
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

USING SIMULATION TO APPROXIMATE THE MINIMUM COST
OF A FINITE SET OF ALTERNATIVES

Cuicui Zheng

Department of Computer Science
New Jersey Institute of Technology
323 Dr Martin Luther King Jr Blvd

Newark, NJ 07102, USA

James Calvin

Department of Computer Science
New Jersey Institute of Technology
323 Dr Martin Luther King Jr Blvd

Newark, NJ 07102, USA

ABSTRACT

We consider the problem of approximating the minimum cost of a finite set of alternative systems. We can
not directly observe the cost of the systems, but we can estimate the cost using simulation. The simulation
run lengths are adaptively chosen for each system. We describe an optimization algorithm and establish
a bound on the error convergence rate. Compared with a single system, the error grows by an additional
factor of the square root of the logarithm of the number of systems and the simulation budget.

1 INTRODUCTION

Consider the following optimization problem. We are interested in choosing a parameter from a finite set
that optimizes the long-run average performance of a stochastic system. The system is too complicated to
allow for analytic treatment, but we can simulate the performance at each parameter value.

Suppose that the parameter set is Θ = {θ1,θ2, . . . ,θν}, and the corresponding performance values
are {µ1,µ2, . . . ,µν}. For simplicity assume that the {µi} are distinct, and without loss of generality
assume that µ1 < µ2 < · · · < µν . For each θi we can run a simulation, observing i.i.d. random variables
{Yi, j : j = 1,2, · · ·} with mean µi and variance σ2

i . We assume that the {Yi, j,1≤ i≤ ν , j ≥ 1} are mutually
independent and defined on a common probability space (Ω,F ,P). We further assume that for some ε > 0,

EY 2+ε

i, j < ∞.

We can adaptively increase the simulation lengths ni so that the simulation effort is concentrated on the
parameter values that appear most promising over time. Let ni denote the number of simulation iterations
at the ith system; that is, we have computed estimates based on {Yi,1, . . . ,Yi,ni}. Let

n =
ν

∑
i=1

ni.

Let µn,i denote the sample mean and σ2
n,i the sample variance for the simulation of the ith system:

µn,i =
1
ni

ni

∑
j=1

Yi, j

and

σ
2
n,i =

1
ni−1

ni

∑
j=1

(Yi, j−µn,i)
2 .
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After a total of n simulation steps, we have estimates µn,i and σn,i such that

Zn,i ≡
√

ni

σn,i
(µn,i−µi)

d→ N(0,1) (1)

as ni→∞, for i = 1,2 . . . ,ν . We use the notation Xn
d→ F to indicate that the sequence of random variables

{Xn} converges in distribution to the distribution F , and Xn
P→ X to denote that the random variables {Xn}

converge in probability to the random variable X . We denote the standard normal distribution by N(0,1),
and its cumulative distribution function by Φ.

Let µn,∗ = min1≤i≤ν µn,i and let i∗n be the corresponding index, so that µn,∗ = µn,i∗n ; this will serve as our
estimate of µ1 = mini µi. We will construct an algorithm for running the simulations to efficiently estimate
µ1. Our goal is to construct a small interval [αn,βn] such that

P(αn ≤ µ1 ≤ βn)→ 1

as n→∞. If we knew in advance that the first system was the best, then we could allocate all observations
to that system and the central limit theorem implies that

P
(

µn,1−
σn,i√

n
zα ≤ µ1 ≤ µn,1 +

σn,i√
n

zα

)
→ 1−α

as n→ ∞, where
1−Φ(zα) =

α

2
.

Therefore, if γn is any increasing sequence going to +∞, then the probability that µ1 is contained in an
interval of half-width

σn,i√
n

γn (2)

tends to 1. Without such advance knowledge, we must allocate observations to systems 2,3, . . . ,ν , and so
our enclosing interval should be larger; that is, it implies a lower bound on the growth of γn. Such a lower
bound is obtained in Theorem 1 below.

2 BACKGROUND

To decide the best system using minimum cost in finite alternative systems by stochastic simulation is the
problem we focused on. (Kim and Nelson 2001) developed procedures for selecting the best or near-best of
a finite number of simulated systems and compared with indifference-zone procedures. (Ma and Henderson
2019) discussed similar problems as predicting simulation budget and guarantee probably approximately
correct selection.

Approximating the minimum cost value is related to the problem of selecting the system with the
smallest cost value. The latter problem is reviewed in (Goldsman et al. 2002; Lee and Nelson 2016).
Our main reason for concentrating on the problem of approximating the minimum value instead of the
minimizing parameter is that selecting the best system makes more sense for small, or at least finite, sets
of alternatives. In cases of a continuum of alternatives, possibly with many isolated global minimizers,
selecting the best system is not as well defined as approximating the minimum value. Nevertheless, the
two problems are clearly related.

We take as given the performance measures {µi}. An alternative is to start with a prior probability
distribution on the {µi}. This approach of Bayesian optimization is surveyed in Chick (2000) and Frazier
(2018).

Our approach might be called a single-stage approach, in that the algorithm does not perform preliminary
simulations that are used to plan subsequent simulations. Such single-stage procedures are presented in
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Nakayama (2009), where the emphasis is on constructing asymptotically valid confidence intervals for the
difference of cost values. We do not construct confidence intervals in the sense of that paper.

The algorithm described in this paper is similar to optimization algorithms described in works on
continuous Bayesian optimization; for example see Calvin et al. (2017). In that work, the goal was to
minimize a continuous function defined on the unit interval. The unknown function was assumed to be a
sample path of a Wiener process. The algorithm adaptively chooses points to evaluate the random function
f , with the error ∆n( f ) after n evaluations taken to be the difference between the smallest observed function
value and the global minimum. It was shown that for all r ∈ [1,∞) and for all p ∈ [1,∞) there is a version
of the algorithm (depending on those quantities) such that

(E|∆n( f )|p)1/p ≤ c ·n−r

for a constant c and for all n. That is, any polynomial error rate can be obtained. This compares with the
optimal nonadaptive error rate of n−1/2.

The main motivation for our paper is to obtain insight into the discrete optimization problem as the
number of alternatives ν→∞. In order to formulate a reasonable version of this question we impose some
structure on the {µi}. In Section 5 we consider a smooth cost function f : [0,1]→ R, that can only be
evaluated by simulation. We adaptively run simulations at f (i/ν), 1≤ i≤ ν , according the the proposed
algorithm. As ν→∞, we show that the rate at which the evaluations concentrate on the minimizer depends
on f through the second derivative at the minimizer.

3 THE ALGORITHM

Recall that i∗n is the index of the system with the smallest estimate µn,i after n simulation steps.
Define

gn,ν ≡
√

2log(nν)
σn,i∗n√ni∗n

and

ρ
n
i ≡

σ2
n,i

ni

1(
µn,i−µn,i∗n +gn,ν

)2 .

The idea of the algorithm is, at step n, to simulate the system i with the largest ρn
i . Roughly, this can be

thought of as maximizing the probability that the next evaluation is below µn,i∗n −gn,ν . The “gap” gn,ν is
chosen large enough that these probabilities (and therefore the ρn

i ) go to zero.
To simplify the exposition, we will assume that each system is initially simulated for two steps so that

the sample mean and variances are defined. The algorithm for a simulation budget N > 2ν follows.

1. Simulate 2 steps for each of the ν systems, set ni = 2, 1≤ i≤ ν , and compute µn,i and σn,i, 1≤ i≤ ν .
Set i∗n to the (first) index with minimal sample mean, and set n = 2ν .

2. Compute ρn
i for each i≤ ν , and let k be the (first) index with ρn

k ≥ ρn
i ∀i.

3. Simulate the kth system for one step, and update the sample mean and variance of the kth system.
4. Set nk = nk +1, n = n+1, and if n < N return to step 2.

We will only consider times at which we are about to evaluate the currently best system; that is, when
ρn

i∗n
≥ ρn

k for all k. Note that at such a time

ρ
n
k ≤ ρ

n
i∗n ≤

1
2log(nν)

; (3)

that is, for each i,
σ2

n,i

ni

1(
µn,i−µn,i∗n +gn,ν

)2 ≤
1

2log(nν)
.
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The event that the cost of the ith system is above our lower bound µn,i∗n−gn,ν is

{µi > µn,i∗n−gn,ν}=
{

µn,i−
σn,i√

ni
Zn,i > µn,i∗n−gn,ν

}
by (1)

=

{
Zn,i <

√
ni

σn,i

(
µn,i−µn,i∗n +gn,ν

)}
=

{
Zn,i <

1√
ρn

i

}
⊃
{

Zn,i <
√

2log(nν)
}

by (3)

⊃
{

Zn,i <
√

2log(niν)
}
.

Therefore, by (1),
P
(
µi > µn,i∗n−gn,ν

)
→ 1

as n→ ∞. It follows that

P(∆n ≤ gn,ν) = P(µn,i∗n−µ1 ≤ gn,ν)

= P

(
ν⋂

i=1

{µi > µn,i∗n−gn,ν}

)
→ 1

as n→ ∞.
The amount of simulation of the ith system satisfies

ni ≈
2log(nν)σ2

n,i

(µn,i−µn,i∗n +gn,ν)2 ,

and so for i > 1,
ni

log(nν)

P→ 2σ2
i

(µi−µ1)2

as n→ ∞. Also,
ni∗n
n

P→ 1.

This implies (1) ((Billingsley 1968), Theorem 17.1).

4 MAIN RESULT

Set

H =
ν

∑
i=2

σ2
i

(µi−µ1)
2 .

This is a measure of how hard the optimization is. If the small µi’s are clustered around the minimum, then
the algorithm needs to spread out the effort over multiple systems that seem promising; this corresponds
to a large H . If µ2 is much larger than the minimum µ1, then the search can concentrate on µ1 and H
is small. Then we have

ni∗n ≈ n−2log(nν)H
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and ni∗n
n

P→ 1.

The following limit theorem shows how small our interval containing the minimizer with probability
approaching one can be.
Theorem 1 Consider a system with ν alternatives. Let

∆n ≡ µn,i∗n−µ1

denote the approximation error after n simulation steps. Then

lim
n→∞

P

(
− σ1√

n

√
2log(nν)√

1−2H log(nν)/n
≤ ∆n ≤

σ1√
n

√
2log(nν)√

1−2H log(nν)/n

)
= 1.

This shows the slowdown we suffer compared to (2). We see that whereas the sequence γn introduced
at (2) can grow arbitrarily slowly, for our algorithm it must grow at rate

√
log(nν).

5 CONCENTRATION RATE

The {µi}, and hence H , could be quite arbitrary. In this section we consider the case where the goal is
to approximate the minimum of a continuous cost function by simulating values at a fixed grid of points.
Denote the cost function by f : [0,1]→R. We estimate the values f (i/ν), i = 1, . . . ,ν . With our previous
notation, {µi,1≤ i≤ ν}= { f (i/ν),1≤ i≤ ν}, though the ordering is different in general.

In this section, assume that σi ≡ σ for each 1≤ i≤ ν . Let us suppose that f ∈C2([0,1]) with unique
global minimizer t∗ ∈ (0,1) with f ′′(t∗)> 0. Let Πn denote the proportion of evaluations that are not at
the current estimator of the minimizer:

Πn = 1−
ni∗n
n
.

Set

B( f ,ν ,n)≡ π

4
ν

√
σ√

β ( f ,ν)

(
2log(nν)

n

)1/4

,

where β ( f ,ν)→ f ′′(t∗) as ν → ∞.
Theorem 2 As the number of evaluations n tends to infinity,

P(Πn ≤ B( f ,ν ,n))→ 1.

The bound B( f ,ν ,n) increases roughly linearly in the discretization order ν , and as the square root of
the noise standard deviation σ . For large ν , β ( f ,ν) ≈ f ′′(t∗) and so B( f ,ν ,n) increases as 1/

√
f ′′(t∗).

For f that increases rapidly moving away from the global minimizer, i.e., for large f ′′(t∗), the algorithm
can concentrate the evaluations more near the minimizer, thus reducing Πn.

6 NUMERICAL EXPERIMENTS

We did some experiments for the algorithm applied to the discretization of a smooth cost function, as
described in the last section. The cost function is

f (x) =
1
2
+2x− cos(12x−9), 0≤ x≤ 1, (4)

which is shown in Figure 1a. Figure 1b shows the discrete version of the optimization problem, where the
ith system cost is f (i/ν) for ν = 30 and 1≤ i≤ ν .
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Figure 1: Continuous and discretized cost functions.
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(a) Continuous cost function (4).
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(b) Estimates of discretized cost function (4).

For a fixed number ν , our goal is to approximate the minimum of f (i/ν), 1 ≤ i ≤ ν . This will be
based on evaluations

Yi, j = f (i/ν)+ξi, j,

where the ξi, j are independent standard normal random variables. Figure 1b shows the results of running
the algorithm on the function shown in Figure 1a with ν = 30 and n = 40,000. The error bars around
each estimated function value indicate the standard deviation of the estimator. In Figure 2 we plot the
normalized error for the algorithm applied to discretizations of ν = 50 in the left plot and ν = 100 in the
right plot. From Theorem 1, the normalized error

√
n

σ1
√

2log(nν)

will lie in the interval [−1,1] with probability approaching 1 as n→∞. The normalized error is plotted as
a function of the iteration number n for ν = 50 (left plot) and ν = 100 (right plot). In Figure 3, we plot
the proportion of evaluations made at points other than the current estimated minimizer, Πn, divided by
our upper bound B( f ,ν ,n) from Theorem 2. We evaluate the rate Πn/B( f ,ν ,n) with ν = 50 and ν = 100
with σ = 1. The total iteration number is 40,000. Theorem 2 implies that the ration should be below 1
with probability approaching 1 as n→ ∞. The results are plotted for ν = 50 (left plot) and ν = 100 (right
plot).

7 CONCLUSIONS

We have constructed a single-stage procedure for adaptively controlling the simulation of multiple systems
with the aim of efficiently approximating the minimum cost measure. We constructed an interval that contains
the minimum cost measure with probability approaching 1 as the simulation budget grows. Compared with
the ideal situation of a single system, the size of the enclosing interval grows by an additional factor of
the square root of the logarithm of the number of systems and the simulation budget.
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Figure 2: Normalized proportion of evaluations at sub optimal points.
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(a) Normalized proportion of evaluations
at sub optimal points, ν = 50.
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(b) Normalized proportion of evaluations
at sub optimal points, ν = 100.

Figure 3: Normalized proportion for increasing number of evaluations.
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(a) Normalized error, ν = 50.
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(b) Normalized error, ν = 100.
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