thus, ỹk(t) is decreasing in t.

Proposition 2 If either uk
q̃k−1
≥ uk+1

q̃k
or q̃k−1P(D̃k−1(t)≥ y)≤ q̃kP(D̃k(t)≥ y), then ỹk(t)≥ ỹk−1(t).

Proof. Let’s look at the first sufficient condition. Note that λ̃k−1 ≤ λ̃k, we have

P(D̃k−1(t)≥ y)≤ P(D̃k(t)≥ y). (3)

For any fixed t, let

ỹa(t) = max
{

y ∈N : P(D̃k−1(t)≥ y)>
uk+1

q̃k

}
.

If uk
q̃k−1
≥ uk+1

q̃k
is true, then ỹk−1(t)≤ ỹa(t) since P(D̃k−1(t)≥ y) is decreasing in y. From equation (3), we

also have ỹk(t)≥ ỹa(t). Thus, ỹk(t)≥ ỹk−1(t).
The proof for the second sufficient condition is similar to the first one. Let

ỹb(t) = max
{

y ∈N : q̃k−1P(D̃k−1(t)≥ y)> uk+1
}
,

then ỹk−1(t)≤ ỹb(t) since uk ≥ uk+1 and q̃k−1P(D̃k−1(t)≥ y) is decreasing in y. If for any fixed time t, we
have q̃k−1P(D̃k−1(t)≥ y)≤ q̃kP(D̃k(t)≥ y) for all y, then ỹk(t)≥ ỹb(t). Thus, ỹk(t)≥ ỹk−1(t).

Using this heuristic, we can compute a table of protection levels ỹk(t), k = 1, . . . ,n− 1 and t =
0,1, . . . ,T − 1. At state (t,x), we will offer set Sk(t,x) where the index k(t,x) is set to n if ỹn(t) < x and
otherwise it is set to the smallest k such that ỹk(t)≥ x.
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Up to now we have not used the specific form of the choice model except for the fact that we have
assumed the efficient sets are nested. Thus, the above applies to any situation where the efficient sets are
nested even if they are not nested by fare values (but this may require relabeling the fares). As we shall
see in the numerical examples in section (5), this heuristic performs extremely well with performance that
is almost as good as solving the corresponding dynamic program.

4.2 Unidirectional Closure Heuristic(UCH): Fares Cannot Be Reopened Once They Are Closed

The heuristic approximates the marginal value of capacity when only set Sk−1 is used over periods
{t + 1, . . . ,T − 1}. Let Dk(t) be Poisson with parameter λk(T − t). Then Vt(x) ' qk−1E min(Dk−1(t),x)
resulting in ∆Vt(x)' qk−1P(Dk−1(t)≥ x). This leads a protection of

yk−1(t) = max
{

y ∈N : P(Dk−1(t)≥ y)>
uk

qk−1

}
(4)

units of resource at the beginning of period t ∈ {0, . . . ,T −1} for set Sk−1.
Similar to CRH heuristic, we can compute a table of protection levels yk(t), k = 1, . . . ,n− 1 and

t = 0,1, . . . ,T − 1. At state (t,x), we will offer set Sk(t,x) where the index k(t,x) is set to n if yn(t) < x
and otherwise it is set to the smallest k such that yk(t)≥ x. Under the multinomial logit model, the above
heuristic has the flavor of the EMSR-b with buy up developed by Belobaba and Weatherford (1996).

The protection levels yk(t) resulted from the EMSR-b type heuristic, see equation (4), tend to be more
conservative compared to the optimal protection levels computed by DP. This is because the EMSR-b
heuristic and optimal solutions for the case where fares cannot be reopened take into account the value of
exercising the option to switch out of a fare.

5 SIMULATION AND NUMERICAL RESULTS

Monte Carlo Simulation is implemented to evaluate the performance of our proposed heuristics against the
existing EMSRb heuristic that are adjusted to customer choice models Talluri and van Ryzin (2004). While
EMSRb heuristic is developed under static-model assumptions where demand for each fare classes arrives
in a low-to-high revenue order, it is frequently used as a heuristic in the dynamic settings by aggregating
the total demand-to-come for each fare classes. Also, this heuristic can be adjusted to incorporate customer
choice behavior, so it serves as a useful benchmark for comparison. Customer arrivals are simulated over
a booking horizon according to a Poisson process. Customers upsell and downsell behaviors are captured
in our simulation with the specified probabilities given by the MNL model. We compare the total revenue
generated using availability policies specified by our proposed dynamic heuristics against the ones found by
optimal DP as well as the existing EMSRb heuristic. Extensive study of a two-fare class, a three-fare-class
and a ten-fare-class simulations over a wide range of parameters is conducted. We tested over 300 scenarios
with different parameters varying across a wide range of market conditions. For example, the demand load
factor (defined as aggregate customer demand divided by flight capacity) varies from 50 to 200 per cent,
and price elasticity changes from −1.0 (low) to −4 (high). In all examples, the number of simulation runs
is fixed at 40,000. With this sample size, the revenue estimates have relative errors in the range of 0.05%
to 0.13% with 99% confidence. In each case, customers choice behavior follows a MNL choice model.

5.1 Two-fare-class Simulations

The results here are based on a single flight with two fare classes. The high fare p1 = $1,000 has schedule
quality s1 = $1,200, while the low fare p2 = $600 has schedule quality s2. Price and schedule sensitivities
are βp =−.005,βs = .005 respectively. The attractiveness (exponential utility) of these two products are
a1 = a2 = e1, and the outside alternative has attraction ao = e1. The booking time horizon is T = 100 and
per period demand rate is λ = .4. We compare the revenue performance of CRH and UCH against EMSRb
in different scenarios by varying schedule quality s2 from $650 to $1,200 and flight capacity C from 10 to
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40. Based on the simulation results, the CRH consistently outperforms ESMRb with an average revenue
improvement of 1.36%, while UCH performs similarly to EMSRb. The average revenue gain of CRH
and UCH over EMSRb at different load factors is shown in Table 1 below. Figure 2 presents the average
suboptimality gaps of these heuristics over optimal DP.

Table 1: Average revenue gain of CRH and UCH over EMSRb in two-fare simulation.

Load Factor Range CRH over EMSRb UCH over EMSRb
[0,1.0] -0.01% -0.02%
(1.0,1.5] 0.44% 0.01%
(1.5,2.0] 2.12% 0.00%
(2.0,2.5] 3.42% -0.01%
(2.5,3.0] 3.77% 0.01%
(3.0,3.5] 3.36% 0.02%
(3.5,4.0] 2.59% -0.02%
(4.0,5.0] 1.59% 0.02%
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0.00%
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Suboptimality Gaps of heuristics
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Figure 2: Suboptimality gap of CRH, UCH and EMSRb for two-fare simulations.

5.2 Three-fare-class Simulations

This example is taken fromTalluri and van Ryzin (2004) and involves three products Y , K and M with fares
$800, $450 and $500. In this example, only the sets {Y},{Y,K} and {Y,K,M} are efficient. We relabel the
fares as 1, 2 and 3 with 1 corresponding to fare Y , 2 corresponding to fare K and 3 corresponding to fare
M. Then the three efficient sets are Sk = {1, . . . ,k} for k = 1,2,3. Our simulation uses per period demand
rate λ ∈ {.15, .20, .25}. For a capacity level C = 20 and λ = .25, table 2 illustrates the optimal dynamic
protection levels together with protection levels obtained by heuristics respectively at the beginning of
period t ∈ {0,10,20,40,60,80}. For example, at t = 0, we see that y1 <C ≤ y2 so we start by offering set
S2.

Table 3 compares the results of heuristics at different capacity levels at when λT = 20. We find that
the performance of UCH is similar to EMSRb adjusted to choice models. Both of these perform well when
the capacity becomes large. When capacity is tight, the largest revenue gap of UCH compared to optimal
DP solution is around −2.82% when λT = 20 and capacity level of 10. The undesirable performance of
both UCH and EMSRb is probably due to the fact that it cannot reopen fares once they are closed, and
this limitation precludes UCH and EMSRb from capturing more high fare demands, thus it leads to lower
total revenue. The optimal policy, on the other hand, is more aggressive in protecting high fare demand,
because it has the option of reopening low fares when the actual demand turns out to be low. The central
ray heuristic(CRH), on the other hand, is more robust. The largest suboptimality gap of −1.04% occurs
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Table 2: Dynamic protection levels when λT = 25.

t y∗1 y∗2 yEMSRb
1 yEMSRb

2 yUCH
1 yUCH

2 yCRH
1 yCRH

2

0 12 20 7 21 7 21 12 20
10 11 20 6 19 6 19 10 20
20 10 18 5 17 5 17 9 19
40 7 14 4 13 4 13 6 14
60 5 9 3 9 3 9 4 10
80 2 5 1 4 1 4 2 5

at capacity C = 18. The average revenue gap of CRH is around −0.6%. The revenue improvement of
CRH over existing EMSRb is shown in the last column of table 3. The largest improvement occurs when
the capacity is tight when the load factor is high. The similar conclusion can be drawn by examining the
suboptimality gaps of all heuristics compared to the optimal value at different capacity level and arrival
rates. The results are presented in Figure 3. In summary, CRH performs much better than UCH and
ESMRb when the capacity is limited, and when capacity is abundance and load factor is low, all heuristics
perform equally well.

Table 3: Suboptimality gaps of CRH, UCH, EMSRb at different capacity when λT = 20.

Capacity Load
Factor

SubOpt
EMSRb

SubOpt
UCH

SubOpt
CRH

UCH−EMSRb
EMSRb

CRH−EMSRb
EMSRb

10 2.0 -3.26% -3.22% -0.94% 0.04% 2.39%
12 1.67 -2.19% -2.23% -0.99% -0.04% 1.23%
14 1.43 -1.57% -1.51% -0.85% 0.05% 0.72%
16 1.25 -1.47% -1.41% -1.04% 0.06% 0.43%
18 1.11 -1.29% -1.36% -0.98% -0.07% 0.31%
20 1.00 -1.17% -1.16% -0.87% 0.00% 0.30%
22 0.91 -0.96% -0.96% -0.58% 0.00% 0.39%
24 0.83 -0.69% -0.60% -0.45% 0.10% 0.25%
26 0.77 -0.34% -0.24% -0.40% 0.09% -0.06%

5.3 Ten-fare-class Simulation

A more complicated ten-fare example is also extracted from Talluri and van Ryzin (2004), but is modified
to allow the no-purchase alternative in customer choice model. Under the assumption that customers
behave according to a MNL model, the only efficient sets are nested by fare order, Sk = 1, ...,k where
1≤ k≤ 10. The arrivals follow a homogeneous Poisson process with mean 205 and total booking periods
are T = 410, so the arrival rate is λ = 0.5 per period. We again test both heuristics under multiple scenarios
by varying both capacity levels and choice model parameters, and compare them against existing EMSRb
heuristic. These simulation results again suggest that while UCH performs similar to EMSRb (with an
average revenue gaps less than 0.1%), CRH performs much better than EMSRb and is fairly robust (all
revenue performances are within 0.5% of the optimal solution) across all scenarios that we tested . The
revenue gains of CRH over EMSRb range from 0.1% to 2.3% with the biggest improvement occurring
when the capacity is tight which confirms with our previous simulation findings.

6 CONCLUSION

We develop two computationally efficient heuristics for dynamic single-leg revenue management problems
with dependent demand. The product availability policies generated by these heuristics can help mitigate
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Figure 3: Suboptimality gap of CRH and EMSRb at λT = 15 and λT = 25.

revenue dilution caused by customer downsells. The key idea underlying the heuristics is to find good
approximations of marginal revenue of capacity. Central Ray Heuristic (CRH) is developed for the cases
where fares can be opened and closed freely during the booking horizon. For other cases where fares cannot
be reopened once they are closed, we propose a different heuristic, namely Unidirectional Closure Heuristic
(UCH), to compute the protection levels. Computational experiments indicate that while UCH performs
similar to EMSRb (adjusted to customer choice models), CRH outperforms existing EMSRb heuristic
in almost all market conditions. When capacity is tight (i.e., load factor is high), significant revenue
improvement (1.5%-4.5%) can be gained using CRH over EMSRb. When capacity is abundant (i.e., load
factor is low), both heuristics generate similar protection levels so their performance are comparable. Our
simulation study also indicates that CRH performs close to the optimal solution generated by dynamic
programming, which makes it a promising candidate that can be used as subroutines in large size network
revenue management problems to obtain good solutions within a reasonable amount of time.

The current study has two limitations. First, each choice model will only be valid for a certain amount
of time and the corresponding efficient sets will be different from the other choice models. Second, the
capacity allocation is more complicated. Not only do managers need to decide when to switch between
different efficient sets, they also have to decide how much capacity to allocated to each choice model. Future
work may include 1) validating our proposed CRH heuristic in a more complicated network setting, 2)
further extending our models to consider time-varying arrival rate λt , and incorporating time heterogeneous
choice models into this framework and develop efficient heuristics for the corresponding problems.
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