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ABSTRACT

We present two sequential allocation frameworks for selecting from a set of competing alternatives when
the decision maker cares about more than just the simple expected rewards. The frameworks are built on
general parametric reward distributions and assume the objective of selection, which we refer to as utility,
can be expressed as a function of the governing reward distributional parameters. The first algorithm,
which we call utility-based OCBA (UOCBA), uses the ∆-technique to find the asymptotic distribution of a
utility estimator to establish the asymptotically optimal allocation by solving the corresponding constrained
optimization problem. The second, which we refer to as utility-based value of information (UVoI) approach,
is a variation of the Bayesian value of information (VoI) techniques for efficient learning of the utility. We
establish the asymptotic optimality of both allocation policies and illustrate the performance of the two
algorithms through numerical experiments.

1 INTRODUCTION

Ranking and Selection (R&S) refers to the procedure of selecting the best system from a usually finite set
of competing alternatives, where performance measures are expensive to collect and subject to noise. The
vast majority of R&S literature works with the expectation of the random output. For example, consider the
problem of selecting an optimal route for a delivery service (Kawabe et al. 2015). Modeling the traveling
times on a designed route as a random variable to capture the unpredictable effects from factors such as
weather and traffic conditions, the problem of testing a set of candidate routes to quickly identify the one with
the smallest mean delivery time could then be treated as a R&S problem. Efficient testing strategies include
optimal computing budget allocation (OCBA) and Bayesian VoI-based allocation algorithms. However, the
mean delivery time may not be the appropriate measurement of route quality in this scenario. A route with
a slightly higher mean but much less variance in delivery time, could be preferable compared to one with a
smaller mean but much larger variance, as an unusually long delivery could cause packages to be delayed
to the next day. Similar problems are also found in many other applications. In financial applications,
value at (VaR) and conditional value at risk (CVaR) are two popular objectives when comparing different
pricing strategies, as financial institutions are extremely sensitive to risks (Rockafellar and Uryasev 2000).
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In behavioral economics, a cumulative prospect theoretic (CPT) utility is often used to properly capture
people’s perception of random rewards in games such as lotteries and gambling (Tversky and Kahneman
1992). In such scenarios, a utility function could be used to capture the problem-specific preferences of
decision makers. In a similar route selection scenario, a (CPT) utility was applied in the works of Jie et al.
(2018) in the multi-armed bandit setting for avoiding extraordinarily long traveling times. Prior research
on ranking and selection algorithms designed for objectives other than expected values includes Trailovic
and Pao (2004) for minimizing variance and Pasupathy et al. (2010) for quantile. In this paper, we consider
more general objective functions.

There is a rich literature on solving R&S problems with simple expectation being the utility. The
OCBA framework maximizes probability of correct selection (PCS) under a budget constraint to find the
asymptotically optimal policy, proposing sequential allocation algorithms using plug-in estimates for the
unknown parameters in the optimal allocation (Chen et al. 2000). The indifference-zone (IZ) approach
provides a frequentist confidence guarantee for PCS under the assumption that there exists a gap of δ

in expected performance between sub-optimal alternatives and the optimal one (Kim and Nelson 2001).
Another line of research, which is often referred to as the Bayesian value of information (VoI) approach,
works under a Bayesian framework for efficiently learning the expected value of the unknown random
reward. At each step, the alternative that contains the most information (variously defined) is selected. Two
notable examples are the expected improvement (EI) and knowledge gradient (KG) policies, which are
shown to be more efficient in the finite-budget domain compared to asymptotically optimal policies such
as OCBA (Chick 2006; Chick et al. 2010; Powell and Ryzhov 2012). Recent results in Ryzhov (2016)
and Peng and Fu (2017) connected the EI policy asymptotically to the OCBA policy, providing theoretical
support to its empirical performance. Another advantage of the Bayesian framework is its flexibility in
incorporating problem-specific information such as correlations into the allocation procedures, such as in
Frazier et al. (2009) and Qu et al. (2015), where similarity is modeled as correlation in the prior beliefs
to facilitate better selection.

In this paper, we tackle the R&S problem where the quality of each alternative is measured by a
utility function. Without assuming specific forms of the function, we first establish the asymptotically
optimal allocation using techniques similar to OCBA and propose sequential selection algorithms based
on the results. We then develop a Bayesian VoI approach for efficient learning of the utility rather than the
simple expectation and establish the equivalence between the two approaches. We also discuss the issue of
numerical computations and point out scenarios where the Bayesian approach could fail. Two numerical
experiments using utility functions found in economics and operations research were performed validating
the proposed algorithms.

The paper is organized as follows: Section 2 formulates the R&S problem. Section 3 finds the
asymptotically optimal allocation configuration for maximizing PCS with a given utility function. Section
4 designs a Bayesian VoI dynamic allocation procedure by providing an information measure for selecting
the next alternative. Section 5 formally states two algorithms based on the theoretical derivations, and
Section 6 illustrates the performance of the algorithms on two simulation problems.

2 PROBLEM FORMULATION

Let A = {1,2...k} denote the set of candidate alternatives, each associated with an unknown random
outcome Yi, i ≤ k, where Yi follows a distribution with unknown parameter θi. Before formulating the
problem, we list a set of notations used throughout the paper.

• U(·) : the known utility function,
• Ui : the true utility of alternative i computed as Ui ≡U(θi),
• yi j : the jth sample obtained for alternative i,
• θ̂i : an estimator of θi,
• Ûi : an estimator of Ui,
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• N : the total budget,
• in : alternative selected at allocation step n,
• y(n) : the sample obtained at allocation step n from the chosen alternative in,
• ni: the budget allocated to alternative i.

We assume U is known and the goal is to maximize the utility. For instance, in the case of quantile
selection in Pasupathy et al. (2010) with normal random rewards where θi = {µi,σi}, the utilities are
Ui = µi +ασi, where α is the quantile coefficient of a standard normal density. Without loss of generality,
we assume that U1 ≥U2 ≥ ... ≥Uk, so that alternative 1 is the best. Upon exhausting the budget N, we
make the final selection as

iN = argmax
i≤k

{Ûi},

where Ûi is chosen as U(θ̂i) in the UOCBA approach and E[U(θ̂i)] in the Bayesian VoI approach. Then, the
problem of designing an allocation that maximizes PCS under a budget constraint N could be formulated
as

max
n1,n2..nk

P{
⋂

2≤i≤k

Û1 ≥ Ûi}

s.t.
k

∑
i=1

ni = N.

(1)

In Section 3, we solve (1) in the asymptotic domain with ni → ∞ when θ̂ is the maximum likelihood
estimator (MLE). In Section 4, we work in the Bayesian framework where posterior densities are assumed
on θi and updated upon receiving new samples, and design information criterion for dynamically allocating
the simulation budget.

3 UTILITY-BASED OPTIMAL COMPUTATION BUDGET ALLOCATION

In this section, we consider the frequentist problem setting and explicitly find the asymptotically optimal
allocation configuration by solving Equation 1 when ni→ ∞,∀i≤ k. Under the assumption that θ̂i is the
MLE of θ , the asymptotic distribution of Û can be shown with the ∆-technique to be normal. Then
we approximate PCS with its Bonferroni lower bound and derive the optimal allocation using standard
techniques from OCBA.

3.1 Asymptotic Distribution of Plug-in Utility Estimator

Most R&S literature works with normal random rewards. In cases without normality, a simple batching
procedure could be applied to obtain approximately normal samples (Law and Kelton 2007). We do not
assume the normality of Yi, but restrict them to the family of random distributions with the following
property.
Assumption 1 {Yi}k

i=1 belong to the family of random variables such that θ̂i has the asymptotic distribution

√
ni(θ̂i−θi)

D−→N (0, I−1(θi)) as ni→ ∞,

where I(θi) = Eθi [(∇θ log f (X |θ)|θ=θi)(∇θ log f (X |θ)|θ=θi)
T ] is the corresponding Fisher information ma-

trix.

In the case of normal random outcomes, we have (µ̂i, σ̂i) =
(

∑
ni
j=1 yi j/ni,∑

ni
j=1(yi j− µ̂i)

2/ni

)
and the

asymptotic distribution of µ̂i and σ̂i is well-established. For densities other than normal, we refer the
readers to Casella and Berger (2002) for conditions on which Assumption 1 will hold. Setting Ûi to be the
plug-in estimator U(θ̂i), we establish the asymptotic normality of Ûi with the following lemma.
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Lemma 1 If U(·) is a differentiable function, then

√
ni(Ûi−Ui)

D−→N (0,v2
i ) as ni→ ∞,

where
v2

i = ∇
TU(θi)I−1(θi)∇U(θi). (2)

Proof. A direct application of the ∆-technique (Casella and Berger 2002) will prove the Lemma.

Lemma 1 establishes the normality of U(θ̂i), which allows us to find an approximation of PCS when
ni→ ∞ and explicitly solve (1).

3.2 Asymptotically Optimal Allocation Policy

With ni→ ∞, we first construct an approximation of PCS in (1) using the asymptotic normality results in
Lemma 1. Using the well-known Bonferroni lower bound, we have

PCS = P

{ ⋂
2≤i≤k

Û1 ≥ Ûi

}
= 1−P

{ ⋃
2≤i≤k

(⋂
j 6=i

Ûi > Û j

)}
= 1− ∑

2≤i≤k
P

{⋂
j 6=i

Ûi ≥ Û j

}
≥ 1− ∑

2≤i≤k
P
{

Ûi ≥ Û1
}
= APCS.

We assume {Ûi}k
i=1 are independent. With the normality results in Lemma 1, the term P{Ûi ≥ Û1} can be

expressed in terms of the standard normal cumulative distribution function. Letting

δi =Ui−U1, ζi =
δi√

v2
i /ni + v2

1/n1

, (3)

APCS can be written compactly as
APCS = 1− ∑

2≤i≤k
Φ(ζi), (4)

where Φ(·) is the cumulative distribution function for a standard normal distribution. Reaching (4) required
two approximations: (1) approximating PCS with its Bonferroni lower bound, and (2) approximating
{Ûi}k

i=1 with their asymptotic normal densities. The quality of the approximations will depend on the exact
value of ni, the true θ values and the utility function U . Careful evaluation of the quality of approximations
and their effect on the allocation performance is an active area in OCBA-related research, but out of scope
for this paper. The optimization problem in (1) can now be approximated by

min ∑
2≤i≤k

Φ(ζi) subject to
k

∑
i=1

ni = N, (5)

by replacing PCS with APCS. The approximate problem has the analytical solution presented in the
following theorem.
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Theorem 1 (Optimal Allocation for a Given Utility) Under the conditions of Lemma 1, the APCS is
maximized as N→ ∞ when the allocations satisfy the conditions

n1 =

√√√√v1

{
k

∑
i=2

n2
i

v2
i

}
, (6)

ni

n j
=

(
δi

δ j

)2

·
v2

j

v2
i
, 2≤ i, j ≤ k, (7)

k

∑
i=1

ni = N, (8)

where vi and δi are defined in (2) and (3), respectively.

Sketch of proof. Introducing Lagrange multiplier λ , the Lagrangian of the optimization problem in (5)
can be written as

L(n1,n2, ..,nk,λ ) = ∑
2≤i≤k

Φ(ζi)−λ ( ∑
1≤i≤k

ni−N).

Next, write the Karush-Kuhn-Tucker (KKT) conditions

∂L
∂n1

=− ∑
2≤i≤k

∂Φ(ζi)

∂ζi

∂ζi

∂n1
−λ = 0,

∂L
∂ni

=−∂Φ(ζi)

∂ζi

∂ζi

∂ni
−λ = 0,∀2≤ i≤ k,

and apply the standard derivations in Chen et al. (2000) will yield the desired results.

It is worth mentioning in the case of Yi having normal densities with expected value being the utility,
Theorem 1 reduces to the usual OCBA optimal allocation results.

4 UTILITY-BASED BAYESIAN VoI

We also attempt to tackle the problem by developing a variation of the Bayesian VoI technique for efficient
learning of the unknown utility. In the frequentist setting, the utility is viewed as a function of fixed unknown
distributional parameters, whereas in the Bayesian setting, we treat the utilities as random variables and
design an information criterion for dynamically allocating the simulation budget. We first present two
Bayesian models which we later use in our numerical experiments, then propose the expected utility
improvement and establish its asymptotic equivalence with the UOCBA allocation results in Theorem 1.

4.1 Bayesian Models and VoI

Two common Bayesian models are the Normal-Normal and Beta-Bernoulli models where tractable posterior
updates are readily available.
Normal-Normal posterior updates: In the Bayesian model with known normal priors on the mean
parameters µi ∼N (t0

i ,(τ
0
i )

2) and normally distributed samples Yi ∼N (µi,σi) where σi is known, the
posterior of µi at allocation step n is N (tn

i ,(τ
n
i )

2) with the updates on the parameters

tn+1
i =

{
(τn

i )
−2tn

i +σ
−2
i yn+1

(τn
i )
−2+σ

−2
i

, in = i

tn
i , in 6= i,

(
τ

n+1
i

)2
=

{(
(τn

i )
−2 +σ

−2
i

)−1
, in = i

(τn
i )

2, in 6= i.
(9)
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Beta-Bernoulli Posterior Updates: Assuming the probabilities of success pi have Beta(α0
i ,β

0
i ) priors,

upon receiving yn which is either 0 or 1, the posterior of pi is Beta(αn
i ,β

n
i ) with the parameter updates

α
n+1
i =

{
αn

i +1{yn=1}, in = i,
αn

i , in 6= i,
β

n+1
i =

{
β n

i +1{yn=0}, in = i,
β n

i , in 6= i,
(10)

where 1{·} is the indicator function.
VoI tends to favor alternatives with higher uncertainty or higher estimated mean. Two important examples
are Expected Improvement (EI) and Knowledge Gradient (KG). In this paper, we use a variant of EI for
its simplicity in computation and its connection with the UOCBA policy.

4.2 Expected Utility Improvement

Denote the priors on θi, i≤ k by f 0
i and the posteriors at step n as f n

i . VoI seeks to measure the potential
gain of learning θi by balancing the exploration-exploitation trade-off (Powell and Ryzhov 2012). We
propose the expected utility improvement (EUI)

gEUI,n
i = E

[
(U(θi)−U∗)+

]
, (11)

where the expectation is taken with respect to (w.r.t.) θi ∼ f n
i and U∗ = maxi≤k{E[U(θi)]} is the current

expected optimal utility under the posteriors { f n
i }k

i=1. The EUI-based policies select the alternative with
maximum EUI at allocation step n as

in = argmax
1≤i≤k

{gEUI,n
i }.

In the special case of Normal-Normal Bayesian models, similar to the results in Ryzhov (2016), we have
the following theorem relating the asymptotic allocations of EUI and UOCBA policies.
Theorem 2 In the case of Normal-Normal Bayesian model with τ0

i →∞ and N→∞, let nEUI
i and nUOCBA

i
denote, respectively, the budget allocated to alternative i under the EUI and UOCBA policies in Equation (11)
and Theorem 1, we have

nUOCBA
i

nUOCBA
j

→ nEUI
i

nEUI
j

, ∀i 6= j, i 6= 1, j 6= 1.

Proof. When τ0
i → ∞, we have tn

i = ȳi,τ
n
i = σi√

ni
. When ni→ ∞, a direct application of the ∆-technique

yieldsU(µi)
D−→N

(
U(X̄i),

(
| ∂U

∂ µi
| · σi√

ni

)2
)
.The EUI computation is then effectively a usual EI computation

on the random variableU with normal posterior densities. Apply the results in Ryzhov (2016) on convergence
rates of EI methods yields the theorem.

Theorem 2 only holds for sub-optimal alternatives (i, j 6= 1). Peng and Fu (2017) derived variants of
EI policies that achieve asymptotically optimal allocation ratio for all alternatives, which can be easily
applied to our scenario. We use the most basic EI policy for simplicity.

4.3 Practical Computation of Expected Utility Improvement

The original expected improvement policy in Jones et al. (1998) was developed under a normal distribution
assumption and has the closed-form expression

gEI = (t− t∗)Φ(
t− t∗

τ
)+ τφ(

t− t∗

τ
),
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where t and τ are the mean and standard deviation, respectively, of the posterior normal density and t∗ is
the current threshold for improvement. It is easy to see that gEI increases with τ for any t ≤ t∗, therefore
favors alternatives with higher uncertainty. However, in Equation (11), a higher uncertainty in θ does not
necessarily lead to higher EUI. One such example is U(θ) =−e−4θ −θ which we tested in Section 6.2.
As illustrated in Figure 1, a higher uncertainty in θ in terms of higher variance leads to a smaller gEUI ,
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Figure 1: A utility function (left), and higher uncertainty leads to lower EUI (right).

causing the EUI aproach to fail in the numerical experiments in Section 6.2. The EUI approach no longer
encourages exploration and we defer addressing the issue to future research.

5 UTILITY-BASED ALLOCATION ALGORITHMS

Using Theorem 1 and Equation (11), we design two fully sequential procedures for utility-based allocation
problems, which we refer to as most-starving-UOCBA (MS-UOCBA) and EUI.
MS-UOCBA: An initial sampling budget n0 is allocated to each alternative to obtain estimates of the
unknown parameters in Theorem 1. At each time step, Equations (6) to (8) are solved to find the estimated
optimal allocations under the given total budget. The alternative that is furthest away from its currently
estimated optimal allocation is selected. This “most-starving” implementation is fully sequential except
for the initialization batch of samples (Chen and Lee 2011).
EUI: The algorithm requires inputs for specifying the priors and posteriors updates, and therefore depends
on the specific Bayesian model used for specific application problems.

Algorithm 1: MS−UOCBA
Input: total budget N, initial budget n0,

utility function U
Output: the final selection iN

1 Allocate n0 to each alternative
2 Compute θ̂i, U(θ̂i) and ∇U(θ̂i)
3 Set counter n← kn0 and

mi← n0, i = 1,2, . . . ,k
4 while n≤ N do
5 compute ni by solving Equations (6)

to (8)
6 select in← argmax{ni−mi}
7 update min ← min +1 and n← n+1
8 update θ̂in , U(θ̂in), I(θ̂in), and ∇U(θ̂in)

9 return iN = argmaxi{U(θ̂i)}

Algorithm 2: EUI
Input: the priors f 0

i , total budget N,
utility function U

Output: the final selection iN

1 Initialization: set n = 0 and select
i0 = argmaxi≤k vEUI,0

i
2 while n≤ N do
3 collect one sample on alternative in as

xin
4 update f n

i (θi) for i = in
5 set f n

i = f n−1
i for i 6= in

6 compute vEUI,n
i with Equation (11)

7 select in = argmaxi≤k{v
EUI,n
i }

8 update n← n+1

9 return iN = argmaxi≤kE[U(θi)].
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Computational considerations: in the MS-UOCBA algorithm, the most computationally intensive
step would be solving for optimal allocation using Equations (6) to (8). However, for the Bayesian approach,
the posterior updates and computation of vEUI,n

i could be non-trivial, depending on the exact form of utility
and prior-posterior pairs. We assume relevant computations are more efficient compared to obtaining an
output from the simulation model, thus justifying the overhead for efficient sequential allocation.

6 NUMERICAL EXPERIMENTS

We test the performance of Algorithm 1 and Algorithm 2 on two simulated experiments by comparing
their performance with the simple equal allocation (EA) and usual OCBA allocation policies. The first
experiment selects from alternatives with binary rewards and employs the beta-Bernoulli conjugate pair
outlined in Equation (10) when implementing EUI. The second works with continuous random rewards
and uses the Normal-Normal Bayesian model in Equation (9).

6.1 Binary Rewards with Prospect Theoretic Utility

Let A = {1,2, . . . ,k} denote a set of lotteries and Yi, i≤ k be the Bernoulli random variable representing
the outcome of a lottery ticket. We have

Yi =

{
0, w.p. 1− pi,
1 w.p. pi,

where pi are the unknown winning probabilities. Let ai denote the winning prize of lottery i and bi be the
cost of buying a lottery ticket. The prospect-theoretic utility (Tversky and Kahneman 1992) for a lottery
has the form

U(pi) = (ai−bi)pw1
i −bi(1− pi)

w2

with weights w1 and w2 reflecting people’s perception of gains and losses. In the context of R&S, we
assume a customer chooses from 19 different lotteries before committing to a favorite one with preference
modeled by a prospect-theoretic utility with weights w1 = 1.1 and w2 = 100. The winning probabilities
are set to be {0.05,0.1,0.15...,0.90,0.95} with rewards ai = 1/pi and cost bi = 1, ∀1≤ i≤ 19, such that
the expected net gain of all lotteries will be 0. Under the utility above, the optimal lottery will be the 2nd
with p2 = 0.1 and a2 = 10 in this setting, as it offers a large reward as well as a reasonable chance of
winning. The selection problem is further illustrate in Figure 2 (Left).
Implementation of MS-UOCBA: Given observed outcomes of Yi, UOCBA first estimates the winning
probabilities, and then updates the estimation of vi, ni for dynamic allocation. For lottery i, after ni trials,
we have

p̂i =
∑

ni
j=1 yi j

ni
, vi = |w1(ai−b1)pw1−1

i +bi(1− p1)
w2−1|

√
p̂i(1− p̂i)).

We choose the initialization budget kn0 to be 20% of the total budget N.
Implementation of EUI: We set the priors on pi to be the flat beta distribution Beta(1,1) for all i ∈A .
Upon collecting new observations, the update is performed according to Equation (10). Given a beta
posterior with shape parameters α and β , the posterior expected utility has the closed-form formula

E[U(pi)] =
(ai−bi)B(α +w1,β )−biB(α,β +w2)

B(α,β )
,

where B(α,β ) is the Beta-function defined as B(α,β ) =
∫ 1

0 xα−1(1−x)β−1dx. The expected improvement
in Equation (11) is computed with numerical integration routine integrate in R. For posteriors with large
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shape parameters (> 1,000 in our experiments), a Monte Carlo integration is performed to compute the
posterior expected utility and expected improvement with 1,000 samples to avoid the numerical instability
with extraordinarily small (< 10−100) B(α,β ).

We compare the performance of MS-OCBA and EUI using the above implementations with the Equal
Allocation (EA) policy and the MS-OCBA policy for budgets ranging from 100 to 10,000. For the MS-
OCBA policy, we use the same implementation with MS-UCOA with U(p̂) set to be p̂ and v1 set as√

pi(1− pi). The PCS for each allocation algorithm is estimated using 1,000 simulation replications. The
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Figure 2: The prospect utility function U(·) and asymptotic distribution of the utility estimator U(p̂i) (left),
and simulated PCS (right).

simulation results are presented in Figure 2 (right). EUI has the best performance among all policies, with
MS-UOCBA being the second best. The usual MS-OCBA policy has the worst performance, as it devotes
most of its allocation budget on alternatives with large pi, which have relatively low values under the given
utility measure.

6.2 Staffing with a Cost Utility

A company staffing a service center is often faced with the trade off between quality of services and staffing
costs (such as training and compensation). Let Yi denote the service times, we set

Yi ∼N
(
µi,σ

2
i
)

where µi is unknown and σi is assumed to be 1. A smaller value of µi indicates higher service quality but
requires higher training and wage costs. A utility function of the form U(µi) =−C(µi)−Q(Yi) in Fu et al.
(2005) is often used to capture the trade off, where C(·) denote the cost and Q(·) denote the service quality.
We use negative terms to make the problem a maximization rather than minimization, for consistency with
our problem setting. We test with two utilities

U1(µ) = e10µ−10, U2(µ) =−e−4µ −µ,

where U1 monotonically increases with µ and U2 balances between cost and quality.
Implementation of MS-OCBA: Given collected samples drawn from Yi, MS-UOCBA estimates µi with
sample averages, and vi for two two utilities can be easily computed to be

µ̂i =
∑

ni
j=1 yi j

ni
, vU1

i = |10e10µ−10|σ , vU2
i = |4e−4µ +1|σ .
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The initialization budget kn0 is chosen to be 20% of the total budget N..
Implementation of EUI: Given normal random observations, we use the Normal-Normal model outlined
in Equation (9). The priors are set to be t(0)i = 0 and τ

(0)
i = 1,000 to create flat priors. Given a posterior

N (tn
i ,(τ

n
i )

2), the posterior expected utilities can be computed as

E[U1(µi)] = e10tn
i +50(τn

i )
2
, E[U2(µi)] =−tn

i − e−4tn
i +2(τn

i )
2(tn

i )
2
.

EUI in Equation (11) for U1 and U2 under the assumed Normal-Normal conjugate pair also has the closed
form expressions

EUI(U∗1 ) = e−10[1−Φ(
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1
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i
)]+ e10tn

i +50(τn
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where U1(xc
1) =U∗1 and U2(xl

2) =U2(xu
2) =U∗2 with xl

2 ≤ xu
2. Under this notation [xc

1,∞) and [xl
2,x

u
2] will

be the region where improvement function is positive for computing EUI for utility functions U1 and U2.
The priors are chosen to be N (0,4) for initializing the unknown µi inside the interesting region. At each
time step, the alternative with maximum EUI is chosen. If there is a tie in EUI, one of the alternatives
with the maximum EUI is randomly selected. In both tests, EUI allocation steps are terminated early due
to its clear convergence.
Implementation of MS-OCBA and EA: The MS-OCBA algorithms are implemented using the same
setup for MS-UOCBA. For total simulation budgets ranging from 100 to 10,000, each policy is simulated
1,000 replications to estimate PCS. The numerical results are presented in Figure 3.
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Figure 3: Performance of allocation algorithms for the two utilities U1 and U2.

For U1, the EUI algorithm outperforms all other algorithms. MS-OCBA outperforms MS-UOCBA, as
U1 being a monotoe function, both MS-OCBA and MS-UOCBA will treat alternative 20 as the true optimal
choice and allocate budgets on alternatives closer to 20. Despite being optimal under their respective
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selection rule ( OCBA with iN = argmax{µ̂i} and UOCBA with iN = argmax{U1(µ̂i)} ), there is no
easy theoretical analysis on their relative performance. The EA policy outperforms both MS-OCBA and
MS-UOCBA when the total budget is small, as OCBA policies are known to be sensitive to initialization
noise. For U2, MS-UOCBA is the best among all tested algorithms. Despite the asymptotic optimality
result in Theorem 2, the shape of U2 causes the EUI policy to fail in this problem, as higher uncertainty
leads to a smaller expected utility improvement, causing the algorithm to perform similar to a uniform
random choice, as explained in detail in Section 4.3.

7 CONCLUSION

In this paper, we considered the R&S problem where the selection objective can be expressed as a
utility function of the observed random samples. We established a plug-in utility estimator to derive an
asymptotically optimal allocation policy and provided insight on how a utility function would affect the
optimal allocation policy. The main result in Theorem 1 can be easily extended to cases where the MLE
is not easy to obtain, but some other parameter estimator with the same convergence rate, such as the
methods of moments estimator, could still be applied. We also developed a variation of the Bayesian VoI
approach that showed better finite budget performance. We proposed two sequential allocation algorithms
and discussed their practical implementations, including a scenario where the Bayesian VoI approach could
fail. To the best of our knowledge, this is the first attempt at extending R&S techniques for general utility
measures.
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