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ABSTRACT

A Poisson point process is characterized by its rate function. One family of rate-function approximations
is the authors’ MNO–PQRS, which is based on a piecewise-quadratic function for each equal-width time
interval. Fitting MNO–PQRS is based on the number of observed arrivals in each such interval. Therefore,
the first step in fitting is to choose the number of intervals. Previously the authors discussed choosing
the number of intervals for piecewise-constant rate functions. Here we extend those ideas to choosing the
number of intervals for MNO–PQRS. Typically, the number of MNO–PQRS intervals is smaller than the
piecewise-constant number. The results can be applied to non-Poisson arrival times; we do not investigate
sensitivity to the Poisson assumptions.

1 INTRODUCTION

Given a set of observed nonhomogeneous Poisson process (NHPP) arrival times t1, t2, ..., tn in a known time
interval, we are interested in estimating the unknown true rate function λ (t) over the time interval. Here n
is the observed value of N, the Poisson-distributed number of arrivals. Similarly, if the arrival indices are
permuted randomly, then the arrival times are independent, each with density function λ (t)/λ , where λ

is the mean number of arrivals, the area under the rate function.
Despite the close relationship between rate and density functions, their estimation differs in that the lower

and upper bounds are known for point processes and (often) unknown for density estimation. Typically,
estimation methods for both rate and density functions partition the data into contiguous intervals and use
the interval counts (i.e. number of observations in each interval) to fit a model family. In density estimation
with unknown bounds, the emphasis is on interval (bin) widths; in rate estimation with known bounds, the
analogy is the number of intervals.

1.1 Problem Statement

Let k be a dummy variable denoting the number of intervals, let k∗ denote the unknown optimal number
of intervals, and let k̂∗ denote the estimator of k∗. Let λ̂ denote an approximation to λ . Using observed
arrival times from λ to create k̂∗ begins by choosing a family of rate functions with k as a parameter and
then, for a fixed k value, obtain a λ̂ approximation by fitting the family to the k interval counts in terms
of its other parameters. Our problem is to create an appropriate estimator k̂∗ of k∗ as a function of the
observed arrival times.

1.2 Problem Solution

We follow four steps to estimate k∗ based on the observed arrival times. First, choose an expected-value
distance metric between λ and λ̂ . Second, derive the metric, say g(k), as a function of the process
assumptions (for us, Poisson) and the implied statistical behavior of λ . Third, create an estimate of g(k),
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say ĝ(k), as a function of the observed arrival times. Fourth, choose a method that computes a value k̂∗

using ĝ(k) values to approximate k∗ that minimizes g over k = 1,2, . . ..
In particular, in this paper our family of rate-function models, and method of fitting to count data from k

intervals, is MNO–PQRS, developed in Chen and Schmeiser (2014; 2017) and reviewed in Section 3.1. Our
decisions for the four steps to estimate k∗ are as follows. First, our distance metric is the mean integrated
squared error (MISE) criterion, as used in Chen and Schmeiser (2018) for the family of piecewise-constant
rate functions. Second, we derive the MISE value, g(k), for the PQRS family in Section 3.3. Third, we
obtain ĝ(k), an unbiased estimator of g(k), in Section 3.4. Fourth, rather than defining k̂∗ to be the global
argmin of ĝ(k), we introduce intuitively and empirically better heuristics in Section 3.5. Having chosen
the number of intervals, the MNO–PQRS rate-function estimate is fitted using k̂∗ intervals.

Two other choices have been made: piecewise-constant family and I-SMOOTH family (Chen and
Schmeiser 2011 and 2013), an iterative smoothing family and fitting method. Chen and Schmeiser (2018)
consider the piecewise-constant family, defined by the k counts, use the MISE criterion, and define k̂∗

using the global minimum. For this paper, we attempted I-SMOOTH. After I-SMOOTH iteration i, a
nonnegative piecewise-constant rate function with 2ik intervals is obtained; call this function I-SMOOTH
(i). I-SMOOTH is reviewed in Appendix A. In Appendix A, we state g for I-SMOOTH(1). Ideally, we
would present these values for I-SMOOTH(i) for i = 2,3, . . . ,∞, but the derivations become complicated.
Based on comparisons in Chen and Schmeiser (2015), for fixed k, the I-SMOOTH(∞) and MNO-PQRS
results are similar, so likely their values of k∗ are similar. Until analysis for general I-SMOOTH(i) is
available, using MNO-PQRS with its k̂∗ is more appealing. Or, if I-SMOOTH(i) for larger values of i is
used, probably the MNO–PQRS value of k̂∗ is more appropriate than the I-SMOOTH(1) value.

2 LITERATURE REVIEW

Rather than the usual literature review, we refer the reader to the review in Chen and Schmeiser (2018).
We summarize two updates.

First is Chen and Schmeiser (2018) itself. They derive the gMISE criterion, gC, for piecewise-constant
rate functions, create an unbiased estimator ĝC, and estimate the MISE-optimal number of intervals with
k̂∗C(GM), the global minimum (GM).

Second, Morgan (2019) fits a spline family with equal-width knot intervals using maximum likelihood.
The number of intervals is a given algorithm parameter. She compares her spline rate function with the
piecewise-linear rate function of Zheng and Glynn (2017) and with MNO–PQRS using k̂∗C(GM) intervals
as suggested in Chen and Schmeiser (2018). Unlike last year, where we recommended using k̂∗C(GM)

intervals to fit MNO–PQRS, we now recommend using k̂∗Q(LLM2-PC), as discussed in Section 3.5. We
look forward to seeing Morgan et al. (2019).

3 MNO–PQRS: ESTIMATING THE NUMBER OF INTERVALS AND FITTING

MNO–PQRS, which fits a piecewise-quadratic function to k arrival counts, is detailed in Section 3.1. Then
Sections 3.2 through 3.5 explain our approach to the four steps to determine an appropriate value of k from
the arrival times t1, t2, . . . , tn.

A difference between determining the number of intervals k and MNO–PQRS fitting is that fitting
treats arrival counts as deterministic whereas determining the number of intervals assumes distributional
properties on the arrivals. Hence, we make a notational change from Chen and Schmeiser (2017), where the
number of arrivals in the ith interval was denoted by (the constant) λi. In this paper, where the number of
intervals is a decision variable, Ci(k) will denote the ith (random variable) count when there are k intervals.

The arrival counts Ci(k) do not depend on time scaling. Nevertheless, we use two time scales: Unit-
width intervals are central to both. For determining an appropriate number of intervals, k, we assume that
arrival times lie in [0,1]; for fitting MNO–PQRS to k counts, we assume that the arrival times lie in [0,k].
That is, in Sections 3.2 through 3.5 the ith interval is ((i−1)/k, i/k], but in Section 3.1 the ith interval is
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(i− 1, i]. Therefore, the rate function for determining the number of intervals is k times larger than the
fitted MNO–PQRS rate function.

3.1 MNO–PQRS Review

Chen and Schmeiser (2014; 2017) propose the MNO–PQRS algorithm for smoothing a piecewise-constant
rate function with rates λi =Ci(k), for i = 1,2, . . . ,k for the k equal-width intervals. MNO–PQRS, with no
user-specified parameters, returns a smoother rate function that maintains the piecewise-constant rates.

MNO–PQRS proceeds in two steps: PQRS (Piecewise-Quadratic Rate Smoothing) returns a continuous
and differentiable piecewise-quadratic function without regard to negativity. If negative rates occur, then
MNO (Max Nonnegativity Ordering) returns the maximum of zero and another piecewise-quadratic function.
Chen and Schmeiser (2015) propose an efficient inverse-transformation method to generate arrival times
of a NHPP having the MNO–PQRS rate function.

MNO–PQRS considers five time-horizon contexts: Context 0 (cyclic) and finite-horizon Contexts 1–4
(two end-time rates, only left end-time rate, only right end-time rate, and no end-time rate specified,
respectively). For Context 0, the rate cycles with period length k. For the four finite-horizon contexts,
the rate function is defined only in time interval [0,k]. Although we have results for all five contexts, we
discuss only Contexts 0 and 4 in this paper, so we define here no notation for the end-time rates.

We now state the MNO–PQRS rate function explicitly. Let q(x : a,b,c) = ax2+bx+c, x∈ [0,1], denote
a quadratic function in the unit interval. The PQRS function is

τ0(t : a,b,c) = q(x : ai,bi,ci),

where j = max{0,dt/ke−1} is the number of previous cycles, i = max{1,dt− jke} is the interval number,
and x = t− jk− i+1 is the fractional time within interval i (except that the time intervals are closed on
the right, so x = 1 when t is integer).

The PQRS function has 3k parameters: a = (a1,a2, . . . ,ak), b = (b1,b2, . . . ,bk), and c = (c1,c2, . . . ,ck),
which are chosen to maintain the piecewise-constant rates, continuity of the PQRS function and continuity
of the derivatives. In particular, for Contexts 0 and 4 the 3k parameters are the linear functions

ai =
k

∑
j=1

αi jC j(k), bi =
k

∑
j=1

βi jC j(k), ci =
k

∑
j=1

θi jC j(k). (1)

The constant weights αi j’s, βi j’s, and θi j’s depend only on the context, as shown in Chen and Schmeiser
(2017).

If the PQRS function τ0 is non-negative everywhere, the MNO–PQRS function τ = τ0. Otherwise, the
MNO logic modifies τ0 by

τ
+(t : a+,b+,c+) = max{0,q(x : a+i ,b

+
i ,c

+
i )},

where i and x are defined as for τ0. The parameters (a+,b+,c+) are computed using the MNO logic
discussed in Chen and Schmeiser (2017). The MNO-PQRS rate function is then τ = τ+.

3.2 The MISE Criterion

The MISE criterion is the mean integrated squared distance between the true rate function λ and the
estimated rate function λ̂ . Under the assumption that arrival times are observed in the unit time interval,
the MISE criterion is

E
{∫ 1

0
[λ (t)− λ̂ (t)]2dt

}
.

Rather than using MISE directly, we use the gMISE criterion

g(k) = E
{∫ 1

0
[λ̂ 2(t)−2λ (t)λ̂ (t)]dt

}
.
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Because
∫ 1

0 [λ (t)]
2dt is a constant, minimizing gMISE yields the same result as minimizing MISE. We

define the optimal number of intervals to be

k∗ ≡ argmink=1,2,...g(k).

3.3 The gMISE Criterion for PQRS

Here we specialize g(k) to PQRS. We ignore the complication that arises from MNO’s non-negatively
logic. In practice, the fitted PQRS rate function is seldom negative. Ignoring negativity, however, harms
the fitted MNO–PQRS rate function when the true rate is close to zero.

Fix the number of equal-width intervals, k, in{1,2, . . .}. The arrival count in the ith interval ((i−1)/k, i/k]
is Ci(k) for i = 1,2, . . . ,k. The PQRS rate-function estimator at time t ∈ [0,1] is then

λ̂Q(t;k) = k q(x : ai,bi,ci), (2)

where i = max{1,dkte} is the interval number, and x = kt− i+1 is the magnified fractional time within
the ith magnified interval ((i−1), i]. The 3k parameters (a,b,c) are as shown in Equation (1).

Result 1 states the gMISE function for the PQRS rate-function estimator, as a function of k.
Result 1 Consider a NHPP on the unit interval with rate function λ . The gMISE criterion for the PQRS
estimator λ̂Q(t;k) is

gQ(k) = k

{
λ −

( k

∑
i=1

E2[Ci(k)]
)
+hQ(k)

}
, (3)

where

hQ(k) =
k

∑
i=1

4E(a2
i )

45
+

E(b2
i )

12
+

E(aibi)

6
+

2E(ai)E[Ci(k)]
3

+E(bi)E[Ci(k)]

−2E(bi)
∫ i/k

(i−1)/k
(kt− i+1)λ (t)dt−2E(ai)

∫ i/k

(i−1)/k
(kt− i+1)2

λ (t)dt,

E(ai) = ∑
k
j=1 αi jE[C j(k)], E(bi) = ∑

k
j=1 βi jE[C j(k)], E(aibi) = ∑

k
j=1 αi jβi jE[C j(k)]+E(ai)E(bi), E(a2

i ) =

∑
k
j=1 α2

i jE[C j(k)]+E2(ai), E(b2
i ) = ∑

k
j=1 β 2

i jE[C j(k)]+E2(bi), E[aiCi(k)] = E[Ci(k)][αii +E(ai)], and
E[biCi(k)] = E[Ci(k)][βii +E(bi)]. (For simplicity, the PQRS c is expressed as a function of a and b, and
hence, does not appear in hQ(k)).

Although we do not provide the proof here, we note that this analytical form of gMISE for PQRS arises
for three reasons. First, the integration of the quadratic function q is tractable. Second, the parameters a
and b are linear combinations of the counts C1(k),C2(k), . . .Ck(k). Third, we assume the Poisson properties,
in particular E[Ci(k)] = var[Ci(k)] and cov[Ci(k),C j(k)] = 0 for i 6= j.

3.4 Estimating gMISE for PQRS

In practice, λ is unknown; therefore gMISE is unknown. Here we create an unbiased estimator of gQ(k)
based on NHPP arrival times T1,T2, . . . ,TN in the unit interval. For any number of intervals k, N =∑

k
i=1Ci(k).

In Section 3.5, we minimize the unbiased estimator, ĝQ, to estimate k∗.
For fixed k, Result 2 provides an unbiased estimator ĝQ(k) of the gMISE criterion gQ(k) for the PQRS

estimator λ̂Q in Equation (2). In this subsection only, we simplify the notation Ci(k) to Ci.
Result 2 Consider arrival times T1,T2, . . . ,TN from the NHPP with unknown rate function λ on the unit
interval. Let Ti j denote the jth arrival time in the ith time interval ((i−1)/k, i/k], i = 1, . . . ,k, j = 1, . . . ,Ci.
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An unbiased estimator of gMISE, shown in Equation (3), for the PQRS rate-function estimator λ̂Q(t;k) is

ĝQ(k) = k

{
2N−

( k

∑
i=1

C2
i

)
+ ĥQ(k)

}
,

where

ĥQ(k) =
k

∑
i=1

4a2
i

45
+

b2
i

12
+

aibi

6

−2(ai−αii)

[
k2
( Ci

∑
j=1

T 2
i j

)
−2k(i−1)

( Ci

∑
j=1

Ti j

)
+
(

i2−2i+
2
3

)
Ci

]

−2(bi−βii)

[
k
( Ci

∑
j=1

Ti j

)
−
(

i− 1
2

)
Ci

]
.

We provide no proof here, but Result 2 depends upon two logic threads. First, any (unordered) arrival time
in the ith interval has density function λ (t)/E(Ci) for (i−1)/k≤ t ≤ i/k. Therefore, ∑

Ci
j=1 Ti j and ∑

Ci
j=1 T 2

i j

are unbiased estimators for
∫ i/k
(i−1)/k tλ (t)dt and

∫ i/k
(i−1)/k t2λ (t)dt, respectively. Second, Section 3.2 of Chen

and Schmeiser (2018) says that ĝC = k(2N−∑
k
i=1C2

i ) is an unbiased estimator for gC = k[λ −∑
k
i=1 E2(Ci)].

In addition, the proof uses Ci as an unbiased estimator for E(Ci), C2
i −Ci unbiased for E2(Ci), (aiCi−αiiCi)

unbiased for E(ai)E(Ci), and (biCi−βiiCi) unbiased for E(bi)E(Ci).
The estimator ĝQ is similar to the unbiased piecewise-constant result in Chen and Schmeiser (2018),

where the unbiased estimator is ĝC. The additional term is an unbiased estimator of khQ(k) in Equation (3).

3.5 Estimating k∗

We now turn to estimating k∗ ≡ argmink=1,2,...gQ(k), the MISE-optimal number of intervals, using the
unbiased estimated gMISE values ĝQ(k). For piecewise-constant (PC) rate functions, Chen and Schmeiser
(2018) use the GM k̂∗C(GM)≡ argmink=1,2,...ĝC(k). The analogy for PQRS is k̂∗Q(GM)≡ argmink=1,2,...ĝQ(k).

For eight Monte Carlo realizations from the shown cyclic rate function (solid curve), Figure 1 shows
k̂∗Q(GM) and the associated MNO-PQRS fit (dash curve). The optimal number of intervals is k∗ = 4. Four
of the eight realizations yield k̂∗Q(GM) values of three, four, and five, with corresponding good fits. The
other four realizations lie in the distribution’s long right tail, with corresponding fitted rate functions with
undesirable fluctuations. The implication is that avoiding large numbers of intervals is good. Therefore,
we now discuss alternatives to the global minimum. That is, we consider alternative definitions of k̂∗.

As a guiding principle, k̂∗ needs to be defined so that ĝ(k̂∗) is a local minimum. Then alternatives to the
global minimum exist whenever the global minimum is not the only local minimum. Pasupathy and Schmeiser
(2010), in using MSER (Marginal Standard Error Rule) estimators to choose the amount of initial data to
delete in steady-state simulation, compare two alternatives to the global minimum. The simpler is the leftmost
local minimum (LLM). More complicated, and therefore stated explicitly in Appendix B, is the leftmost
local minimum of the local minima (LLM2). We add a third alternative, k̂∗Q(LLM2-PC), which constrains
the LLM2 search to the range {1,2, . . . , k̂∗C(LLM2)}, where k̂∗C(LLM2) is the LLM2 of ĝC for PC rate
functions. From their definitions, for every realization k̂∗Q(LLM)≤ k̂∗Q(LLM2-PC)≤ k̂∗Q(LLM2)≤ k̂∗Q(GM).
Therefore, LLM, LLM2-PC, and LLM2, are heuristics having less right tail than the statistical distribution of
k̂∗Q(GM). As λ goes to infinity, ĝQ(k) converges to gQ(k), and all four alternatives converge to their analogies
of gQ. Therefore, asymptotically the global minimum is the safest alternative, despite not performing well
when λ is small.
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Figure 1: Eight realizations of the MNO-PQRS fit using the global-minimum estimated number of intervals.
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4 EMPIRICAL RESULTS

We now provide empirical results, based on the two rate-function examples in Section 4.1. In Section 4.2
we compare piecewise-constant, I-SMOOTH(1), and PQRS models using the gMISE function. In Section
4.3 we compare the k∗ estimation alternatives.

4.1 An Example Rate Function

To make various comparisons, both numerical and Monte Carlo, we use the cosine rate function

λ (t) = µ +δ cos(2π(ηt +ξ ))

over the unit interval. The parameters µ , δ , ξ , and η are the overall mean, amplitude, phase, and
frequency, respectively. Since λ (t) must be nonnegative, |δ | ≤ µ . Chen and Schmeiser (1992) propose an
inverse-transformation method to generate arrival times from a NHPP with the cosine rate function.

We consider two examples. Both use parameter values µ = λ −δ [sin(2π(η +ξ ))− sin(2πξ )]/(2πη)

(so that the mean number of arrivals is λ ), δ = .8λ , and ξ = 0.5. Example 1 is Context 0 (cyclic) with
η = 1. Example 2 is Context 4 (finite horizon with no specified end-time rate) with η = 0.5.

4.2 Comparison Over Rate-Function Models

We compare k∗ and gMISE for the piecewise-constant, I-SMOOTH(1), and PQRS rate-function estimators
in Table 1 using Example 1. Column 1 is the λ value; Columns 2 to 4 are the value of k∗ for the three
rate-function estimators; and Columns 5 to 7 are the corresponding scaled gMISE criterion, g(k∗)/(λ

2
).

The entries are printed up to the digit that shows the differences.
For all λ values, the k∗ values decrease from piecewise constant, to I-SMOOTH(1), to PQRS. The gMISE

values decrease similarly; Chen and Schmeiser (2018) derived the gMISE gC(k) = k{λ −∑
k
i=1 E2[Ci(k)]}

for piecewise-constant rate functions; the I-SMOOTH(1) gMISE gS(k) is in Appendix A. The comparison
between piecewise constant and PQRS is explicit, being the khQ(k) term in Result 1. (Similarly, the
difference between the piecewise-constant and I-SMOOTH(1) gMISE is khS(k) in Appendix A.) Both
decreases makes sense in that these rate-function models use k, 2k, and 3k parameters, respectively.

For all three rate-function estimators, the optimal MISE criterion goes to zero as the mean number
of arrivals increases. From Table 1, g(k∗)/λ

2
decreases to the constant −1.32. Here, for Example 1,∫ 1

0 [λ (t)]
2dt = 1.32λ

2
, and hence, the limiting value of the optimal MISE criterion is g(k∗)+

∫ 1
0 [λ (t)]

2dt = 0.
That is, all three models (using their own optimal number of intervals) converge to the true rate function λ

at the same speed. For finite λ , however, the relative g(k∗) differences among the three models decrease
as λ increases, as shown in the last three columns of Table 1.

Table 1: Using Example 1, comparisons of the MISE-optimal grouping for piecewise-constant, I-
SMOOTH(1), and PQRS rate-function models.

k∗ g(k∗)/(λ
2
)

λ
piecewise
constant

I-SMOOTH(1) PQRS
piecewise
constant

I-SMOOTH(1) PQRS

1 1 1 1 0 0 0
10 3 3 3 −0.92 −0.94 −0.95
102 6 4 3 −1.23 −1.26 −1.28
103 13 8 4 −1.301 −1.307 −1.315
104 28 17 5 −1.316 −1.317 −1.319
105 59 36 7 −1.3191 −1.3194 −1.3199
106 128 78 9 −1.31981 −1.31987 −1.31999
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In addition to having better gMISE values, PQRS has three other advantages. First, the PQRS rate
function is continuous. Second, I-SMOOTH requires a stopping rule. Third, the PQRS k∗ grows very
slowly with λ ; its 3k∗ parameters are fewer than the optimal number of parameters for piecewise constant
and I-SMOOTH(1) when λ is one thousand or bigger. In addition to parsimony, using fewer intervals
reduces the probability of empty cells.

4.3 Comparison of k̂∗ Alternatives

Here we compare four PQRS k̂∗ alternatives: GM, LLM, LLM2, and LLM2-PC. Simulation experiments
are run with 1000 replications using Examples 1 and 2. The Monte Carlo results are correct within one
unit of the right-most displayed digit.

The results are shown in Tables 2 and 3. In both tables, Column one is the mean number of arrivals, λ ;
Column two is the true MISE-optimal number of intervals, k∗; Columns three and four are the estimated
mean and standard deviation of k̂∗; Column five is the estimated mean squared error of k̂∗ divided by
(k∗)2; Column six is the estimated scaled excess gMISE (SE-gMISE) multiplied by λ ; and Column
seven is the maximum observed value of k̂∗ over 1000 replications. (Chen and Schmeiser (2018) define
SE-gMISE = {E[g(k̂∗)]−g(k∗)}2/λ

2
.)

Table 2 shows that for this cyclic example, LLM performs badly by highly under estimating k∗; worse,
its SE-gMISE does not go to zero as λ goes to infinity. This is because k = 1 is a local minimum of
the PQRS gMISE in this example. Compared to the global minimum k̂∗, the LLM2 estimator has lower
bias and reduces 44% to 58% of k̂∗’s standard deviation; the mean squared error mse(k̂∗) is reduced for
67% to 83%. This substantial improvement is also shown in SE-gMISE. Although SE-gMISE decreases
with λ for both the global minimum and LLM2, the limiting value (SE-gMISE)λ of LLM2 is lower. The
maximum observed value max(k̂∗) of LLM2 is about an half of that of the global minimum, showing that
the distribution of LLM2 has a shorter right tail. Hence, LLM2 is an obvious improvement of the global
minimum. LLM2-PC performs better than LLM2 when λ is small. For λ being 10 thousand or higher, the
LLM2-PC and LLM2 have the same results. Hence, we conclude that the LLM2-PC performs the best.

Table 2: Using Example 1, comparisons of the GM, LLM, LLM2, and LLM2-PC estimators.

λ k∗ E(k̂∗) std(k̂∗) mse(k̂∗)/(k∗)2 (SE-gMISE)λ max(k̂∗)

GM

102 3 4.3 2.9 1.11 1.20 38
103 4 4.9 3.2 0.71 1.88 42
104 5 5.9 3.1 0.41 1.71 43
105 7 7.6 3.3 0.23 2.00 50
106 9 9.4 2.7 0.09 1.69 35

LLM

102 3 1.4 1.0 0.4 25 7
103 4 1.4 1.1 0.5 271 7
104 5 1.5 1.4 0.6 2,757 7
105 7 1.8 1.9 0.6 26,746 9
106 9 1.9 2.3 0.7 277,111 12

LLM2

102 3 3.8 1.3 0.25 0.60 11
103 4 4.4 1.4 0.14 1.35 15
104 5 5.4 1.4 0.08 1.17 15
105 7 6.9 1.4 0.04 1.30 14
106 9 8.9 1.5 0.03 1.39 16

LLM2-PC

102 3 3.6 1.0 0.15 0.43 11
103 4 4.4 1.3 0.11 1.29 13
104 5 5.4 1.4 0.08 1.17 15
105 7 6.9 1.4 0.04 1.30 14
106 9 8.9 1.5 0.03 1.39 16
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Table 3 shows that for the finite-horizon example, LLM does not perform as badly as in Table 2.
However, LLM still under estimates k∗. Compared to the global minimum, LLM2 reduces 0% to 78%,
28% to 42% and 49% to 74% of k̂∗’s bias, standard deviation and mean square error, respectively. The
(SE-gMISE)λ of LLM2 is lower than that of the global minimum for all λ values shown. The LLM2-PC
performs slightly better than LLM2 when λ is less than 100 thousand.

Both Tables 2 and 3 show that LLM2 and LLM2-PC are substantially better than the GM k̂∗ in terms
of the bias, variance, and extreme value; LLM2-PC performs slightly better than LLM2 when λ is small.

Table 3: Using Example 2, comparisons of the GM, LLM, LLM2, and LLM2-PC estimators.

λ k∗ E(k̂∗) std(k̂∗) mse(k̂∗)/(k∗)2 (SE-gMISE)λ max(k̂∗)

GM

102 2 3.2 3.1 2.9 1.47 37
103 4 4.4 3.1 0.6 1.87 27
104 6 6.3 3.3 0.3 1.77 36
105 8 9.1 3.6 0.2 2.10 36
106 12 12.5 3.3 0.1 1.96 36

LLM

102 2 2.2 0.6 0.09 0.29 5
103 4 2.5 0.9 0.20 1.68 6
104 6 4.6 1.3 0.10 5.52 9
105 8 7.3 1.2 0.03 1.70 12
106 12 10.2 1.4 0.04 2.94 16

LLM2

102 2 2.8 1.5 0.73 0.92 15
103 4 3.9 1.9 0.23 1.41 18
104 6 5.7 1.8 0.10 1.19 18
105 8 8.2 2.1 0.07 1.50 19
106 12 11.8 2.4 0.04 1.60 24

LLM2-PC

102 2 2.4 1.0 0.30 0.44 15
103 4 3.6 1.6 0.16 1.23 12
104 6 5.6 1.7 0.08 1.12 14
105 8 8.2 2.1 0.07 1.50 19
106 12 11.8 2.4 0.04 1.60 24

5 DISCUSSION

We consider using the MNO–PQRS model to estimate the rate function of a NHPP from a set of arrival
times. Our topic is how to estimate an appropriate number of time intervals using the given arrival times.
For k intervals we derive the gMISE criterion gQ(k), present an unbiased estimator ĝQ(k), and recommend
the LLM2-PC heuristic for estimating k∗, the global minimum of gQ(k), using the ĝQ(k) values.

Our Poisson assumption works in practice in two ways. First, the Poisson conditions often are a good
approximation to reality; Poisson-distributed and independent interval counts arise simply from entities
not coordinating with each other. Further, merged (superposed) non-Poisson point processes are (with few
conditions) asymptotically Poisson (Cinlar 1972). Second—conditional upon a set of arrival times—our
intuition is that the value of k∗ is not sensitive to small violations of the Poisson assumptions. Sensitivity
to the Poisson assumption and derivations for non-Poisson processes are topics of interest.
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A I-SMOOTH AND gMISE FOR I-SMOOTH(1)

After reviewing I-SMOOTH, we state the gMISE criterion for I-SMOOTH(1). As in Section 3, assume
the arrival times lie in interval [0,k] for fitting and in [0,1] for determining k.

Chen and Schmeiser (2011, 2013) introduce I-SMOOTH, which smooths a piecewise-constant function
with rates λi =Ci(k), i = 1, . . . ,k, for k consecutive unit intervals. I-SMOOTH iteratively (the “I”) smooths
(the “SMOOTH”) a piecewise-constant function by bisecting time intervals to obtain an updated piecewise-
constant function with twice as many intervals. At each iteration, each interval’s integral is maintained by
decreasing the left half’s rate by γi while increasing the right half’s rate by γi. The value of γi is chosen
to minimize the sum of squared second differences of the new rates. The γi values depend upon which of
ten contexts applies: cyclic-horizon and nine finite-horizon contexts (caused by allowing zero, one, or two
fixed rates on each of the left and right ends). At each iteration, negative rates are avoided by limiting |γi|
to being no more than the current rate.

We now discuss the gMISE criterion for the I-SMOOTH(1) rate-function estimator λ̂S. For a fixed
value of k, λ̂S in the unit time interval is

λ̂S(t;k) =

{
k[Ci(k)− γi] for (i−1)/k < t ≤ (2i−1)/(2k)
k[Ci(k)+ γi] for (2i−1)/(2k)< t ≤ i/k

,

for i = 1,2, . . . ,k. The increment γi = ∑
k
j=1 wi jC j(k), where the constant weights wi j’s depend only on the

context, as shown in Chen and Schmeiser (2013).
Result 3 shows the gMISE criterion for the I-SMOOTH(1) rate-function estimator.

Result 3 Consider a NHPP on the unit interval with rate function λ . The gMISE criterion for the
I-SMOOTH(1) estimator λ̂S(t;k) is gS(k) = k

{
λ −∑

k
i=1 E2[Ci(k)]+hS(k)

}
, where

hS(k) =
k

∑
i=1

{ k

∑
j=1

w2
i jE[C j(k)]+

( k

∑
j=1

wi jE[C j(k)]
)2

+2
( k

∑
j=1

wi jE[C j(k)]
) (

E[C2i−1(2k)]−E[C2i(2k)]
)}

.

The proof of Result 3 is similar to that for the piecewise-constant estimator in Chen and Schmeiser
(2018). The term hS(k) could be estimated analogously to hQ(k) for PQRS using individual arrival times.

B LLM2 COMPUTER CODE

Subroutine llm2 is logic for the LLM2 (leftmost minimum of the local minima) of ghat, an external
function. The argmin is kllm2; its function value is yllm2. The maximum allowed value of kllm2 is
kmax, a user-specified parameter. As used in Section 3.5, the external function is ĝ(k) and kllm2 is k̂∗.

To read this Fortran as pseudocode, know the following. An exclamation point begins a comment.
Variables beginning with i, j, k, l, m, and n are integers; all other variables are doubles. do loops are
analogous to for loops. All variables are local, with no reliance upon earlier calls to llm2.
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subroutine llm2( kmax, kllm2, yllm2 )
! huifen chen and bruce schmeiser, february 15, 2019.
! find the location kllm2 of the Leftmost Local Minimum of
! the all Local Minima (llm2) of values ghat(k), k=1,2,... .
! llm2 originated in pasupathy and schmeiser, wsc 2010.
! input parameter
! kmax: kllm2 belongs to {1,2,...,kmax}
! output parameters
! kllm2: llm2 location (decision variable)
! yllm2: kllm2 function value
! external function
! ghat(k): external application-specific function
! returning the objective function for argument k
implicit double precision (a-h,o-z)
implicit integer (i-n)
kllm2 = 0 ! kllm2 = 0 is an error code
if (kmax .lt. 1) return

! ====== now k > 0 ======
y = ghat(1) ! get the first function value
kllm2 = 1 ! initialize llm2 location
yllm2 = y ! initialize llm2 value
if (kmax .eq. 1) return
endif

! ====== now k > 1 ======
yold1 = y ! yold1 = ghat(1)
y = ghat(2) ! get the second function value
if (y .lt. yold1) then

kllm2 = 2 ! if k=2, then ghat(2) is a local minimum
yllm2 = y ! ghat(2) less than ghat(1)

endif
if (kmax .eq. 2) return
endif

! ====== now k > 2 ======
if (y .lt. yold1) kllm2 = - 1 ! ghat(2) is not yet a local minimum
do k = 3, kmax ! loop over k

yold2 = yold1 ! yold2 = ghat(k-2)
yold1 = y ! yold1 = ghat(k-1)
y = ghat(k) ! get this function value
! check whether yold1 is a local minimum
if (yold1 .le. yold2 .and. yold1 .le. y) then
if (kllm2 .ge. 1 .and. yold1 .ge. yllm2) return
kllm2 = k - 1 ! update llm2 location
yllm2 = yold1 ! update llm2 value

endif
enddo

! ====== now k = kmax ======
if (y .lt. yllm2) then

kllm2 = kmax ! llm2 location is kmax
yllm2 = y ! llm2 value is the global minimum

endif
return
end
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