
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

FIXED CONFIDENCE RANKING AND SELECTION UNDER INPUT UNCERTAINTY

Di Wu
Enlu Zhou

School of Industrial & Systems Engineering
Georgia Institute of Technology

755 Ferst Drive NW
Atlanta, GA 30332, USA

ABSTRACT

In stochastic simulation, input uncertainty (IU) is caused by the error in estimating input distributions
using finite real-world data. When it comes to simulation-based Ranking and Selection (R&S), ignoring
IU can lead to the failure of many existing procedures. In this paper, we study a new version of the fixed
confidence R&S problem, where sequential input data can be acquired to reduce IU over time. To solve
the problem, we first propose a moving average estimator for online estimation with sequential data. Then,
a new procedure is designed by extending a Sequential Elimination framework. As is shown numerically,
our procedure can effectively achieve the desired probability of correct selection, but there is plenty of
room for improving its efficiency.

1 INTRODUCTION

In building a stochastic simulation, a set of input distributions need to be specified as an input to the
simulation model. Then, random samples are drawn from the input distributions to mimic the uncertainty
in the real-world system. As a result, there are two sources of uncertainty to account for when we use
simulation to evaluate a system design’s expected performance. One is the input uncertainty (IU) caused
by the error in estimating the input distributions using finite real-world data; the other is the stochastic
uncertainty (SU), which stems from using finite simulation runs to evaluate a design’s performance. The
fundamental difference between IU and SU is that, while SU can be controlled by increasing simulation
effort, the only way to reduce IU is to collect more input data.

In simulation optimization, Ranking and Selection (R&S), or Discrete Optimization via Simulation
(DOvS), refers to using simulation to identify the best design among a finite number of alternatives.
Traditionally, R&S has been studied under the assumption that the input distributions are known accurately,
and SU is the only source of uncertainty. One widely studied formulation of R&S is the fixed confidence
R&S problem, where the goal is to achieve certain target selection guarantee (e.g., probability of correct
selection) by using as little simulation effort as possible. In this setting, considerable amount of effort has
been devoted to the indifference-zone (IZ) formulation, which dates back at least to Bechhofer (1954).
An IZ procedure allows the user to specify the smallest difference in performance worth detecting, and
it guarantees selecting the best design with (frequentist) probability higher than a prespecified level (e.g.,
95%), provided that the difference between the top-two designs is sufficiently large. Numerous efficient IZ
procedures have been proposed in simulation literature, including but are not limited to the KN procedure
in Kim and Nelson (2001), the KVP and UVP procedures in Hong (2006), and the BIZ procedure in Frazier
(2014). We refer the reader to Branke et al. (2005) and Kim and Nelson (2007) for excellent reviews of
the development on this topic. In addition, the Bayesian approaches (see, e.g., Chick and Frazier (2012))
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and the probably approximately correct (PAC) selection (see, e.g., Ma and Henderson (2017)) have also
been studied in this stream of works.

In practice, directly applying traditional R&S procedures while ignoring IU can be misleading and
may render selection guarantees invalid (see Song et al. (2015)). In light of such observations, recent
effort has been made to account for IU when the input dataset is given and fixed. For instance, Corlu
and Biller (2015) take a Bayesian perspective and select the design with the best performance averaged
over the posterior distribution of input models; Song et al. (2015) and Corlu and Biller (2013) consider
a fixed confidence formulation under an Indifference-Zone (IZ) setting, and both discover that a larger
IZ parameter is required to maintain the desired statistical guarantee under IU; Fan et al. (2013) take a
distributionally robust approach by comparing the designs based on their worst-case performance over a
finite set of possible input distributions. Aside from selection procedures, Song and Nelson (2019) propose
a comparison procedure which exploits the common input distribution effect to construct simultaneous
confidence intervals for all designs’ performance.

The aforementioned works all assume a static (fixed) input dataset, because in some applications the
cost of collecting additional data is prohibitively high (e.g., collecting experimental data by running clinical
trials). However, there are also cases where new data can be accessed at a reasonable pace and cost. Some
motivating examples are as follows.

• Ride-hailing platform. A ride hailing platform wants to use simulation to find the best pricing
strategy. Some of the input models about traveling time, user behavior, route selection, etc., can
be updated using real-time data.

• Online retailer. An online retailer is interested in optimizing its supply chain network by comparing
different ordering/inventory/fulfillment strategies through simulation. Upstream and downstream
customer demand data can be collected in a timely manner to refine the demand distribution
estimates.

• Express delivery service. An express delivery service provider intends to compare different routing
and scheduling strategies via a simulation model. The input data on customer demand, traveling
time, deliveryman’s preference can be harvested on a daily basis.

In all of the above examples, a moderate amount of new data can be collected at a relatively low cost
to continuously improve the accuracy of the simulation model.

2 PROBLEM FORMULATION

2.1 Basic Notations

Without loss of generality, the R&S problem studied in this paper is concerned with identifying the
design with the highest expected performance among K ≥ 2 alternatives. Denote by I := {1,2, . . . ,K}
the enumeration of all designs. For a design i ∈I , let hi : Rm→ R be its performance measure function,
and let ξ ∈ Rm be a random vector capturing the stochasticity in the system. Similar to Song and Nelson
(2019), we study a case where all K designs share the same input distribution Pc (“c” means “correct”).
The best design is defined as

b := argmax
i∈I

EPc [hi(ξ )],

where the expectation is assumed to be finite. We also assume that b is unique to avoid technicality.
Furthermore, we consider a case where Pc is known to belong to a parametric family of distributions,
{Pθ | θ ∈Θ⊆Rd}, where the form of Pθ is known but the true parameter θ c is not. For example, in an M/M/1
queue simulation model, the inter-arrival time is known to be exponentially distributed, but the arrival rate
needs to be estimated from historical data. The parametric assumption on Pc can be justified by allowing
a mixture of multiple parametric distributions (see the discussion in Cheng and Holland (1997)), provided
that the parameter space is finite-dimensional. Generally speaking, there may be multiple independent
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sources of IU (e.g., inter-arrival time and service time), in which case Pθ c should be interpreted as a product
measure. We will focus on the case of a single source of IU, where the input data, denoted by ζ1,ζ2, . . .,
are independent and identically distributed (i.i.d.) samples from Pθ c . The following notations will be used
throughout the paper.

(i) Hi(θ) := EPθ
[hi(ξ )], i.e., the true performance of design i under input distribution Pθ .

(ii) δi j(θ) := Hi(θ)−H j(θ), i.e., the difference between designs i and j’s performances under input
distribution Pθ .

(iii) σ2
i (θ) := VarPθ

[hi(ξ )], i.e., the variance of design i’s simulation output under input distribution Pθ .
(iv) The estimates of the above quantities will be denoted by Ĥ, δ̂ and σ̂2, respectively.

Let b̂ denote the estimated best design, and the probability of correct selection (PCS) is defined as
P(b̂ = b). In general, the fixed confidence formulation of R&S aims to provide a statistical selection
guarantee (e.g., 95% PCS) using minimal simulation effort or other resources. In the case without IU
(i.e., θ c is known exactly), a large body of literature studies the IZ formulation, which allows the user to
specify the smallest difference in performance worth detecting. Most IZ procedures construct a continuation
region for all pairs of designs (i, j) such that, if δ̂i j(θ

c) escapes the region, then the sign of δi j(θ
c) can

be determined confidently based on which side δ̂i j(θ
c) exits from. The key is to find a small continuation

region for fast stopping without compromising the selection guarantee. Procedures of this type include the
KN procedure (Kim and Nelson (2001)), the BIZ procedure (Frazier (2014)), the IZ-free procedures (Fan
et al. (2016)) among several others.

2.2 Fixed Confidence R&S with Sequential Data

In the presence of IU, we consider a multi-stage scenario, where incremental data become available at each
stage. Suppose that new batches of i.i.d. input data arrive sequentially, and our goal is to continuously
reduce IU and SU in order to identify the best design with high confidence. More specifically, we would
like our R&S procedure to run over a number of “stages”, where at each stage the following two steps are
carried out.

(i) Collect k > 0 additional new data samples to update the estimate of θ c.
(ii) For each design, run additional R > 0 replications under the new estimate of θ c, and update the

estimate of Hi(θ
c).

For simplicity, k and R are assumed to be fixed constants across different stages. We call a procedure
valid if it selects the best design with a guaranteed PCS upon termination at a certain stage. The validness
of a procedure hinges on three aspects.

1. Choice of estimator. What estimator is used to estimate θ c? The choice will affect the properties
of the online estimator of Hi(θ

c), as well as the difficulty of designing a continuation region.
2. Online estimation. Although the estimate of θ c gets increasingly accurate over the stages, the

estimate of Hi(θ
c) cannot converge to its true value without reusing the simulation outputs from

previous stages. How should we approach this online estimation problem?
3. Procedure design. The fixed confidence formulation essentially seeks to find a stopping time τ∗

such that by the τ∗th stage, we can confidently determine which design is the best one. How can
we design τ∗ to make E[τ∗] as small as possible?

The major challenge in this setting is that many existing procedures cannot be extended easily to
handle IU. For example, most IZ procedures rely on a normality assumption on the simulation outputs, as
this would admit the use of well-established tools associated with Brownian motion. While normality is
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justified by batching and the Central Limit Theorem (CLT), the assumption typically fails when simulations
are run under an estimate of θ c, especially if such an estimate is updated in an online fashion. In this
paper, we build our procedures on a Sequential Elimination framework (Even-Dar et al. (2002), Even-Dar
et al. (2006), Glynn and Juneja (2015)), as it allows us to construct valid continuation regions even in the
presence of IU.

Regarding the first aspect, we will restrict our discussion to a specific type of estimator. Let θ̂N be
the estimate of θ c using N data samples, and recall that {ζ1, . . . ,ζN} are the input data. The following
assumption is made to make the analysis more tractable.
Assumption 1. The estimator of θ c can be written in the form of θ̂N = 1

N ∑
N
j=1 G(ζ j), where G : Rm→Rd

and E[G(ζ1)] = θ c.
Assumption 1 can often be satisfied through reparametrization. For example, the normal distribution

can be reparametrized by its first two moments, and then θ̂N corresponds to the moment estimators. Under
Assumption 1, our problem setting can be simplified considerably. During the nth stage, we collect k
additional data samples {ζ j | j = (n− 1)k+ 1, . . . ,nk}, and the sample mean of these incremental data
samples is

Dn :=
1
k

nk

∑
j=(n−1)k+1

G(ζ j),

which can be viewed as a single batched data sample with variance shrunk by a factor of k. It can be easily
checked that

1
n

n

∑
j=1

D j =
1
nk

nk

∑
j=1

G(ζ j).

In other words, without loss of generality, we can assume that at the end of the nth stage, the estimator of
θ c takes the form of θ̂n =

1
n ∑

n
j=1 D j, where D j are i.i.d. samples with E[D1] = θ c. Similarly, it suffices to

consider R = 1, i.e., when only one additional simulation replication is run at each stage. From this point
on, our problem setting is simplified as follows. During the nth stage,

(i) first collect one data sample Dn, and compute θ̂n =
n−1

n θ̂n−1 +
1
n Dn;

(ii) then, for each design, run one more independent simulation replication under θ̂n, and aggregate the
simulation output with the previous ones.

3 PROCEDURE DESIGN

3.1 Moving Average Estimator

For the online estimation problem described in Section 2.2, a consistent estimator of Hi(θ
c) can be

constructed in various ways. For instance, simply averaging all the simulation outputs {hi(ξin)}n usually
ensures consistency. An alternative is to use a likelihood ratio estimator by reweighting the simulation
outputs, but due to the correlation among {θ̂n}, the resulting estimator will be biased (see Eckman and
Feng (2018) for insights into this observation).

Since our ultimate goal is to solve the R&S problem, the main challenge lies in finding an estimator
which facilitates the design of a valid procedure. Let Ĥi,n denote the estimate of Hi(θ

c) at the end of
the nth stage. We construct an estimator by discarding the first (or the “oldest”) nη := bηnc,η ∈ (0,1),
simulation outputs and then averaging the rest, i.e.,

Ĥi,n :=
1

n−nη

n

∑
r=nη+1

hi(ξir), i ∈I . (1)

The estimator in (1) will be referred to as a moving average estimator, since it averages simulation outputs
within a moving and expanding time window. The motivation is to throw away some of those “outdated”
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simulation outputs which were generated under less accurate estimates of θ c. We establish the asymptotic
normality of Ĥi,n in the following theorem, where N denotes normal distribution, and “⇒” denotes
convergence in distribution.
Theorem 1 Let Assumption 1 hold. Further suppose that ΣG := Cov[D1] exists and Hi is twice continuously
differentiable at θ c. Then, for any η ∈ [0,1),

√
n[Ĥi,n−Hi(θ

c)]⇒N
(
0, σ̃2

i,∞
)

as n→ ∞,

where
σ̃

2
i,∞ := wη∇Hi(θ

c)ᵀΣG∇Hi(θ
c)+

1
1−η

σ
2
i (θ

c),

with ∇ being the gradient, and

wη :=
2

1−η
+

2η logη

(1−η)2 .

Theorem 1 is an interesting result in its own right. It shows that the limiting variance σ̃2
i,∞ is a weighted

sum of variances caused by IU and SU, which are ṼI :=∇Hi(θ
c)ᵀΣG∇Hi(θ

c) and ṼS := σ2
i (θ

c), respectively.
To interpret the weights, we look at the following cases.

(i) Setting η = 0 gives wη = 2, meaning that if we retain all the outputs, then the variance caused by
IU, corresponding to ṼI , will be doubled.

(ii) Sending η → 1 gives wη → 1. This loosely corresponds to the case of Ĥi,n = hi(ξin), where we
only retain the single most recent output. As a result, Ĥi,n is free from the error accumulated
over previous estimates of θ c, and thus ṼI is not inflated. However, ṼS is inflated by a factor
1/(1−η)→ ∞, since the effective number of outputs is not tending to ∞ as n→ ∞.

(iii) A balance between IU and SU can be achieved by choosing the η that minimizes σ̃2
i,∞.

Roughly speaking, the parameter η captures a bias-variance tradeoff. On the one hand, discarding
previous outputs helps reduce the bias Hi(θ̂n)−Hi(θ

c) due to IU. On the other hand, the variance caused
by SU gets inflated if we average over fewer simulation outputs. In Section 3.2, we will explain the role
of moving average estimator in designing a valid procedure. At this point, an important note is that simply
ignoring IU and applying existing procedures may result in undershooting the PCS target.

3.2 The SE-IU Procedure

Our procedure is a direct extension of a Sequential Elimination framework proposed by Even-Dar et al.
(2002), Even-Dar et al. (2006), which is also discussed in Glynn and Juneja (2015) recently. This general
paradigm has a simple structure and can be extended to handle IU. Given α ∈ (0,1), the idea is to construct
confidence bounds {ci,n} on Ĥi,n for each design i such that

P{|Ĥi,n−Hi(θ
c)| ≤ ci,n,∀i,n} ≥ 1−α, α ∈ (0,1), (2)

where ci,n→ 0 as n→ ∞. At each stage n, a design i gets eliminated if

Ĥi,n + ci,n < max
j 6=i

{
Ĥ j,n− c j,n

}
.

In other words, a design is eliminated if its upper confidence bound is below some other design’s lower
confidence bound. Then, on the event E :=

{
|Ĥi,n−Hi(θ

c)| ≤ ci,n,∀i,n
}

, we have for any i 6= b,

Ĥb,n + cb,n− (Ĥi,n− ci,n)≥ δbi(θ
c)> 0, ∀n.
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Therefore, design b will never be eliminated on event E . Since ci,n→ 0, the procedure terminates almost
surely, and b will survive all eliminations with probability at least 1−α . By (2), this delivers the desired
PCS guarantee.

The key to efficiently ruling out inferior designs is to find tight confidence bounds {ci,n} that satisfy (2).
When there is no IU, this can be done easily using well-known concentration inequalities on Ĥi(θ

c), such
as the Chernoff bound and Hoeffding’s inequality. In the presence of IU, these inequalities do not apply
directly and a new concentration bound needs to be derived for Ĥi,n. The following assumption will be useful
to this end. Recall that a random variable X is sub-Gaussian with parameter σ if E[esX ] ≤ exp(σ2s2/2)
for all s ∈ R.
Assumption 2.

(i) For all 1≤ j ≤ d, the jth coordinate of Dn is sub-Gaussian with parameter ν j.
(ii) For any θ ∈Θ, if ξ ∼ Pθ , then hi(ξ ) is sub-Gaussian.

(iii) For all u > 0 and any design i, there exists a function Li(·)> 0 such that

|Hi(θ1)−Hi(θ2)| ≤ Li(u)‖θ1−θ2‖, ∀θ1,θ2 ∈ {θ ∈Θ | ‖θ −θ
c‖ ≤ u} ,

where ‖ · ‖ is the Euclidean norm.
(iv) For any design i, σ2

i (θ) is a continuous function of θ .

Assumption 2 (i) and (ii) may appear restrictive at first sight. For example, the input distributions in
an M/M/1 queue simulation model are sub-exponential but not sub-Gaussian. However, we make these
assumptions mainly to avoid unnecessary technicality, and in our future work we will show numerically
that our procedure works even if these conditions are not met.

To get a sense of how to meet the guarantee in (2), consider constructing confidence bounds ci,n such
that

P
{
{|Ĥi,n−Hi(θ

c)| ≤ ci,n,∀n}c}≤ β (3)

for some β ∈ (0,1), where “c” denotes set complement. One way is to consider an event

Au := {‖θ̂n−θ
c‖ ≤ u,∀n}

for some u > 0. Then, the guarantee in (3) can be met if we can control

P
{

Au∩{|Ĥi,n−Hi(θ
c)| ≤ ci,n,∀n}c}+P(Ac

u),

since it is an upper bound on the left-hand side (LHS) of (3). Note that P(Ac
u) can be controlled by enlarging

u. Meanwhile, on the event Au, we have Hi being Lipschitz continuous and σi(θ̂n) being bounded, where
it is possible to derive a concentration bound for |Ĥi,n−Hi(θ

c)| through a decomposition,

|Ĥi,n−Hi(θ
c)| ≤ |Ĥi,n−Hi(θ̂n)|+ |Hi(θ̂n)−Hi(θ

c)|.

The rest is to combine all the bounds through a union bound, where the choice of the estimator Ĥi,n is
crucial. For example, if we simply average all the simulation outputs, then the bound will be infinite due to
cumulative bias. Using the moving average estimator, however, we are able to construct ci,n that satisfies
(3) by virtue of a bias-variance tradeoff (as long as η > 0).

The upcoming SE-IU procedure relies on some key parameters including {ν j}, {σi} and {Li}. For
now, we present an ideal version of the procedure by assuming full knowledge of these parameters, and
defer implementation details to Section 3.3.

Procedure: SE-IU (ideal version)

• Input. α ∈ (0,1),η ∈ (0,1),K ≥ 2,n0 ≥ 10.
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• Step 1. Solve the following equation in u, and let u∗ be the solution.

d

∑
j=1

exp
(
− (n0+1)u2

2dν2
j

)
1− exp

(
− u2

2dν2
j

) =
α

6
. (4)

• Step 2. For each design, compute

σ̄i := sup
‖θ−θ c‖≤u∗

θ∈Θ

σi(θ), L̄i := Li(u∗),

as well as the constants

κn0 :=
∞

∑
n=n0+1

n−2, βn0 :=
∞

∑
n=n0+1

(n−nη)
−2.

Let ν̄ := max j ν j. Run n0 stages and set n← n0 +1. Also set S←{1,2, . . . ,K}.
• Step 3. Run an additional stage for all designs 1,2, . . . ,K, and compute their estimates Ĥi,n using

the moving average estimator in (1).
• Step 4. Compute the confidence bounds ci,n for each design i, where ci,n = ti,n + ri,n and

ti,n := 2σ̄i

√√√√√ ln
(√

6Kκn0
α

n
)

n−nη

, ri,n := ν̄ L̄i

√√√√√6d ln
((

6dKβn0
α

) 1
3
(n−nη)

)
nη +1

.

For each i ∈ S, if
Ĥi,n + ci,n < max

j 6=i

(
Ĥ j,n− c j,n

)
,

then set S← S\{i}. Go to Output if |S|= 1; otherwise, set n← n+1 and go to Step 3.
• Output. Select the only design in S as the best one.

Some important features of SE-IU are outlined as follows.

1. First, the width of {ci,n} is of order O(
√

ln(n)/n), which is standard for Sequential Elimination
procedures. However, the confidence bounds are widened compared with the case without IU, since
ti,n and ri,n correspond to SU and IU, respectively.

2. Second, we do not eliminate any design in the first n0 stages. In view of (4), a larger n0 leads to
a smaller u∗, which in turn gives us smaller σ̄i, L̄i,κn0 and βn0 , hence tighter confidence bounds.
Also, equation (4) arises as a result of controlling a probability bound, and it always has a unique
solution since the LHS is a continuous and monotone function of u with range (0,∞).

3. Third, the running time of SE-IU primarily depends on the parameters ν j, σ̄i, L̄i, and δbi(θ
c). For

instance, if σ̄i is increased by a factor of k > 1, then it would take at least k2 times as many stages
to reach the same width of confidence bounds.

Let τ∗ be the number of stages until the procedure terminates. A nice property of the Sequential
Elimination framework is that it is automatically equipped with an upper bound on E[τ∗].
Theorem 2 Let Assumption 2 hold. Then, the SE-IU procedure guarantees to select the best design with
probability at least 1−α . Furthermore,

E[τ∗]≤ 2 ∑
i 6=b

τ
∗
i +4(K−1)(α +2de−K (1− e−K )−2),

where τ∗i := inf{n > n0 | 2(cb,n + ci,n)≤ δbi(θ
c)} and K := η(u∗)2/(2dν̄2).
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The dominating term in Theorem 2’s bound is ∑i 6=b τ∗i , where each τ∗i characterizes the difficulty in
eliminating design i. For example, if design i has a large variance σ2

i (θ
c) and a small gap δbi(θ

c), then
τ∗i would be large, and it will take longer to eliminate design i. Given the same performance gap δbi(θ

c),
τ∗i primarily depends on {ci,n}, i.e., the width of the confidence bounds.

3.3 Implementation Guidance

We briefly discuss how to estimate the unknown quantities in SE-IU. One may start off by collecting a
small size of input data for initial estimation. If IU or SU is high (relative to the estimates of δi j(θ

c)),
then consider using a larger n0. The difficult parameters are σ̄i and L̄i, which are the suprema of σi(·)
and ‖∇Hi(·)‖ over a small neighborhood of θ c. While one can attempt to maximize the corresponding
likelihood ratio estimators, we suggest simply replacing them with estimates of σi(θ

c) and ‖∇Hi(θ
c)‖ for

the following reasons: (i) estimates based on such maximization often suffer from high variance and severe
overestimation; (ii) the Sequential Elimination framework is already conservative since it resorts to loose
union bounds, so highly accurate estimates are often unnecessary.

4 NUMERICAL RESULTS

We test SE-IU on a simple quadratic example for illustration, in which the target PCS is 95%. The
performance of the ith design is characterized by

hi(ξ ) =−(i−ξ )2,

where ξ ∼N (θ c,σ2) is the only source of SU. We assume that the standard deviation σ (not to be
confused with σi(θ)) is known, and the unknown input parameter is the mean θ c. There are 20 designs
to be compared, which are I = {−10,−9, . . . ,8,9}. The true parameter value is θ c = 0, so i = 0 is the
best design. In addition, the batch size per stage is 1, meaning that at each stage an additional data sample
is collected, and each design is simulated one more time; the number of initial stages is n0 = 1. Recall
that Hi(θ) := EPθ

[hi(ξ )] and σ2
i (θ) := VarPθ

[hi(ξ )] are the mean and the variance of design i’s simulation
output, respectively. Figure 1 shows the magnitude of Hi(θ

c) and σi(θ
c) for all designs when σ = 0.5.

design i

-10 -5 0 5
-100

-80

-60

-40

-20

0

20

Hi(θ
c)

σi(θ
c)

Figure 1: Hi(θ
c) and σi(θ

c) for all designs i ∈I , where θ c = 0 and σ = 0.5.

Next, the proposed moving average estimator in (1) has a parameter η ∈ (0,1), which is the fraction
of historical simulation outputs to be discarded. Adjusting the value of η can balance IU and SU in a
quite explicit and intuitive way. For instance, Figure 2 shows the continuation region of design −10 when
η takes three values: 0.2,0.5 and 0.8. In all three subfigures, the blue curve corresponds to {ti,n}, the red
curve corresponds to {ri,n}, and the black curve is the combined confidence bands {ci,n}. It can be seen
that when η = 0.2, IU dominates SU, and the dominance reverses when η = 0.8. Taking η = 0.5 seems
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to yield the best balance between IU and SU, where the width of ci,n = ti,n + ri,n is slightly smaller than
the other two cases. Therefore, we set η = 0.5 in subsequent results.
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(b) η = 0.5.
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(c) η = 0.8.

Figure 2: Continuation regions for design −10 under different values of η .

Finally, we test SE-IU under σ = 0.1,0.2, . . . ,0.5, and compare the corresponding expected running
times until termination. The PCSs are all close to 1, so SE-IU can achieve the target PCS despite initial
estimation error. In Figure 3, the expected stopping time, E[τ∗], are estimated over 100 independent
replications. It can be seen that E[τ∗] increases roughly quadratically in σ , and the magnitude indicates
that SE-IU needs further improvement in efficiency before it can be deemed a practical procedure. For
a comparison, if there is no IU, then the classical SE procedure would take significantly shorter time to
terminate. This can be expected from Figure 1, where the simulation noise σi(θ

c) is not too large relative
to the performance differences δbi(θ

c), i 6= b.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we study a new fixed confidence Ranking and Selection problem, where new input data can
be collected sequentially to update the input models towards higher accuracy. To solve the problem, we
propose an SE-IU procedure by extending a Sequential Elimination framework. Theoretical guarantees
are provided on SE-IU’s performance, and numerical results demonstrate that it is able to achieve the
target PCS. However, we also observe that SE-IU suffers from conservativeness, as it overshoots the PCS
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Figure 3: Expected running time under different values of σ .

target and requires a long running time. One reason behind this is that, accounting for IU and cumulative
estimation error naturally inflates the continuation region; another reason is that the current SE-IU does
not exploit the common input distribution effect and the common random numbers technique, which often
induce positive correlations among the designs and may greatly sharpen the comparisons. Therefore, our
next step is to take advantage of such correlations through pairwise comparisons or simultaneous multiple
comparisons, which will most likely boost the efficiency of SE-IU.
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