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ABSTRACT

Some recent works showed that several machine learning algorithms, such as square-root Lasso, Support
Vector Machines, and regularized logistic regression, among many others, can be represented exactly as
distributionally robust optimization (DRO) problems. The distributional uncertainty set is defined as a
neighborhood centered at the empirical distribution, and the neighborhood is measured by optimal transport
distance. In this paper, we propose a methodology which learns such neighborhood in a natural data-driven
way. We show rigorously that our framework encompasses adaptive regularization as a particular case.
Moreover, we demonstrate empirically that our proposed methodology is able to improve upon a wide
range of popular machine learning estimators.

1 INTRODUCTION

A Distributionally Robust Optimization (DRO) problem takes the general form

min
β

max
P∈Uδ

EP [l (X ,Y ;β )] , (1)

where β is a decision variable, (X ,Y ) is a random element, and l(x,y;β ) measures a suitable loss or
cost incurred when (X ,Y ) = (x,y) and the decision β is taken. The expectation EP[·] is taken under the
probability model P. The set Uδ is called the distributional uncertainty set and it is indexed by the parameter
δ > 0, which measures the size of the distributional uncertainty.

The DRO problem is said to be data-driven if the uncertainty set Uδ is informed by empirical
observations. One natural way to supply this information is by letting the “center” of the uncertainty region
be placed at the empirical measure, Pn, induced by a data set {Xi,Yi}n

i=1, which represents an empirical
sample of realizations of (X ,Y ) that follows a population distribution P0. We denote by β∗ the optimal
decision that minimizes the population risk EP0 [l (X ,Y ;β )]. In order to emphasize the data-driven nature
of a DRO formulation such as (1), when the uncertainty region is informed by an empirical sample, we
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write Uδ = Uδ (Pn). To the best of our knowledge, the available data is utilized in the DRO literature only
by defining the center of the uncertainty region Uδ (Pn) as the empirical measure Pn.

Our goal in this paper is to discuss a data-driven framework to inform the shape of Uδ (Pn). Throughout
this paper, we assume that a sensible loss function l (x,y;β ) has been selected for the problem at hand.
Our contribution concerns the construction of the uncertainty region in a fully data-driven way and the
implications of this design in machine learning applications. Before providing our construction, let us
discuss the significance of the data-driven DRO in the context of machine learning.

Recently, (Blanchet et al. 2016; Shafieezadeh-Abadeh et al. 2015) showed that many prevailing machine
learning estimators can be represented exactly as a data-driven DRO formulation in (1). For example,
suppose that X ∈Rd and Y ∈ {−1,1}. Further, let l(x,y,β ) = log(1+exp(−yβ T x)) be the log-exponential
loss associated to a logistic regression model where Y ∼ Ber(1/(1+exp(−β T

∗ x)), and β∗ is the underlying
parameter to learn. Then, given a set of empirical samples Dn = {(Xi,Yi)}n

i=1, and a judicious choice of
the distributional uncertainty set Uδ (Pn), (Blanchet et al. 2016) shows that

min
β

max
P∈Uδ (Pn)

EP[l(X ,Y,β )] = min
β

(
EPn [l(X ,Y,β )]+δ ‖β‖p

)
, (2)

where ‖·‖p is the `p−norm in Rd for p ∈ [1,∞) and EPn [l(X ,Y,β )] = n−1
∑

n
i=1 l(Xi,Yi;β ).

The definition of Uδ (Pn) turns out to be informed by the dual norm ‖ · ‖q with 1/p+ 1/q = 1. If
p = 1 we see that (2) recovers L1 regularized logistic regression (see (Friedman et al. 2001)). Other
estimators such as Support Vector Machines and sqrt-Lasso are shown in (Blanchet et al. 2016) to admit
DRO representations analogous to (2) – provided that the loss function and the uncertainty region are
judiciously chosen. Note that the parameter δ in Uδ (Pn) is precisely the regularization parameter in the
right hand side of (2). So, the data-driven DRO representation (2) provides a direct interpretation of the
regularization parameter as the size of the probabilistic uncertainty around the empirical evidence.

An important element to all of the DRO representations obtained in (Blanchet et al. 2016) is that the
design of the uncertainty region Uδ (Pn) is based on optimal transport theory. In particular, we have that

Uδ (Pn) = {P : Dc(P,Pn)≤ δ}, (3)

and Dc(P,Pn) is the minimal cost of rearranging (i.e. transporting the mass of) the distribution Pn into the
distribution P. The rearrangement mechanism has a transportation cost c(u,w) ≥ 0 for moving a unit of
mass from location u in the support of Pn to location w in the support of P. For instance, in the setting of
(2) we have that

c
(
(x,y),(x′,y′)

)
=
∥∥x− x′

∥∥2
q I
(
y = y′

)
+∞ · I

(
y 6= y′

)
. (4)

In the end, as we discuss in Section 3, Dc(P,Pn) can be easily computed as the solution of a linear
programming (LP) problem which is known as Kantorovich’s problem (Villani 2008).

Other discrepancy notions between probability models have been considered, typically using the
Kullback-Leibler divergence and other divergence based notions (Hu, Z., and L. J. Hong. ; Lam and Zhou
2017; Ghosh and Lam 2019). Using divergence (or likelihood ratio) based discrepancies to characterize
the uncertainty region Uδ (Pn) forces the models P ∈Uδ (Pn) to share the same support with Pn, which may
restrict generalization properties of a DRO-based estimator, and such restriction may induce overfitting
problem (Esfahani and Kuhn (2018) and Blanchet et al. (2016)).

In summary, data-driven DRO via optimal transport has been shown to encompass a wide range of
prevailing machine learning estimators. However, so far the cost function c(·) is fixed, and not chosen in
a data-driven way.

Our main contribution in this paper is to propose a comprehensive approach for designing the uncertainty
region Uδ (Pn) in a fully data-driven way, using the convenient role of c(·) in the definition of the optimal
transport discrepancy Dc(P,Pn). Our modeling approach further underscores, beyond the existence of
representations such as (2), the convenience of working with an optimal transport discrepancy for the
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design of data-driven DRO machine learning estimators. In other words, because one can select c(·) in a
data driven way, it is sensible to use our data-driven DRO formulation even if one is not able to simplify
the inner optimization in order to achieve a representation such as (2).

Our idea is to apply metric-learning procedures to estimate c(·) from the training data. Then, use such
data-driven c(·) in the definition of Dc(P,Pn) and the construction Uδ (Pn) in (3). Finally, solve the DRO
problem (1), using cross-validation to choose δ .

The intuition behind our proposal is the following. By using a metric learning procedure we are able
to calibrate a cost function c(·) which attaches relatively high transportation costs to (u,w) if transporting
mass between these locations substantially impacts performance (e.g. in the response variable, so increasing
the expected risk). In turn, the adversary, with a given budget δ , will carefully choose the data which is to
be transported. The mechanism will then induce enhanced out-of-sample performance focusing precisely
on regions of relevance, while improving generalization error.

One of the challenges for the implementation of our idea is to efficiently solve (1). We address
this challenge by proposing a stochastic gradient descent algorithm which takes advantage of a duality
representation and fully exploits the nature of the linear programming structure embedded in the definition
of Dc(P,Pn), together with a smoothing technique.

Another challenge consists in selecting the type of cost c(·) to be used in practice, and the methodology
to fit such cost. To cope with this challenge, we rely on metric-learning procedures. We do not contribute
any novel metric learning methodology; rather, we discuss various parametric cost functions and methods
developed in the metric-learning literature. In particular, we discuss their use in the context of fully
data-drive DRO formulations for machine learning problems – which is what we propose in this paper.
The choice of c(·) ultimately will be influenced by the nature of the data and the application at hand. For
example, in the setting of image recognition, it might be natural to use a cost function related to similarity
notions.

In addition to discuss intuitively the benefits of our approach in Section 2, we also show that our
methodology provides a way to naturally estimate various parameters in the setting of adaptive regularization.
For example, Theorem 1 below, shows that choosing c(·) using a suitable weighted norm, allows us to
recover an adaptive regularized ridge regression estimator (Ishwaran and Rao 2014). In turn, using standard
techniques from metric learning we can estimate c(·). Hence, our technique connects metric learning tools
to estimate the parameters of adaptive regularized estimators.

More broadly, we compare the performance of our procedure with a number of alternatives in the
setting of various data sets and show that our approach exhibits consistently superior performance.

2 DATA-DRIVEN DRO: INTUITION AND INTERPRETATIONS

One of the main benefits of the DRO formulations such as (1) and (2) is their interpretability. For example,
we can readily see from the left hand side of (2) that the regularization parameter corresponds precisely
to the size of the data-driven distributional uncertainty.

The data-driven aspect is important because we can employ statistical thinking to optimally characterize
the size of the uncertainty, δ . This readily implies an optimal choice of the regularization parameter, as
explained in (Blanchet et al. 2016), in settings such as (2). Elaborating, we can interpret Uδ (Pn) as the
set of plausible variations of the empirical data, Pn. Consequently, for instance, in the linear regression
setting leading to (2), the estimate βP = argminβ EP [l (X ,Y,β )] is a plausible estimate of the regression
parameter β∗ as long as P ∈Uδ (Pn). Hence, the set

Λδ (Pn) = {βP : P ∈Uδ (Pn)}

is a natural confidence region for β∗ that shrinks when δ is decreasing. Thus, a statistically minded approach
for choosing δ is to fix a confidence level, say (1−α), and choose an optimal δ (δ∗ (n)) via

δ∗ (n) := inf{δ : P(β∗ ∈ Λδ (Pn))≥ 1−α}. (5)
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Note that the random element in P(β∗ ∈ Λδ (Pn)) is given by Pn. In (Blanchet et al. 2016) this optimization
problem is solved asymptotically as n→ ∞ under standard assumptions on the data generating process. If
the underlying model is correct, one would typically obtain, as in (Blanchet et al. 2016), that δ∗(n)→ 0 at
a suitable rate. For instance, in the linear regression setting corresponding to (2), if the data is i.i.d. with
finite variance and the linear regression model holds then δ∗(n) = χ1−α

(1+o(1))/n as n→ ∞ (where χ
α

is the α quantile of an explicitly characterized distribution).
In practice, one can also choose δ by cross-validation. The work of (Blanchet et al. 2016) compares the

asymptotically optimal choice δ∗(n) against cross-validation, concluding that the performance is comparable
in the experiments performed. In this paper, we use cross validation to choose δ , but the insights behind
the limiting behavior of (5) are useful, as we shall see, to inform the design of our algorithms.

More generally, the DRO formulation (1) is appealing because the distributional uncertainty endows the
estimation of β directly with a mechanism to enhance generalization properties. To wit, we can interpret
(1) as a game in which we (the outer player) choose a decision β , while the adversary (the inner player)
selects a model which is a perturbation, P, of the data (encoded by Pn). The amount of the perturbation is
dictated by the size of δ which, as discussed earlier, is data driven. But the type of perturbation and how
the perturbation is measured is dictated by Dc(P,Pn). It makes sense to inform the design of Dc(·) using a
data-driven mechanism, which is our goal in this paper. The intuition is to allow the types of perturbations
which focus the effort and budget of the adversary mostly on out-of-sample exploration over regions of
relevance.

The type of benefit that is obtained by informing Dc (P,Pn) with data is illustrated in Figure 1 below,
which illustrates a classification task. The data roughly lies on a lower dimensional non-linear manifold.
Some data which is classified with a negative label is seen to be “close” to data which is classified with a
positive label when seeing the whole space (i.e. R2) as the natural ambient domain of the data. However, if
we use a distance similar to the geodesic distance intrinsic to the manifold we would see that the negative
instances are actually far from the positive instances. So, the generalization properties of the algorithm
would be enhanced relative to using a standard metric in the ambient space, because with a given budget
δ the adversarial player would be allowed perturbations mostly along the intrinsic manifold where the
data lies and instances which are surrounded (in the intrinsic metric) by similarly classified examples will
naturally carry significant impact in testing performance. A quantitative example to illustrate this point
will be discussed in the sequel.

Figure 1: Stylized examples illustrating the need for data-driven cost function.

3 BACKGROUND ON OPTIMAL TRANSPORT AND METRIC LEARNING PROCEDURES

In this section we quickly review basic notions on optimal transport and metric learning methods so that
we can define Dc(P,Pn) and explain how to calibrate the function c(·).

3.1 Defining Optimal Transport Distance and Discrepancies

Assume that the cost function c : Rd+1×Rd+1 → [0,∞] is lower semicontinuous. We also assume that
c(u,v) = 0 if and only if u = v. Given two distributions P and Q, with supports SP and SQ, respectively,
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we define the optimal transport discrepancy, Dc, via

Dc (P,Q) = inf
{
Eπ [c(U,V )] : π ∈P

(
SP×SQ

)
, πU = P, πV = Q

}
, (6)

where P(SP ×SQ) is the set of probability distributions π supported on SP×SQ , and πU and πV

denote the marginals of U and V under π , respectively. Because c(·) is non-negative we have that
Dc(P,Q) ≥ 0. Moreover, requiring that c(u,v) = 0 if and only if u = v guarantees that Dc(P,Q) = 0 if
and only P = Q. If, in addition, c(·) is symmetric (i.e. c(u,v) = c(v,u)), and there exists ρ ≥ 1 such
that c1/ρ(u,w) ≤ c1/ρ(u,v)+ c1/ρ(v,w) (i.e. c1/ρ(·) satisfies the triangle inequality) then it can be easily
verified (see (Villani 2008)) that D1/ρ

c (P,Q) is a metric. For example, if c(u,v) = ‖u−v‖ρ
q for q≥ 1 (where

‖u−v‖q denotes the lq norm in Rd+1) then Dc(·) is known as the Wasserstein distance of order ρ . Observe
that (6) is a linear program in the variable π.

3.2 On Metric Learning Procedures

In order to keep the discussion focused, we use a few metric learning procedures, but we emphasize that
our approach can be used in combination with virtually any method in the metric learning literature, see
the survey paper (Bellet et al. 2013) that contains additional discussion on metric learning procedures. The
procedures that we consider, as we shall see, can be seen to already improve significantly upon natural
benchmarks. Moreover, as we shall see, these metric families can be related to adaptive regularization.
This connection will be useful to further enhance the intuition of our procedure.

3.2.1 The Mahalanobis Distance

The Mahalanobis metric is defined as

dΛ

(
x,x′
)
=
((

x− x′
)T

Λ
(
x− x′

))1/2
,

where Λ is symmetric and positive semi-definite and we write Λ ∈ PSD. Note that dΛ(x,x′) is the metric
induced by the norm ‖x‖Λ =

√
xT Λx.

For a discussion, assume that our data is of the form Dn = {(Xi,Yi)}n
i=1 and Yi ∈ {−1,+1}. The

prediction variables are assumed to be standardized. Motivated by applications such as social networks, in
which there is a natural graph which can be used to connect instances in the data, we assume that one is
given sets M and N , where M is the set of the pairs that should be close (so that we can connect them)
to each other, and N , on contrary, is characterizing the relations that the pairs should be far away (not
connected), we define them as

M :=
{
(Xi,X j) | Xi and X j should connect

}
,

N :=
{
(Xi,X j) | Xi and X j should not connect

}
.

While it is typically assumed that M and N are given, one may always resort to k-Nearest-Neighbor
(k-NN) method for the generation of these sets. This is the approach that we follow in our numerical
experiments. But we emphasize that choosing any criterion for the definition of M and N should be
influenced by the learning task in order to retain both interpretability and performance.

In our experiments we let (Xi,X j) belong to M if, in addition to being sufficiently close (i.e. in the
k-NN criterion), Yi = Yj. If Yi 6= Yj, then we have that (Xi,X j) ∈N .

The work of (Xing et al. 2002), one of the earlier reference on the subject, suggests considering

min
Λ∈PSD

∑
(Xi,X j)∈M

d2
Λ (Xi,X j) s.t. ∑

(Xi,X j)∈N
d2

Λ (Xi,X j)≥ λ̄ . (7)
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In words, the previous optimization problem minimizes the total distance between pairs that should be
connect, while keeping the pairs that should not connect well separated. The constant λ̄ > 0 is somewhat
arbitrary (given that Λ can be normalized by λ̄ , we can choose λ̄ = 1).

The optimization problem (7) is an LP problem on the convex cone PSD and it has been widely studied.
Since Λ ∈ PSD, we can always write Λ = LLT , and therefore dΛ(Xi,X j) =

∥∥Xi−X j
∥∥

Λ
:=
∥∥LXi−LX j

∥∥
2 .

There are various techniques which can be used to exploit the PSD structure to efficiently solve (7); see,
for example, (Xing et al. 2002) for a projection-based algorithm; or (Schultz and Joachims 2003), which
uses a factorization-based procedure; or the survey paper (Bellet et al. 2013) for the discussion of a wide
range of techniques.

We have chosen formulation (7) to estimate Λ because it is intuitive and easy to state, but the topic of
learning Mahalanobis distances is an active area of research and there are different algorithms which can
be implemented (Li et al. 2018).

3.2.2 Using Mahalanobis Distance In Data-Driven DRO

Let us assume that the underlying data takes the form Dn = {(Xi,Yi)}n
i=1, where Xi ∈ Rd and Yi ∈ R and

the loss function, depending on a decision variable β ∈ Rm, is given by l(x,y;β ). Note that we are not
imposing any linear structure on the underlying model or in the loss function. Then, motivated by the cost
function (4), we may consider

c
Λ

(
(x,y),(x′,y′)

)
= d2

Λ

(
x,x′
)

I
(
y = y′

)
+∞I

(
y 6= y′

)
, (8)

for Λ∈ PSD. The infinite contribution in the definition of c
Λ

(i.e. ∞ · I (y 6= y′)) indicates that the adversarial
player in the DRO formulation is not allowed to perturb the response variable.

Even in this case, since the definitions of M and N depend on Wi = (Xi,Yi) (in particular, on the
response variable), cost function c

Λ
(·) (once Λ is calibrated using, for example, the method discussed in

the previous subsection), will be informed by the Yis. Then, we estimate β via

min
β

sup
P:DcΛ

(P,Pn)≤δ

EP[l(X ,Y ;β )]. (9)

It is important to note that Λ has been applied only to the definition of the cost function.
The intuition behind the formulation can be gained in the context of a logistic regression setting, see

the example in Figure 2: Suppose that d = 2, and that Y depends only on X(1) (i.e. the first coordinate of
X). Then, the metric learning procedure in (7) will induce a relatively low transportation cost across the
X(2) direction and a relatively high transportation cost in the X(1) direction, whose contribution, being
highly informative, is reasonably captured by the metric learning mechanism. Since the X(1) direction
is most impactful, from the standpoint of expected loss estimation, the adversarial player will reach a
compromise, between transporting (which is relatively expensive) and increasing the expected loss (which
is the adversary’s objective). Out of this compromise the DRO procedure localizes the out-of-sample
enhancement, and yet improves generalization.

3.2.3 Mahalanobis Metric on a Non-Linear Feature Space

In this section, in order to capture the non-linear structure of the data, we apply a non-linear feature map
Φ : Rd → Rl to the data and then learn the Mahalanobis metric on the feature space. Assume that the data
takes the form Dn = {(Xi,Yi)}n

i=1, where Xi ∈ Rd and Yi ∈ R and the loss function, depending on decision
variable β ∈ Rm, is given by l (x,y;β ). Once again, motivated by the cost function (4), we may define

cΦ

Λ

(
(x,y),(x′,y′)

)
= d2

Λ

(
Φ(x) ,Φ

(
x′
))

I
(
y = y′

)
+∞I

(
y 6= y′

)
, (10)

for Λ ∈ PSD. To preserve the properties of a cost function (i.e. non-negativity, lower semicontinuity and
cΦ

Λ
(u,w) = 0 implies u = w), we assume that Φ(·) is continuous and that Φ(w) = Φ(u) implies that w = u.
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Figure 2: Motivation for Mahalanobis cost function.

Then we can apply a metric learning procedure, such as the one described in (7), to calibrate Λ. The
intuition is the same as the one provided in the linear case in Section 3.2.2.

4 DATA-DRIVEN COST SELECTION AND ADAPTIVE REGULARIZATION

In this section we establish a direct connection between our fully data-driven DRO procedure and adaptive
regularization. Moreover, our main result here, together with our discussion from the previous section,
provides a direct connection between the metric learning literature and adaptive regularized estimators. As
a consequence, the methods from the metric learning literature can be used to estimate the parameter of
adaptively regularized estimators.

Throughout this section we consider again a data set of the form Dn = {(Xi,Yi)}n
i=1 with Xi ∈ Rd and

Yi ∈R. Motivated by the cost function (4) we define the cost function c
Λ
(·) as in (8). Using (8) we obtain

the following result.
Theorem 1 (DRO Representation for Generalized Adaptive Regularization) Assume that Λ ∈ Rd×d in (8)
is positive definite. Given the data set Dn, we obtain the following representation

min
β

max
P:DcΛ

(P,Pn)≤δ

E1/2
P

[(
Y −XT

β
)2
]
= min

β

√
1
n

n

∑
i=1

(
Yi−XT

i β
)2

+
√

δ ‖β‖
Λ−1 . (11)

Moreover, if Y ∈ {−1,+1} in the context of adaptive regularized logistic regression, we obtain the following
representation

min
β

max
P:DcΛ

(P,Pn)≤δ

EP

[
log
(

1+ e−Y (XT β )
)]

= min
β

1
n

n

∑
i=1

log
(

1+ e−Yi(XT
i β )
)
+δ ‖β‖

Λ−1 . (12)

In order to recover a more familiar setting in adaptive regularization, assume that Λ is a diagonal
positive definite matrix. In which case we obtain, in the setting of (11),

min
β

max
P:DcΛ

(P,Pn)≤δ

E1/2
P

[(
Y −XT

β
)2
]
= min

β

√
1
n

n

∑
i=1

(
Yi−XT

i β
)2

+
√

δ

√
d

∑
i=1

β 2
i /Λii. (13)

The proof of Theorem 1 follows similar dual problem derivation as for Theorem 1 in (Blanchet and
Kang 2017a). We refer reader to Appendix A.2 in Blanchet and Kang (2017a) for technique details.

The adaptive regularization method was first derived as a generalization for ridge regression in (Hoerl
and Kennard 1970b; Hoerl and Kennard 1970a). Recent works show that adaptive regularization can
improve the predictive power of its non-adaptive counterpart, specially in high-dimensional settings (Zou
2006; Ishwaran and Rao 2014).
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In view of (13), our discussion in Section 3.2.1 uncovers tools which can be used to estimate the
coefficients {1/Λii : 1 < i ≤ d} using the connection to metric learning procedures. To complement the
intuition given in Figure 2, note that in the adaptive regularization literature one often choose Λii ≈ 0 to
induce βi ≈ 0 (i.e., there is a high penalty to variables with low explanatory power). This, in our setting,
would correspond to transport costs which are low in such low explanatory directions.

5 SOLVING DATA-DRIVEN DRO BASED ON OPTIMAL TRANSPORT DISCREPANCIES

In order to fully take advantage of the combination synergies between metric learning methodology and
our DRO formulation, it is crucial to have a methodology which allows us to efficiently estimate β in
DRO problems such as (1). In the presence of a simplified representation such as (2) or (13), we can apply
standard stochastic optimization results (Lei and Jordan 2016).

Our objective in this section is to study algorithms which can be applied for more general loss and
cost functions, for which a simplified representation might not be accessible.

Throughout this section, once again we assume that the data is given in the form Dn = {(Xi,Yi)}n
i=1 ⊂

Rd+1. The loss function is written as {l (x,y;β ) : (x,y) ∈ Rd+1,β ∈ Rm}. We assume that for each (x,y),
the function l (x,y, ·) is convex and continuously differentiable. Further, we shall consider cost functions
of the form

c̄
(
(x,y) ,

(
x′,y′

))
= c
(
x,x′
)

I
(
y = y′

)
+∞I

(
y 6= y′

)
,

as this will simplify the form of the dual representation in the inner optimization of our DRO formulation.
To ensure boundedness of our DRO formulation, we impose the following assumption.

Assumption 1. There exists Γ(β ,y) ∈ (0,∞) such that l(u,y;β )≤ Γ(β ,y) · (1+c(u,x)), for all (x,y) ∈
Dn, Under Assumption 1, we can guarantee that

max
P:Dc(P,Pn)≤δ

EP [l (X ,Y ;β )]≤ (1+δ ) max
i=1,...,n

Γ(β ,Yi)< ∞.

Using the strong duality theorem for semi-infinite linear programming problem in Appendix B of (Blanchet
et al. 2016),

max
P:Dc(P,Pn)≤δ

EP [l (X ,Y ;β )] = min
λ≥0

1
n

n

∑
i=1

φ (Xi,Yi,β ,λ ) ,

where ψ(u,X ,Y,β ,λ ) := l(u,Y ;β )−λ (c(u,X)−δ ), φ (X ,Y,β ,λ ) := maxu∈Rd ψ(u,X ,Y,β ,λ ). Therefore,

min
β

max
P:DcΛ

(P,Pn)≤δ

EP [l (X ,Y ;β )] = min
λ≥0,β

{EPn [φ (X ,Y,β ,λ )]} . (14)

The optimization in (14) is minimize over β and λ , which we can consider stochastic approximation
algorithm if the gradient of φ (·) with respect to β and λ exist. However, φ (·) is given in the form of the
value function of a maximization problem, of which the gradient is not easily accessible. We will discuss
the detailed algorithm and the validity of the smoothing approximation below.

We consider a smoothing approximation technique to remove the maximization problem φ (·) using
soft-max counterpart, φε, f (·). The smoothing soft-max approximation has been explored and applied to
approximately solve the DRO problem for the discrete case, where we restrict the distributionally uncertainty
set only contains probability measures support on finite set (i.e., labeled training data and unlabeled training
data with pseudo labels), we refer Blanchet and Kang (2017b) for further details.

However, due to the continuous-infinite support constraint, the soft-max approximation is a non-trivial
generalization of the finite-discrete analogue. The smoothing approximation for φ (·) is defined as,

φε, f (X ,Y,β ,λ ) = ε log
(∫

Rd
exp([ψ (u,X ,Y,β ,λ )]/ε) f (u)du

)
,
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where f (·) is a probability density in Rd ; for example, we can consider a multivariate normal distribution
and ε is a small positive number regarded as smoothing parameter.

Theorem 2 below allows to quantify the error due to smoothing approximation.
Theorem 2 Under mild technical assumptions (see Assumption 1-4 in Appendix A), there exists ε0 > 0
such that for every ε < ε0, we have

φ(X ,Y,β ,λ )≥ φε, f (X ,Y,β ,λ )≥ φ(X ,Y,β ,λ )−dε log(1/ε)

The proof of Theorem 2 is given in Appendix A.
After applying smooth approximation, the optimization problem turns into a standard stochastic opti-

mization problem and we can apply mini-batch based stochastic approximation (SA) algorithm to solve it.
As we can notice, as a function and β and λ , the gradient of φε, f (·) satisfies

∇β φε, f (X ,Y,β ,λ ) =
EU∼ f

[
exp(ψ (U,X ,Y,β ,λ )/ε)∇β l

(
fβ (U) ,Y

)]
EU∼ f [exp(ψ (U,X ,Y,β ,λ )/ε)]

,

∇λ φε, f (X ,Y,β ,λ ) =
EU∼ f [exp(ψ (u,X ,Y,β ,λ )/ε)(δ − cDn (u,X))]

EU∼ f [exp(ψ (U,X ,Y,β ,λ )/ε)]
.

However, since the gradients are still given in the form of expectation, we can apply a simple Monte Carlo
sampling algorithm to approximate the gradient, i.e., we sample Ui’s from f (·) and evaluate the numerators
and denominators of the gradient using Monte Carlo separately. For more details of the SA algorithm,
please see in Algorithm 1.

Algorithm 1 Stochastic Gradient Descent with Continuous State
1: Initialize λ = 0, and β to be empirical risk minimizer, ε = 0.5, tracking error Error = 100.
2: while Error > 10−3 do
3: Sample a mini-batch uniformly from observations

{
X( j),Y( j)

}M
j=1, with M ≤ n.

4: For each j = 1, . . . ,M, sample i.i.d. {U ( j)
k }L

k=1 from N
(
0,σ2Id×d

)
.

5: We denote f j
L as empirical distribution for U ( j)

k ’s, and estimate the batched as

∇β φε, f =
1
M

M

∑
j=1

∇β φ
ε, f j

L

(
X( j),Y( j),β ,λ

)
,∇λ φε, f =

1
M

M

∑
j=1

∇λ φ
ε, f j

L

(
X( j),Y( j),β ,λ

)
.

6: Update β and λ using β = β +αβ ∇β φε, f and λ = λ +αλ ∇λ φε, f .
7: Update tracking error Error as the norm of difference between latest parameter and average of last

50 iterations.
8: Output β .

6 NUMERICAL EXPERIMENTS

We validate our data-driven cost function based DRO using 6 real data examples from the UCI machine
learning database (Lichman, M. 2013), with BC for breast-cancer, BN for, QSAR for QSAR biodegration,
Magic for MAGIC Gamma Telescope, MB for MiniBooNE particle identification, and SB for Spambase.
Those are standard binary classification task with multivariate predictors. And in the table, we show the
average log-exponential loss function and its 1-standard deviation. We focus on a DRO formulation based
on the log-exponential loss for a linear model. We use the linear metric learning framework explained
in equation (7), which we feed into the cost function, cΛ, as in (8), denoting by DRO-L. In addition, we
also fit a cost function cΦ

Λ
, as explained in (10) using linear and quadratric transformations, in order to
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capture the nonlinear structure of the data; the outcome is denote as (DRO-NL). We compare our DRO-L
and DRO-NL with logistic regression (LR), and regularized logistic regression (LRL1). For each iteration
and each data set, the data is split randomly into training and test sets. In order to demonstrate the power
of DRO formulation, the empirical distribution Pn should be deviate from the underlying distribution P0
to some extent. Thus, we keep the size of training set relatively small to demonstate the prediction power
of DRO formulation. We fit the models on the training set and evaluate the performance on test set. The
regularization parameter is chosen via 5−fold cross-validation for LRL1, DRO-L and DRO-NL. We report
the mean and standard deviation for training and testing log-exponential error and testing accuracy for 200
independent experiments for each data set. The details of the numerical results and basic information of
the data is summarized in Table 1.

BC BN QSAR Magic MB SB

LR
Train 0±0 .008± .003 .026± .008 .213± .153 0±0 0±0
Test 8.75±4.75 2.80±1.44 35.5±12.8 17.8±6.77 18.2±10.0 14.5±9.04

Accur .762± .061 .926± .048 .701± .040 .668± .042 .678± .059 .789± .035

LRL1
Train .185± .123 .080± .030 .614± .038 .548± .087 .401± .167 .470± .040
Test .428± .338 .340± .228 .755± .019 .610± .050 .910± .131 .588± .140

Accur .929± .023 .930± .042 .646± .036 .665± .045 .717± .041 .811± .034

DRO-L
Train .022± .019 .197± .112 .402± .039 .469± .064 .294± .046 .166± .031
Test .126± .034 .275± .093 .557± .023 .571± .043 .613± .053 .333± .018

Accur .954± .015 .919± .050 .733± .026 .727± .039 .714± .032 .887± .011

DRO-NL
Train .032± .015 .113± .035 .339± .044 .381± .084 .287± .049 .195± .034
Test .119± .044 .194± .067 .554± .032 .576± .049 .607± .060 .332± .015

Accur .955± .016 .931± .036 .736± .027 .730± .043 .716± .054 .889± .009
Num Predictors 30 4 30 10 20 56

Train Size 40 20 80 30 30 150
Test Size 329 752 475 9,990 125,034 2,951

Table 1: Numerical results for real data sets.

We can observe from Table 1 that DRO-L performs better than the benchmark model LRL1 in terms of
the test error, and the DRO-NL model further improves the average test error in all except Magic dataset.

7 CONCLUSION AND DISCUSSION

Our fully data-driven DRO procedure combines a semiparametric approach (i.e., the metric learning proce-
dure) with a parametric procedure (expected loss minimization) to enhance the generalization performance
of the underlying parametric model. We emphasize that our approach is applicable to any DRO formulation
and is not restricted to classification tasks. An interesting research avenue that might be considered is the
development of a semisupervised framework as in (Blanchet and Kang 2017b), in which unlabeled data is
used to inform the support of the elements in Uδ (Pn).
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A PROOF OF THEOREM 2

Let us begin by listing the assumptions required to prove Theorem 2. First, we begin by recalling Assumption
1 from Section 5.
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Assumption 1. There exists Γ(β ,y) ∈ (0,∞) such that l(u,y;β )≤ Γ(β ,y) · (1+c(u,x)), for all (x,y) ∈Dn,
We now introduce Assumptions 2-4 below.

Assumption 2. ψ (·,X ,Y,β ,λ ) is twice continuously differentiable and the Hessian of ψ (·,X ,Y,β ,λ )
evaluated at u∗, D2

uψ (u∗,X ,Y,β ,λ ), is positive definite. In particular, we can find θ > 0 and η > 0, such
that

ψ(u,X ,Y,β ,λ )≥ ψ (u∗,X ,Y,β ,λ )− θ

2
‖u−u∗‖2

2, ∀u s.t. ‖u−u∗‖2 ≤ η .

Assumption 3. For a constant λ0 > 0 such that φ(X ,Y,β ,λ0) < ∞, let K = K (X ,Y,β ,λ0) be any upper
bound for φ(X ,Y,β ,λ0).
Assumption 4. In addition to the lower semicontinuity of c(·)≥ 0, we assume that c(·,X) is coercive in
the sense that c(u,X)→ ∞ as ‖u‖2→ ∞.

For any set S, the r-neighborhood of S is defined as the set of all points in Rd that are at distance less
than r from S, i.e. Sr = ∪u∈S{ū : ‖ū−u‖2 ≤ r}.

Proof of Theorem 2. The first part of the inequality is easy to derive. For the second part, we proceed
as follows: Under Assumptions 3 and 4, we can define the compact set

C = C (X ,Y,β ,λ ) = {u : c(u,X)≤ l(X ,Y ;β )−K +λ0/(λ −λ0)}.

It is easy to check that argmax{ψ (u,X ,Y,λ )} ⊂ C . Owing to optimality of u∗ and from Assumption 2
that K ≥ φ(X ,Y,β ,λ0), we can see that

l(X ,Y )≤ l(u∗,Y ))−λc(u,X) = l(u∗,Y )−λ0c(u∗,X)− (λ −λ0)c(u∗,X)≤ K−λ0− (λ −λ0)c(u∗,X).

Thus by definition of C =C (X ,Y,β ,λ ), it follows easily that u∗ ∈C , which further implies {u : ‖u−u∗‖2≤
η} ⊂ Cη . Then we combine the strongly convexity assumption in Assumption 2 and the definition of
φε, f (u,X ,Y,β ,λ ), which yields

φε, f (X ,Y,β ,λ )≥ ε log
(∫
‖u−u∗‖2≤η

exp
([

φ (X ,Y,β ,λ )− θ

2
‖u−u∗‖2

2

]
/ε

)
f (u)du

)
= ε log(exp(φ (X ,Y,β ,λ )/ε))

∫
‖u−u∗‖2≤η

exp
(
−θ

2
‖u−u∗‖2

2/ε

)
f (u)du

= φ (X ,Y,β ,λ )+ ε log
∫
‖u−u∗‖2≤η

exp
(
−θ‖u−u∗‖2

2
2ε

)
f (u)du.

As {u : ‖u−u∗‖2 ≤ η} ⊂ Cη , we can use the lower bound of f (·) to deduce that∫
‖u−u∗‖2≤η

exp
(
−θ‖u−u∗‖2

2
2ε

)
f (u)du≥ inf

u∈Cη

f (u)×
∫
‖u−u∗‖2≤η

exp
(
−θ‖u−u∗‖2

2
2ε

)
du

= inf
u∈Cη

f (u)× (2πε/θ)d/2 P(Zd ≤ η
2
θ/ε),

where Zd is a chi-squared random variable of d degrees of freedom. To conclude, recall that ε ∈ (0,η2θ χα),
the lower bound of φε, f (·) can be written as

φε, f (X ,Y,β ,λ )≥ φ(X ,Y,β ,λ )− d
2

ε log(1/ε)+
d
2

ε log
(
(2πα/θ) inf

u∈Cη

f (u)
)
.

This completes the proof of Theorem 2.
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