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ABSTRACT

We consider multi-objective ranking and selection problems with heteroscedastic noise and correlation
between the mean values of alternatives. From a Bayesian perspective, we propose a sequential sampling
technique that uses a combination of screening, stochastic kriging metamodels, and hypervolume estimates
to decide how to allocate samples. Empirical results show that the proposed method only requires a small
fraction of samples compared to the standard EQUAL allocation method, with the exploitation of the
correlation structure being the dominant contributor to the improvement.

1 INTRODUCTION

A multiobjective optimization problem can be formulated as follows (Branke et al. 2008): min[ f1(x), ..., fm(x)]
for m objectives where the decision vectors x = [x1, ...,xn]

T (also referred to as systems or design points)
are contained in the decision space D (usually D⊂ Rn), with f : D→ Rm the vector-valued function with
coordinates f1, ..., fm in the objective space Θ⊂ Rm. As there are tradeoffs between the different objectives,
the goal then is to find a set F of all vectors x∗ = [x∗1, ...,x

∗
n]

T where no objective can be improved without
negatively affecting any other objective. The systems in this solution set are referred to as non-dominated
or Pareto-optimal, and form the Pareto set in the decision space, and the Pareto front in the objective space.

In stochastic simulation optimization, the objectives are also perturbed by noise. In general, relying
on the observed mean objective values to determine the non-dominated systems may lead to two possible
errors due to sampling variability: designs that actually belong to the non-dominated set can be wrongly
considered dominated, or designs that are truly dominated are considered Pareto-optimal. Chen and Lee
(2010) refers to these errors as Error Type 1 (ET1) and Error Type 2 (ET2) respectively, whereas Hunter
et al. (2019) refer to them as misclassification by exclusion (MCE) and misclassification by inclusion
(MCI). Throughout this paper we adopt the former terminology.

The most commonly used method for reducing the impact of noise during optimization is to evaluate
the same point a number of times and use the mean of these samples as the response value (referred to
as static resampling). However, when the noise is high and/or strongly heterogeneous, this method may
fail to provide accurate approximations with limited computational budget. It is thus necessary to use
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more advanced procedures that aim to correctly identify the non-dominated systems, such as probabilistic
dominance or multiobjective ranking and selection (MORS).

Some of the early works that discussed probabilistic dominance appear in Fieldsend and Everson (2005)
and Basseur and Zitzler (2006), who propose to use the expected values of any deterministic indicator
to compare the quality of different Pareto fronts with a certain confidence level, under the assumption
that each solution is inherently associated with a probability distribution over the objective space. More
recently, in Voß et al. (2010), probabilistic dominance is defined by comparing the volume in the objective
space of the confidence intervals, and the center point of these volumes is used to determine the dominance
relationship. Similarly, in Trautmann et al. (2009), the standard deviation is added to the mean such that
dominance is determined with the quantile objective values.

A more advanced alternative is to use MORS methods; these, however, are relatively scarce in the
literature (Hunter et al. 2019). Most MORS procedures aim to ensure a high probability of correctly
selecting (PCS) a true non-dominated design, by smartly distributing the finite replication budget among
critically competitive designs, in order to avoid unnecessary resampling (i.e., they avoid spending replications
on those designs that are clearly dominated and thus are not interesting to the decision-maker). Hunter
et al. (2019) refer to these methods as fixed-budget procedures, and they represent the largest group in
the literature. Some of the most relevant works include MOCBA, a well-known Bayesian Multiobjective
Optimal Computing Budget Allocation framework based on the single-objective OCBA (Chen and Lee
2010); MOCBA+ (Li et al. 2018), an extension of MOCBA where the authors approach the problem from
a large deviations perspective, and a formulation that maximizes the lower bound of the rate of decay in the
probability of false selection (i.e., the probability of not identifying the true Pareto set) is derived. Under
certain conditions, both MOCBA and MOCBA+ are asymptotically optimal, but only MOCBA+ accounts
for sampling correlations in the objectives.

Furthermore, the SCORE allocations for bi-objective ranking and selection framework presented in
Feldman et al. (2015) and Feldman and Hunter (2018), accounts for correlations between the objectives,
is asymptotically optimal and aims to allocate replications to maximize the rate of decay of the probability
of misclassification. The recent M-MOBA (Branke and Zhang 2015) and M-MOBA-HV (Branke et al.
2016) frameworks propose, from a Bayesian perspective, to use the expected value of information (Chick
et al. 2010) to determine the observed solution which is expected to change the current Pareto set the
most if more replications are performed on it. In the M-MOBA algorithm, this system is the one with the
highest probability of changing the current Pareto set, whereas in M-MOBA-HV, it is the one leading to
the largest change in the observed hypervolume.

In this paper we propose a MORS method that builds upon the M-MOBA and M-MOBA-HV procedures.
Its main advantage is that it uses stochastic kriging metamodels (Ankenman et al. 2010) to build the
predictive distributions of each objective, thus it is able to exploit correlations in the decision space. By
using stochastic kriging we are also able to take into account the intrinsic heterogeneous noise affecting the
observed performance, as opposed to standard (deterministic) kriging, which assumes that the observations
in the prior distributions are deterministic (Kleijnen 2015). We exploit the distance between the stochastic
kriging predictions and the observed sample means (resp. the sample variance and the predictor uncertainty)
in combination with the expected hypervolume difference (HVD) (Branke et al. 2016). This information
is used to determine which points in the solution set should get more replications, in order to improve the
identification of the Pareto-optimal solutions.

2 STOCHASTIC KRIGING

Stochastic kriging is a recently developed metamodeling technique for representing the response surface
implied by a stochastic simulation (Ankenman et al. 2010). For a given objective and an arbitrary design
point xi, the model represents the observed objective value f̃r(xi) in the rth replication as:
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f̃r(xi) = f(xi)T
βββ +M(xi)+ εr(xi), (1)

where f(xi) is a vector of known trend functions of xi, βββ is a vector of unknown parameters of
compatible dimension, and M(xi) is a realization of a mean 0 covariance stationary Gaussian random field
at the design point xi. It is assumed that this field exhibits spatial correlation: i.e., M(xi) and M(xh) will
tend to be similar when xi is close to xh in the design space. This assumption is analogous to the assumption
made in the standard deterministic kriging metamodel (see, e.g., Kleijnen 2015); essentially, this type of
uncertainty is imposed on the problem to aid in developing the metamodel. Hence, it is referred to as
extrinsic uncertainty. Different spatial correlation functions (also referred to as kernels) exist. The most
popular ones in the kriging literature are the Gaussian and Matérn kernels (Rasmussen and Williams 2005);
the former is used in the experiments presented in Section 4.2:

kG(xi,xh) = λ
2 exp

[
−

n

∑
d=1

(
|xi

d−xh
d |√

2ld

)2]
(2)

where λ 2 and ld (d = 1, ...,n) are the hyperparameters to denote the process variance and the length-scale
of the process along dimension d, respectively (see Rasmussen and Williams 2005 for further details on
kernel functions).

The intrinsic uncertainty εr(xi) is, naturally, independent and identically distributed across replications,
having mean 0 and variance τ2(xi) at any arbitrary point xi. Note that the model allows for heterogenous
noise, implying τ2(xi) need not be constant throughout the design space. The model also allows for
Corr[εr(xi),εr(xh)]> 0, as tends to be the case with the use of common random numbers (CRN); yet, this
is not desirable, as discussed in Chen et al. (2012). In what follows, we only consider the case where the
first term in Equation (1) is a constant, β0, representing the overall mean of the response surface, as this
has been shown to be the most useful model in practice (Ankenman et al. 2010; Kleijnen 2015).

The stochastic kriging prediction f̂ (xi) at any design point xi (whether it has been sampled or not)
is given by

f̂ (xi) = β0 +ΣM(xi, ·)T [ΣM +Σε ]
−1(f̄−β01p) (3)

This expression is analogous to the kriging predictor in the well-known deterministic kriging model, except
for the impact of the intrinsic noise, present through Σε . Σε is the p× p covariance matrix with (i,h) element
cov
[
∑

ri
j=1 ε j(xi)/ri,∑

rh
j=1 ε j(xh)/rh

]
across all design points xh and xi; when CRN are not used, this reduces

to the diagonal matrix diag[τ2(x1)/r1, ...,τ2(xp)/rp]. The notation f̄ is the vector containing all the observed
mean outcomes at the already sampled design points: f̄ = [ f̄ (x1), ..., f̄ (xp)]T , with f̄ (xi) = ∑

ri

k=1 f̃k(xi)/ri,
and 1p is a p×1 vector of ones. Analogous to the deterministic kriging model, ΣM denotes the p× p matrix
containing the covariances between each couple of already sampled points, as implied by the extrinsic spatial
correlation model: ΣM(xi,x j) =Cov[M(xi),M(x j)]. The notation ΣM(xi, ·) is the p×1 vector containing
the covariances between the point under study, and the p already sampled points:

ΣM(xi, ·) =
[
Cov[M(xi),M(x1)],Cov[M(xi),M(x2)], . . . ,Cov[M(xi),M(xp)

]T
.

As opposed to the deterministic kriging predictor, the stochastic kriging predictor is not an exact interpolator,
due to the presence of the intrinsic noise. The MSE of the stochastic kriging predictor (i.e., the predictor
uncertainty), denoted s2(xi), is given by (Ankenman et al. 2010):

s2(xi) = ΣM(xi,xi)−ΣM(xi, ·)T [ΣM +Σε ]
−1

ΣM(xi, ·)+ γT γ

1T
p [ΣM +Σε ]−11p

(4)

withγ = 1−1T
p [ΣM +Σε ]

−1
ΣM(xi, ·)
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Again, the difference with the deterministic kriging expressions lies in the impact of the intrinsic noise
through Σε , which allows for modeling heterogeneous noise variances (as opposed to the common assumption
in the literature of homogeneous noise). In the absence of intrinsic noise, expressions (3) and (4) thus
reduce to the deterministic kriging predictor and its variance. The presence of intrinsic noise inflates the
MSE, as discussed in Ankenman et al. (2010). The above expressions suppose that β0, Σε and ΣM are
known; clearly, in a realistic application, they must be estimated. This is commonly done using maximum
likelihood estimation (MLE); yielding β̂0, Σ̂ε and Σ̂M. We refer to Ankenman et al. (2010) for the detailed
derivation of these MLE estimators. These estimators are then used in expressions (2) and (3) to yield the
estimated kriging predictor f̂ , and its variance ŝ2.

3 HYPERVOLUME DIFFERENCE

Measuring the quality of a Pareto front approximation is difficult, as the so-called “true” Pareto front is
usually unknown. Intuitively, a good Pareto front is characterized by being well-populated (i.e., richness),
with the non-dominated points well-spread across the front with respect to all the objectives (i.e., diversity).
Numerous quantitative performance indicators have been developed for assessing the quality of the Pareto
front in deterministic problem settings (see Riquelme et al. (2015) for a recent review). One of the most
widely used quality indicators is the hypervolume (Zitzler et al. 2007), as it is a Pareto compliant indicator:
for a given point a in front A, if a point a′ is found that dominates a, then the hypervolume of front A′ is
larger than for A. However, the runtime complexity of computing the hypervolume is exponential in the
number of objectives (Zitzler et al. 2007).

The hypervolume dominated by a given Pareto front A with respect to a reference point r is defined
as the Lebesgue measure, denoted Λ, of the set of objective vectors dominated by the solutions in A, but
not by r:

HV (A,r) = Λ

(⋃
z∈A

{z≺ z′ ≺ r}

)
, z ∈Θ (5)

where the notation z ≺ z′ denotes domination of vector z over z′. Thus, all the non-dominated vectors
contribute equally to the indicator value, and the dominated vectors do not contribute. Then, for two fronts
A and B, the hypervolume difference (HVD) is defined as (Branke et al. 2016):

HV D(A,B,r) := HV (A,r)+HV (B,r)−2×Λ(HV (A,r)∩HV (B,r)) (6)

As discussed in Branke et al. (2016) and Hunter et al. (2019), using the expected HVD is more likely
to be useful to the decision-maker, as it invests more computational effort in estimating the performance
of outstanding systems, rather than differentiating between systems that are marginally dominated or non-
dominated. Figure 1 (right) shows the HVD between a non-dominated set A (black points) and another
potential non-dominated set B (black squares).

Figure 1: The figure on the left shows the hypervolume covered (shaded area) by a set of non-dominated
points (black points) with respect to reference point r (triangle). Circles represent the dominated points.
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4 PROPOSED METHOD: SK-MORS

Given that stochastic kriging is not an exact interpolator, the systems observed so far, used to build the
stochastic kriging metamodels, can be re-evaluated using the predictor to yield a hopefully more accurate
approximation of its response. We are then using both the sample means and variances (denoted f̄ and
σ2), respectively the predictor values and uncertainties (denoted f̂ and ŝ), to allocate replications to those
points that are expected to change the current observed Pareto-optimal set the most. We thus rely on the
stochastic kriging predictions to make decisions, as opposed to relying on the observed means; the observed
means and variances are used to guide the allocation procedure.

Let S be the entire set of sampled points, PS the observed Pareto set of S, and P̂S the predicted Pareto
set of S. Then, the evaluation of the points in PS and P̂S yields the fronts PF and P̂F , respectively.
Furthermore, for a given point xi, let f̄(xi) and f̂(xi) be the observed mean objective vectors and predicted
objective vectors, respectively. Similar to Branke et al. (2016) (see Equation (6)), we calculate the expected
hypervolume difference (EHVD) for a single point xi as:

EHV Di =| HV (P̂F)−HV
(

P̂F\f̂(xi)∪ f̄(xi)
)
|, ∀i ∈ S. (7)

We use Equation (7) as indicator for how much we expect the hypervolume to change if we run more
replications on point xi. There are three cases to be considered:

• Case 1: f̄(xi)≺ f̂(xi), the HV will change (increase) as the observed vector dominates the predicted
vector.

• Case 2: f̂(xi) ≺ f̄(xi) , and there are no other systems observed to dominate f̄(xi). The HV will
change (decrease) as the predicted vector dominates the observed vector.

• Case 3: f̂(xi)≺ f̄(xi), and there are one or more systems that are observed to dominate f̄(xi). The
HV will change (decrease) as the predicted vector dominates the observed vector, but the change
is not equally significant as in the previous case, as some of the previously dominated systems
become non-dominated.

When the noise is high and/or strongly heterogeneous, an extra replication on a given point might
significantly change its position in the objective space. As the EHVD does not reward those points which
have both their observed means and predictions (marginally) dominated, we propose to use the Euclidean
distance, denoted ED, between these two in addition to the EHVD, such that if the mean and prediction
are far away from each other, by running more replications on these points, we expect both the mean and
prediction to come closer to each other, and aid in minimizing both ET1 and ET2.

Instead of using the predictions directly, we opt for using the farthest confidence bound of f̂ j(xi) with
respect to f̄ j(xi) for objective j. The choice of the farthest confidence bound is because we intend to inflate
the ED when the uncertainty of the predictor is high, such that points with high uncertainty will be rewarded
more (see Figure 2(left) for an illustration of the ED). The farthest confidence bound is analogous to using
the lower confidence bound (L̂CB) of the dominated points, and the upper confidence bound (ÛCB) of
the non-dominated points of the predicted values for each objective. The L̂CB and ÛCB are defined as
f̂ j(x)±ω ŝ j(x), j = 1, ...,m, where ω is usually an integer in the interval [1,3], yielding the 68%, 95% and
99% confidence intervals (CI) of the prediction respectively (Rasmussen and Williams 2005). These bounds
are commonly used in kriging-based optimization as a way to take into account the predictor uncertainty
during the search for solutions (Ponweiser et al. 2008; Emmerich et al. 2006), as it minimizes the exclusion
of potential promising solutions at the cost of a higher number of evaluations. Analogously, the CI of the
observed means (denoted LCB and UCB) are defined as f̄ j(x)±ωσ(x), j = 1, ...,m.

We then define the ED between the observed means and the predictor as:

EDi =

√
m

∑
j=1

[
| f̄ j(xi)− f̂ j(xi) |+ŝi

j

]2
, ∀i ∈ S. (8)
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Consequently, the sampling criterion used to rank and select the candidates in S is calculated as:

RSi = EHV Di +EDi, ∀i ∈ S. (9)

with both ED and EHV D being normalized in the [0,1] interval. As the algorithm we propose is sequential,
the system or subset of systems with highest RS is selected to perform more replications in the current
iteration. After the budget in the current iteration has been depleted, the kriging parameters are recomputed
with the new (more accurate) observed means and variances to perform a new iteration. The proposed
algorithm is described in the next section.

Figure 2: The left panel shows the ED between the observed means (circles) and predicted means (squares).
The observed fronts are depicted as filled circles and squares respectively. The center and right figures denote
the confidence regions delimited by (ū1, ū2) and (û1, û2) respectively, used in the screening procedure. The
arrows on the dominated points denote the LCB (center panel) and L̂CB (right panel).

4.1 Algorithm Outline

As is well-known in ranking and selection, in many cases some of the systems included in the solution set
will be clearly inferior to other solutions in the set (Boesel et al. 2003). Screening heuristics are widely
used prior to running the ranking and selection procedure in order to filter out these clearly inferior systems.
We propose a subset-selection procedure (steps 2-4 in Algorithm 1), that will use both the observed and
predicted Pareto fronts.

As shown in Figure 2, the worst 95% CI among all the non-dominated points for each objective j,
denoted ū j for the observed means, and û j for the predicted means, are used to enclose a confidence region.
Then, the best 95% CI of each dominated system for each objective are used to improve the performance
of each point. The improved performance is denoted with arrows in Figure 2, resulting in the improved
positions for the sample means (denoted with stars) and the predicted values (denoted with diamonds). If
the improved position does not enter the confidence region in none of the observed fronts (see e.g., point c̄
(resp. ĉ) in Figure 2), then this point is filtered out from the candidate set for the current iteration (i.e., the
point will be considered in further iterations). If the improved position of a point enters only one of the
confidence regions (see e.g., points ā (resp. â) and b̄ (resp. b̂) in Figure 2), then it will still be considered in
the candidate set of the current iteration. This is to ensure that, even with very heavy noise levels (as in the
experiments in Section 4.2), with a high confidence we are not excluding truly non-dominated solutions.
The steps of the entire proposed sequential procedure are given in Algorithm 1, and the different sets of
points used are summarized in Table 1.
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Table 1: Overview of the different sets of points used in the proposed algorithm.

Notation Description

S Entire set of sampled systems (candidates).

PS(PF) Observed Pareto set (resp. Pareto front) based on sample means.

P̂S(P̂F) Observed Pareto set (resp. Pareto front) based on predicted means.

UCB(ÛCB) Upper 95% CI of all systems observed in PF (resp. P̂F).

LCB(L̂CB) Lower 95% CI of all systems observed in S\PF (resp. S\P̂F).

Algorithm 1 SK-MORS algorithm
Input:
b ← Initial number of replications per system for each objective.
B = |S|×b ← Total number of replications to be allocated in one iteration.
δ ← Parameter to select the systems with highest RS.
Output:
PS→ The observed Pareto set.
while stopping criterion not met do

Step 1: Fit a stochastic kriging metamodel to each objective j: f̂ j(x).
Step 2: Compute UCB, ÛCB, LCB and L̂CB.
ū j: Maximum UCB of objective j from all systems in PF , j = 1, ...,m.
û j: Maximum ÛCB of objective j from all systems in P̂F , j = 1, ...,m.
Step 3: Initialize set of clearly inferior systems S̄ = /0.
NP = S\PS∩S\P̂S.
for i ∈ NP do

for j = 1 : m do
if LCBi

j > u j and L̂CB
i
j > û j then

S̄∪{xi}.
end if

end for
end for
Step 4: Remove clearly inferior systems from the candidate set S̃ = S\S̄.
Step 5: Compute the EHV Di and EDi values, ∀i ∈ S̃.
Step 6: Normalize the EHV D and ED values. Compute the RS values, ∀i ∈ S̃.
Step 7: Rank the systems according to their RS. Select the ∆ systems with RS≥ δ .
Step 8: T = ∑

|∆|
i=1 RSi; T i = RSi

T ×B, i ∈ ∆.
Step 9: Allocate T i replications to each i in ∆.

end while
Step 10: Return the PS.

In step 1, the algorithm fits a stochastic kriging metamodel to each objective, based on the observed
mean objective values and respective variances of the sampled systems in S. The metamodels are then
used to approximate each response on these sampled systems. The current observed Pareto-optimal sets are
obtained based on both the observed means (PS and PF) and predicted means (P̂S and P̂F). In step 2, the
upper and lower confidence bounds for each point in all non-dominated and dominated sets are calculated
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based on the observed and predicted performances. Using these confidence bounds, in steps 3 and 4 the
algorithm filters out from the current iteration the clearly inferior systems using the screening procedure
described above.

In step 5, the algorithm will calculate the EHV D values using Equations (5) and (7), and the ED
values using Equation (8). These are then normalized in step 6, as it is possible to have very high values
of EHV D relative to ED. Consequently, the RS is computed using Equation (9). Due to normalization in
every iteration, the RS values are always in the [0,2] interval. Thus, in step 7, the user-defined parameter
δ will determine the subset of systems to which more replications will be allocated. In the experiments
presented in Section 4.2, we opt for δ = 0.5, as on average it selects 40% of the candidate points for
resampling.

In steps 8 and 9, the allocation quantity is determined proportional to the individual RS values (using
general rounding rules). The input parameter b determines how many replications could be performed per
candidate system if these were distributed equally. Thus, the total number of replications B to be allocated
per iteration, depends on the initial number of candidate points in S. As the algorithm will not allocate
replications equally, a significantly higher number of replications T i� b will be allocated to the selected
points in ∆. If the stopping criterion is met, in step 10 the algorithm returns the observed Pareto set. In the
experiments presented in the following section, we opt for stopping the algorithm in two ways: when the
entire true Pareto set has been correctly identified (i.e., no ET1 or ET2 points), and after a fixed number
of samples have been allocated.

4.2 Empirical Results

To assess the performance of the proposed procedure, we use the WFG4 function (concave Pareto front),
as it is common in the literature (Huband et al. 2006). We present the results for 2 objectives and 5
decision variables, but the extension to more dimensions in both spaces is straightforward. We refer to
the analytical expressions and detailed characteristics of this function in Huband et al. (2006). We set the
parameter b = 5, and stop the algorithm after at most 25 iterations. The decision space D is discrete and
set to |S|= 100, with a true Pareto set (denoted PSt) of size 20. This set of candidate systems is obtained
using the algorithm proposed in Rojas-Gonzalez et al. (2018).

We compare the performance of the proposed method, denoted SK-MORS, against EQUAL allocation
(i.e., b replications are allocated to every point in S at each iteration). In EQUAL, the observed means
are used instead of the stochastic kriging predictions. To show the benefit of using the stochastic kriging
predictions instead of on the observed means, we compare SK-MORS against an EQUAL allocation
algorithm that uses the stochastic kriging predictions instead of the observed means (denoted EQUAL-SK).
The impact of the proposed sampling criterion, i.e., Equation (9), is analyzed by comparing the performance
of an algorithm using only the EHV D criterion (denoted SK-MORS-HV), and using only the ED criterion
(denoted SK-MORS-ED). To further show the convergence rate of the algorithms, we propose to use a
performance measure that evaluates the accuracy of the true Pareto set identified considering both error
types, which we refer to as APS:

APS = 1− ET 1+ET 2
S

(10)

Thus, if the algorithm correctly identifies the entire PSt and does not misclassify any truly dominated
points, then APS = 1. Table 2 summarizes the performance metrics used.

The objectives are perturbed with heterogeneous Gaussian noise. Hence, we obtain noisy observations
f̃ j
r (xi)= f j(xi)+εr(xi), with εr(xi)∼N (0,τ(xi)) for j = 1, ...,m objectives at the rth replication. In practice,

the noise can follow any type of structure. In our experiments we assume that the standard deviation of the
noise, τ(x), varies linearly with respect to the objective values, as is common in the literature (Jalali et al.
2017; Rojas-Gonzalez et al. 2018). The maximum and minimum values of τ(x) are linked to the range
of each objective value in the region of interest (i.e., R j

f = maxx∈S f j(x)−minx∈S f j(x), j = 1, ...,m). We
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Table 2: Overview of performance measures used to evaluate the algorithm.

Notation Description

Iterations Number of iterations necessary to identify the current Pareto set.

ET 1 Number of points in S\P̂S that are incorrectly identified as dominated (Type I error).

ET 2 Number of points in P̂S that are incorrectly identified as non-dominated (Type II error).

APS Accuracy of the P̂S.

consider a heavy level of noise perturbing the responses, varying between 0.1R j
f and 1.5R j

f . Moreover, we
consider the case where the noise decreases linearly with the objective values; we have minimum noise at
the global minimum of each individual objective. By considering the opposite case (i.e., maximum noise
at the global minimum of each individual objective) we expect to need more samples and thus the impact
of accounting for correlation becomes even more important. With increasing number of objectives, the
tradeoff becomes more complex; for the bi-objective case, when the noise is maximal at the optimum of
one objective, will be minimal at the optimum of the other objective.

Figure 3 compares the rate of minimization of both error types for all the algorithms, and Table
3 shows the computational budget used by the algorithms after convergence to APS = 1. The positive
impact of the proposed screening procedure is conveyed in the metric |S| at the end of the algorithm; the
number of candidate points is reduced sequentially as the observed performance becomes more accurate.
This reduction significantly benefits the proposed method, as the computational cost of doing the double
hypervolume calculations in Equation (7) for every candidate point at each iteration, grows exponentially
with the number of objectives (see also Equation (5)).

Figure 3: Performance of all the algorithms after 20 runs. At each iteration, the averages are shown.

It is clear that the speed of convergence of EQUAL allocation towards the correct identification of all
the systems that are truly Pareto-optimal is drastically outperformed by the the proposed algorithm. As
shown in Table 3, the number of allocated samples (i.e., iterations) required to converge to PSt is much
lower for the proposed method: slightly above 3.5% of EQUAL. Furthermore, the convergence to PSt is
observed to be more effective in SK-MORS than using the ED and EHV D separately. As also reflected
in the number of iterations in Table 3, SK-MORS and SKMORS-ED use significantly less budget than all
the other algorithms to converge to PSt ; the performance of the ED criterion is observed to be competitive.
As expected, SKMORS-HV is less likely to allocate replications to those points that are (truly) marginally
dominated, and thus the algorithm requires a large budget to differentiate these. However, it is clear that the
EHVD combined with the ED is the most effective sampling criterion. An interesting avenue for further
work is to develop an indifference zone procedure for the EHVD.

The minimization of ET1 allows similar conclusions as to the maximization of APS; all the algorithms
using stochastic kriging remain largely superior, while EQUAL requires a very large replication budget
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to correctly identify the true non-dominated points (see also Table 3). With respect to the ET2, EQUAL
allocation seems to reduce these faster at the beginning, but the rate of decay of the proposed algorithm
surpasses EQUAL allocation after a few iterations.

Table 3: Summary of results (averages) for all algorithms after 20 runs of the same instance until convergence
to APS = 1.

SK-MORS SK-MORS-HV SK-MORS-ED EQUAL-SK EQUAL
|S| 80.85 81.85 83.40 100 100

Iterations 19.25 195.20 33.35 30.80 520.60

In general we observe that the identification of the points with the true best expected performance is
largely facilitated by exploiting the stochastic kriging information (as opposed to relying on the observed
means). A drawback of the proposed method is the need to specify the parameter δ . As this parameter
determines the percentage of points to resample, it is dependent on the size of S and the specific problem at
hand. In practical settings, ideally, this parameter (and the stopping criterion) should automatically adapt
based on the progress of the algorithm after each iteration. This also presents an interesting opportunity
for further work. The outcome of the proposed algorithm against EQUAL allocation is shown in Figure
4; the start of the algorithm refers to the first iteration, and the end refers to the moment when no ET1 or
ET2 are observed.

Figure 4: The upper panels show the results for EQUAL allocation, the lower panels the results for
SK-MORS. The figures on the left side show the PF and P̂F at the start the algorithm, while the two
figures on the right side show the PF and P̂F at the end the proposed algorithm.
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5 CONCLUSION

We have proposed a multi-objective ranking and selection technique that can deal with heteroscedastic noise
and still exploit correlation between the mean values of alternatives by using stochastic kriging metamodels.

The biggest reduction in the number of samples compared to EQUAL allocation came from using the
values predicted by the stochastic kriging metamodel instead of the observed mean values for determining
whether a solution is non-dominated. Thus, if it is possible to exploit a correlation structure between the
mean values of alternatives, this should definitely be done as it is shown to bring great benefit. In previous
papers, the expected hypervolume difference was proposed as a good criterion to allocate samples. However,
estimating the hypervolume change is computationally expensive. We have proposed an approximation that
simply looks at the effect of replacing the observed mean by the mean predicted by the stochastic kriging
metamodel. The proposed measure on its own didn’t perform particularly well as criterion to allocate
samples to alternatives. Best results were obtained when combining it with a measure of the difference
of an alternative’s observed means and predicted values. An initial screening step further reduces the
computational cost needed to compute the hypervolume differences.

The ideas presented on this paper need more exploration. Future work should include a comparison
with other state-of-the-art MORS algorithms and a performance comparison based on probability of correct
selection of hypervolume difference.
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