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ABSTRACT

Bootstrapping is a popular tool for quantifying input uncertainty, inflated uncertainty in the simulation
output caused by finite-sample estimation error in the input models. Typical bootstrap-based procedures
have a nested simulation structure that requires B×R simulation runs: the outer loop bootstraps B input
distributions, each of which requires R inner simulation runs. In this article, we present a measure-theoretic
framework for constructing a sample path likelihood ratio and propose an efficient input uncertainty
quantification procedure using two green simulation estimators. The proposed procedures reuse the same
R inner simulation outputs in all outer loops by reweighting them using appropriately defined likelihood
ratios. Both procedures produce asymptotically valid confidence intervals for the expected simulation output
under the true input distribution. Our numerical results show that the proposed procedures have efficiency
gains compared to other popular bootstrap-based alternatives.

1 INTRODUCTION

Probability distributions that drive the randomness in a stochastic simulation are often referred to as input
models. These input models are fitted from finite observations of true but unknown real-world processes,
and therefore are subject to estimation errors. When the fitted input models are used to run simulations,
their estimation errors are propagated to the simulation output and cause input uncertainty, which inflates
the simulation output variance beyond the usual Monte Carlo simulation noise. In general, input uncertainty
can be only reduced by collecting additional real-world data and improving the input models. Standard
simulation output analysis is often based solely on Monte Carlo noise, which is insufficient in such settings.
For example, in a queueing simulation illustrated by (Barton and Schruben 2001), when input uncertainty is
overlooked, the 90% confidence interval for the expected waiting time only has 20% coverage probability.
So quantifying the input uncertainty is an important task as it provides simulation users with a better
understanding of the real-world system being modeled from simulation outputs.

Input uncertainty quantification (IUQ) has been an active research area, as reviewed by Barton (2012),
Song et al. (2014), and Lam (2016). With few recent exceptions (Zhou and Liu 2018), the standard
setting in the IUQ literature concerns cases where additional data collection is expensive or even infeasible.
Adopting this problem setting, we focus on deriving asymptotically valid confidence intervals (CIs) for the
expected simulation output under the unknown true input distributions with a target coverage probability
guarantee as the real-world sample size increases. This problem has been studied using bootstrap-based
methods (Barton and Schruben 1993; Barton and Schruben 2001; Ankenman and Nelson 2012), the delta
method (Cheng and Holland 1997; Ng and Chick 2006; Song and Nelson 2015; Lin et al. 2015), and
metamodeling-based methods (Xie et al. 2014).
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One of the main challenges of the IUQ problem lie in its nested simulation structure, which results in
excessive computational burden. Ideally, if one has abundant (outer) samples of fitted input models and
the conditional performance measure given the fitted input models can be exactly evaluated without (inner)
simulation, then the CI of the true mean performance measure can be estimated using empirical quantiles
of the conditional performance measures. However, in actuality, the sampling distribution of fitted input
models is unknown and the conditional performance measures must be estimated via simulations. The
former is often approximated by bootstrapping the data when nonparametric input models are used, or by an
asymptotic sampling distribution when parametric distribution families are assumed for the input models;
both approximations are theoretically justified, asymptotically, as the real-world sample size increases
to infinity. Estimating the conditional mean is harder to get around. For instance, the direct bootstrap
approach (Barton and Schruben 2001) bootstraps B times from the real-world sample and runs R simulation
replications at each of the B fitted input model, resulting in a total of BR simulation runs. Here, both
B and R need to be reasonably large to reduce the quantile estimation error and the Monte Carlo error
in estimating the conditional performance measure given fitted input models. The delta effects model or
metamodeling approach alleviate the computational burden by reducing the inner simulations required but
at the expense of imposing structural models of the conditional mean function. However, the parameters of
the imposed structural models need to be estimated too, which incurs estimation errors and requires large
simulation efforts if there are several input models (i.e., high-dimensional parameter vector).

There are recent studies that aim to tackle the aforementioned computational challenge. Barton et al.
(2018) apply a shrinkage scheme to the direct bootstrap approach so that the conditional mean estimates
are first adjusted for its Monte Carlo error to mitigate the inflation in the CI even for smaller R. Glynn
and Lam (2018) apply a sectioning method to the real-world data sample and construct the CI using a
pivotal statistic. Lam and Qian (2018) investigate a subsampling scheme in conjunction with bootstrap.
These studies achieve efficiency gain by cleverly extracting information from the conditional performance
measures of the replications, but pay little attention to the sample paths of inputs generated within each outer
replication. In contrast, Lin et al. (2015) use within-replication sample paths to compute control variates
and estimate the gradients for the delta method without any additional simulation runs. Our proposed
research is inspired by this last approach in that we extract more information from the within-replication
sample paths, where the efficiency gain is achieved by applying green simulation at the sample-path level.

Green simulation was introduced by Feng and Staum (2015) and further expanded in Feng and Staum
(2017) as a new experiment design paradigm that reuses simulation outputs from past experiments to
improve the efficiency of future experiments. One implementation of green simulation employs the so-
called likelihood ratio (LR) method, also known as the score function method. The LR method has been
applied in metamodeling, sensitivity analysis, and optimization; see, for example, Beckman and McKay
(1987), L’Ecuyer (1990), L’Ecuyer (1993), Rubinstein and Shapiro (1993), Kleijnen and Rubinstein (1996),
Glasserman and Xu (2014), Dong et al. (2018) and Eckman and Feng (2018). The LR method is
mathematically identical to the well-known importance sampling method but they have different purposes:
the LR method aims to reuse simulation outputs while the importance sampling method aims to reduce
estimation variance. Extensions of importance sampling, i.e., multiple importance sampling (Hesterberg
1988; Veach 1997), defensive importance sampling (Owen and Zhou 2000), and adaptive importance
sampling (Cornuet et al. 2012; Martino et al. 2015), are particularly relevant to the LR method and its
application in green simulation.

Zhou and Liu (2018) also apply green simulation for IUQ, however, their approach differs from ours
in two ways; 1) we consider the case with fixed data set, whereas they concern streaming data; 2) we
apply green simulation at the sample-path level, whereas, they apply at the replication level by defining the
likelihood ratios from the posterior distribution of input parameters. Specifically, via the likelihood ratio
method at the sample path level, we reuse the same set of R inner simulation sample paths to estimate
all B outer conditional performance measures and to construct an asymptotically valid CI for the true
performance measure. The main merit of this approach is computational efficiency: only R simulation runs
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are required, rather than BR runs in the direct bootstrap method, to estimate the conditional means at all
B bootstrapped input models. This approach also has its limitations: It is only applicable to simulations
whose input models affect only the distributions of random variates in the simulation model. It requires
the user to be not only able to sample from the random variates but also able to calculate their likelihoods.
Lastly, in reusing the inner sample paths it requires additional likelihood ratio calculations, which could be
itself a substantial computational burden. In this study, we consider two green LR estimators to illustrate
the main ideas, implementations, and potentials of green simulation for solving IUQ problems.

The remainder of the paper is organized as follows. Section 2 illustrates the nested simulation structure
of input uncertainty quantification of a stochastic simulation model and highlight computational challenges.
Section 3 defines the probability space of the sample paths generated within replications, which enables us to
mathematically analyze two green simulation estimators of the conditional output mean given bootstrapped
input distributions proposed in Section 4. Based on these estimators, we present an IUQ procedure that
requires only R replications and show it provides an asymptotically correct CI for the output mean under
the true real-world distributions. Section 5 compares empirical performance of the proposed method with
a bootstrap percentile CI method and demonstrates its efficiency gain. Due to the space limit, we state our
theoretical results without proofs, which will be presented in follow-up work.

2 INPUT UNCERTAINTY QUANTIFICATION VIA NESTED BOOTSTRAP SIMULATIONS

Consider a simulation experiment that is driven by L independent parametric input distributions h1,h2, . . . ,hL
whose families are known, but the correct parameters θθθ

c := {θθθ c
1,θθθ

c
2, . . . ,θθθ

c
L} are unknown. We consider

situations where the unknown input parameters θθθ
c can be estimated by θ̂θθ = θ̂θθ(X) based on the observations,

denoted by X = {X1,X2, . . . ,XL}, of some real-world processes. Let m` := |X`| be the sample size of the
`-th real-world process. For notational convenience, the parameter space, i.e., the set of all possible values
of θ̂θθ , is denoted by ΘΘΘ⊆Rp for some p≥ L. As a generic example, θ̂θθ = (θ̂1, θ̂2)> 0 may be the maximum
likelihood estimates of the interarrival rate and the service rate based on the observed interarrival times X1
and serviced times X2 in a real-world system. Also, h1(·; θ̂1) and h2(·; θ̂2) are the density functions for the
interarrival time and service time distribution in a simulation model of the system.

Given an input parameter θθθ ∈ ΘΘΘ, the i-th replication of the stochastic simulation model generates
a sample path Zi = (Zi,`1 , . . . ,Zi,`Ni

) where Zi,` j ∼ h` j(·,θθθ ` j) and h` j is the distribution of the jth input
generated within the sample path. Then the simulation model calculates a performance measure, or the
simulation output, Yi = g(Zi) for some deterministic function g. For instance, Zi may be the simulated
interarrival and service times of a queueing system and g(Zi) is the average time-in-system. Note that the
total number of realized inputs, Ni, is also random.

The simulation outputs obtained from R independent and identically distributed (i.i.d.) replications can
be represented as

Yi(Zi;θθθ) = µ(θθθ)+ εi(Zi;θθθ), ∀i = 1, . . . ,R,

where ε(Zi;θθθ) represents the simulation error such that E[ε(Zi;θθθ)|θθθ ] = 0 and Var[ε(Zi;θθθ)|θθθ ]< ∞ for all
θθθ ∈ΘΘΘ, and µ(θθθ)=E[g(Z)|θθθ ] = ∫Z g(z)dνθθθ (z) is conditional expected performance given input parameter θθθ .
Note that Z and νθθθ are the sample space and the probability measure for the sample paths, respectively.
The standard Monte Carlo (SMC) estimator for µ(θθθ) is given by

µ̂
SMC
R (θθθ) =

1
R

R

∑
i=1

Yi(Zi;θθθ) =
1
R

R

∑
i=1

[µ(θθθ)+ εi(Zi;θθθ)] . (1)

When θ̂θθ is used to run simulations, the variance of (1) can be decomposed into two parts:

Var
[
µ̂

SMC
R (θ̂θθ)

]
= Var

θ̂θθ

[
µ(θ̂θθ)

]
+

1
R

E
θ̂θθ

[
VarZ

[
ε(Zi; θ̂θθ)|θ̂θθ

]]
.
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Input uncertainty in Y is characterized by Var
θ̂θθ
[µ(θ̂θθ)], the uncertainty in simulation output due to estimation

error in θ̂θθ , whereas Monte Carlo error is characterized by E
θ̂θθ
[VarZ[ε(Z; θ̂θθ)|θ̂θθ ]]. To construct a CI for µ(θθθ c),

both uncertainties must be accounted for. Quantifying input uncertainty requires the sampling distribution
of θ̂θθ , which is generally unobtainable from a single set of observations X. Instead, one common approach
is to bootstrap X (nonparametric bootstrap) or sample from the estimated distribution parameterized with
θ̂θθ (parametric bootstrap) and re-estimate θθθ

c.

Algorithm 1: Parametric Bootstrap Percentile CI
Input: Real-world observations X = {X1,X2, . . . ,XL}. Two-sided confidence level, α . Number

of bootstrap samples, B. Number of simulated sample paths per bootstrapped
distribution, R. Parametric input distribution families h1,h2, . . . ,hL.

Output: Two-sided CI for µ(θθθ c)

1 Initialization: Estimate input parameters θ̂θθ = {θ̂1, θ̂2, . . . , θ̂L} from real-world observations X;
2 for b = 1,2, . . . ,B do
3 Generate synthetic size-m` observations X?

` from h`(·; θ̂`) for all `= 1, . . . ,L then estimate
bootstraped input parameters θθθ

?
b from X? in the same way as in the Initialization;

4 for r = 1,2, . . . ,R do
5 Based on bootstrapped input parameters θθθ

?
b = {θ ?

b1, . . . ,θ
?
bL}, obtain the r-th simulated

performance measure Ybr = g(Zbr);

6 Compute the b-th performance-measure estimate by µ̂SMC
R (θθθ ?

b);

7 Output (q̂α/2, q̂1−α/2) as the 1−α CI for µ(θθθ c), where q̂α/2 and q̂1−α/2 are the α/2 and 1−α/2

sample quantiles of µ̂SMC
R (θθθ ?

1), µ̂
SMC
R (θθθ ?

2), . . . , µ̂
SMC
R (θθθ ?

B) ;

Algorithm 1 is a benchmark procedure to be compared with our proposals; it is a parametric version of
the bootstrap percentile CI approach in Barton et al. (2018). Algorithm 1 has a nested simulation structure:
each of the B outer loop (Lines 2 to 6) simulates one bootstrapped input parameter θθθ

?
b, which requires

R inner loops (Lines 4 to 5) to simulate performance measures Ybr’s. In each outer loop, we essentially
approximate real-world distributions h`(·;θ c

` )’s with h`(·; θ̂`)’s and the sampling distribution of θ̂θθ with
that of θθθ

?
b. Because the Monte Carlo error of µ̂SMC

R (θθθ ?
b) is convoluted with input uncertainty so the CI

produced by Algorithm 1 tends to show overcoverage. Therefore, large R is required to obtain a tight CI
in Algorithm 1 (Barton and Schruben 2001).

Due to the nested simulation structure, Algorithm 1 requires a total BR inner simulation runs. We
propose two green simulation estimators in Section 4 which produces asymptotically CIs for µ(θθθ c) with
much smaller computational cost, i.e., only R simulation runs are required. Both our proposals and that
of Zhou and Liu (2018) use green simulation estimators to reuse simulation outputs via likelihood ratios, but
at different granularity. Zhou and Liu (2018) reuse simulation outputs at the outer level, µ̂SMC

R (θθθ ?
b)’s, by

weighting them with likelihood ratios constructed from the posterior distribution of θ̂θθ . We reuse simulation
outputs at the inner level, Y = g(Z), by weighting them with a sample-path likelihood ratio.

3 LIKELIHOOD RATIOS FOR SAMPLE PATHS OF DISCRETE EVENT SIMULATIONS

For some simulation models, each replication requires the same number of inputs from each of L input
distributions. In this case, the sample path likelihood function is simply a product of individual inputs’
probability functions. In many stochastic simulation models, however, the length of sample paths and the
order of inputs generated within the sample paths in different replications vary. To illustrate this point,
Figure 1 depicts a tree representation of some possible sample paths for the discrete event simulation of
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an M/M/1/1 queue that starts from an empty system and terminates after two departures. Between the
root node (�) and the leaf node (3), each node represents either the simulated interarrival or service time
(denoted by Ai and Si, respectively). Because the simulation starts from an empty system, the first arrival
triggers an immediate service and the scheduling of the next arrival. Consequently, A1,S1, and A2, are
generated in sequence for all sample paths. From then on, the sequence of inputs may differ depending
on the realized values of the preceding inputs. For instance, if the first service ends before the second
arrival, i.e., A2 ≥ S1, then the second service time, S2, is generated after A2. Otherwise, the second arrival
is rejected from joining the system as the first customer has not yet left the system and the next interarrival
time, A3, is generated. In this example, the sample space of sample paths generated within a replication is
not a typical subset of Rn because the sample paths have different lengths.

It turns out that even if Z 6⊂ Rn as in the above example, the sample path likelihood function is still
equivalent to the product of individual inputs’ probability distribution functions that are realized within the
sample path. However, defining the likelihood function rigorously requires more work. In the following,
we present a measure theoretic framework that help defining the sample path likelihood ratios.

A1 S1 A2

A3

A4

S2

S2

A2
≥ S1

A2
+A3

≥ S1

A
2 < S1

A
2 +A

3 < S1

Figure 1: Tree representation of sample paths for a M/M/1/1 discrete event simulation model. Each
sample path starts from the root node (�) to a leaf node (3).

Let (Ω,F ,P) be the underlying probability space of the inputs of a discrete event simulation model.
Given any input parameter θθθ , simulation inputs are generated from h`(·;θ`), `= 1, . . . ,L according to the
simulation logic until a termination condition is met. We denote the sample space of the sample path Z and
its σ -algebra by Z and G , respectively, and define mapping ζθθθ : (Ω,F ) 7→ (Z ,G ) so that Z = ζθθθ (ω) is
completely determined by ω . We will show that ζ

−1
θθθ

is well-defined and νθθθ := P◦ζ
−1
θθθ

is a valid probability
measure on (Z ,G ).
Assumption 1 For all θθθ ∈ΘΘΘ, the L input distributions have the same support.

Assumption 1 ensures that the sample space Z is common for any input distributions parameterized
by θθθ ∈ ΘΘΘ. It is a sufficient condition to ensure the absolute continuity between some measures so that
likelihood ratio functions of interest are well-defined.

Let π(n) be the number of depth-n paths in the tree representation depicted in Figure 1; by depth we
the number of notes in a path, excluding the root (�) and leaf (3) nodes. Clearly, π(n)≤ Ln, where the
equality holds if every node in the tree has L child nodes, but typically the strict inequality holds. For
instance, π(4) = 1 in Figure 1 because there is only one path, i.e., A1→ S1→ A2→ S2, that ends after
generating four inputs. If π(n)> 1, then each of π(n) paths has a distinct sequence of inputs. Let Zn, j be
the event that exactly n inputs are generated in the j-th sequence for j = 1,2, . . . ,π(n). Then, Zn, j,∀(n, j),
are mutually exclusive and the sample space can be partitioned as Z = ∪n∈N∪π(n)

j=1 Zn, j. Lastly, let ηθθθ ,n, j
be the mapping from Ω to Rn that generates i.i.d. random variables from the same sequence of input
distributions as Zn, j.
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The following lemma states that for each subset E of Zn, j, the preimage of E under mappings ζθθθ and
ηθθθ ,n, j are the same. Since ηθθθ ,n, j is a well-defined measure, this implies that ζ

−1
θθθ

(E) is measurable by P.

Lemma 1 For E ∈Zn, j, ζ
−1
θθθ

(E) = η
−1
θθθ ,n, j(E).

From Lemma 1, Theorem 1 establishes that νθθθ is a probability measure on (Z ,G ) by showing that the
preimage of any A ∈ G under ζθθθ is measurable by P.
Theorem 1 For each θθθ ∈ Θ, ζθθθ is a measurable mapping and νθθθ := P◦ζ

−1
θθθ

is a probability measure on
(Z ,G ).

We proceed to defining a likelihood ratio between νθθθ 1 and νθθθ 2 for θθθ 1,θθθ 2 ∈ Θ on Z . Let fθθθ (·) be
the product of probability density functions of random variables generated within a sample path, i.e.,
fθθθ (Z) = Π

|Z|
j=1h` j(Z j;θ` j). If Z ⊂ Rn, the likelihood ratio is simply defined as fθθθ 1(Z)/ fθθθ 2(Z). However,

since Z is not a subset of Rn, we define the likelihood ratio in a more general way as the Radon-
Nikodym derivative of νθθθ 1 with respect to νθθθ 2 on Z . Theorem 2 shows that fθθθ 1(Z)/ fθθθ 2(Z) is indeed the
Randon-Nikondym derivative of νθθθ 1 with respect to νθθθ 2 on Z .
Theorem 2 Given θθθ 1,θθθ 2 ∈Θ, fθθθ 1/ fθθθ 2 is the Radon-Nikodym derivative of νθθθ 1 with respect to νθθθ 2 .

Theorem 2 is proved by showing that
∫

A
fθθθ1 (z)
fθθθ2 (z)

dνθθθ 2(z) = νθθθ 1(A) for any A ∈ G .

4 GREEN SIMULATION FOR INPUT UNCERTAINTY QUANTIFICATION

Green simulation is introduced by Feng and Staum (2015) and further expanded in Feng and Staum (2017)
as a new experiment design paradigm that reuses existing simulation outputs to improve efficiency of future
experiments. Specifically, green simulation estimators based on the likelihood ratio method were shown to
be an effective way to recycle and reuse simulation outputs. In the context of input uncertainty quantification,
we use green simulation estimators to reuse the same R replications to estimate the conditional expected
system performances for all bootstrapped input parameters.

Under Assumption 1, and Theorem 2, the conditional expected performance given input parameter θθθ

can be written as

µ(θθθ) = E[g(Z)|θθθ ] =
∫

Z
g(z)dνθθθ (z) =

∫
Z

g(z)
fθθθ (z)
fθθθ s(z)

dνθθθ s(z) = E
[

g(Zs)
fθθθ (Zs)

fθθθ s(Zs)

∣∣∣∣θθθ ,θθθ s

]
,

for any θθθ s ∈ ΘΘΘ; θθθ s is the parameter of the distribution from which the inputs are generated. In short, we
refer to θθθ s as the sampling input parameter. Then, for a target input parameter θθθ ∈ΘΘΘ for which we want
to estimate µ(θθθ), the following individual likelihood ratio (ILR) green simulation estimator is an unbiased
estimator of µ(θθθ):

µ̂
ILR
R (θθθ) =

1
R

R

∑
s=1

g(Zs)
fθθθ (Zs)

fθθθ s(Zs)
, where Zs ∼ h(·;θθθ s),∀s = 1, . . . ,R. (2)

Note that the sampling parameters θθθ 1,θθθ 2, . . . ,θθθ R may or may not be the same. The input parameter
estimated from the real-world process θ̂θθ is a natural choice as the sampling input parameter, e.g., θθθ s = θ̂θθ ;
we consider this case in our numerical experiments. Since the likelihood function fθθθ (·) is a product of
probability distribution functions, the resulting likelihood ratios and the ILR estimator can have a large
variance. To improve numerical stability, the sum of exponents are calculated first in our implementation.
In our numerical experiments, the ILR estimator produces wide confidence intervals. This effect may
worsen when each individual replication is longer (more inputs per sample path). We assume that each
replication generates finite number of inputs until termination, which is a practically reasonable assumption.
Another remedy for this issue is to select a subset of realized inputs in the sample path for likelihood ratio
calculation, which reduces the variance of the resulting green simulation estimator, but introduces bias.
We defer this investigation to the future work.
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When θθθ s’s are distinct, a provably more efficient estimator studied in the literature is the following
mixture likelihood ratio (MLR) estimator:

µ̂
MLR
R (θθθ) =

1
R

R

∑
s=1

g(Zs)
fθθθ (Zs)

f̄R(Zs)
, where f̄R(z) =

1
R

R

∑
s=1

fθθθ s(z). (3)

The MLR estimator views the collection of sample paths {Z1, . . . ,ZR} as a stratified sample from the mixture
distribution f̄R, even though they are indeed generated from fθθθ s for s = 1, . . . ,R. The MLR estimator is
studied in Hesterberg (1988), Veach and Guibas (1995), Feng and Staum (2015), Feng and Staum (2017)
and has been shown to have smaller variance compared to the ILR estimator; our numerical experiments
have similar findings.

We use the same notation R as the number of independent sample paths in (1), (2), and (3) only for ease
comparing their performances with the same number of simulation runs. However, we reiterate that the
green simulation estimators (2) and (3) use the same R sample paths to estimate conditional performance
measures for all B parameters while the SMC estimator requires BR sample paths to achieve the same task.

Algorithm 2 constructs a CI for µ(θθθ c) from green simulation estimators. Note µ̂GS
R (·) refers to either

µ̂MLR
R (·) or µ̂ILR

R (·). Algorithm 2 has three main loops: bootstrapping input parameters θθθ
?
b in Lines 2-3,

running the simulator in Lines 4-6, and estimating the conditional expected performances µ(θθθ ?
b)’s in

Lines 7-8. These steps are performed in sequence rather than in a nested loop, which is the main reason for
the efficiency gain achieved by Algorithm 2 over Algorithm 1. In general, the sampling parameter θθθ s may
be θ̂θθ or one of the bootstrapped parameters θθθ

∗
b. However, it is desirable to select θθθ s so that the resulting

green simulation estimators have good performance, e.g., have finite variance, for any θθθ
∗
b. When the input

distributions are members of the exponential family, we identify a sufficient condition in Proposition 1. In
cases where the simulation runs take much longer than likelihood ratio calculations, Algorithm 2 can be B
times faster than Algorithm 1.

Algorithm 2: Outline of Green Simulation Percentile CI
Input: Real-world observations X = {X1,X2, . . . ,XL}. Two-sided confidence level, α . Number

of bootstrap samples, B. Number of simulated sample paths, R. Parametric input
distribution families h1,h2, . . . ,hL.

Output: Two-sided CI for µ(θθθ c)

1 Initialization: Estimate input parameters θ̂θθ = {θ̂1, θ̂2, . . . , θ̂L} from real-world observations X;
2 for b = 1,2, . . . ,B do
3 Generate synthetic size-m` observations X?

` from h`(·; θ̂`) for all `= 1, . . . ,L then estimate
bootstraped input parameters θθθ

?
b from X? in the same way as in the Initialization;

4 for s = 1,2, . . . ,R do
5 Select sampling input parameter θθθ s based on some criteria;
6 Based on θθθ s, simulate sample path Zs and calculate g(Zs), then store both quantities;

7 for b = 1,2, . . . ,B do
8 Compute the b-th performance-measure estimate µ̂GS

R (θθθ ?
b), where GS may be ILR or MLR;

9 Output (q̂α/2, q̂1−α/2) as the (1−α)-CI for µ(θθθ c), where q̂α/2 and q̂1−α/2 are the α/2 and

1−α/2 sample quantiles of µ̂GS
R (θθθ ?

1), µ̂
GS
R (θθθ ?

2), . . . , µ̂
GS
R (θθθ ?

B);

In the following analysis, we show that the CI produced by Algorithm 2 are asymptotically valid for both
ILR and MLR. Moreover, we will articulate a criterion in Line 5 of Algorithm 2 for choosing θθθ s. Notice that
Algorithm 2 is conditional on real-world observations X, so is most of the analysis in this section. However,
for notational simplicity, we drop “|X” from the mathematical expressions unless specified otherwise.
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The key to establishing the asymptotic validity of the percentile CIs produced in Algorithm 2 is to
analyze the conditional biases and variances for the ILR and MLR estimators. For notational convenience,
we define the target-θθθ ?

b-sample-θθθ s variance as

σ
2(θθθ ?

b,θθθ s) = Var
[

g(Zs)
fθθθ

?
b
(ZS)

fθθθ s(Zs)

∣∣∣∣θθθ ?
b,θθθ s

]
.

When the target and sampling input parameters coincide, i.e., θθθ
?
b = θθθ s = θθθ ∈ ΘΘΘ, σ2

θθθ
:= σ2(θθθ ,θθθ) is the

Monte Carlo variance VarZ[ε(Z;θθθ)|θθθ ]. In the simulation literature, it is standard to assume that the Monte
Carlo variance is finite for any θθθ ∈ΘΘΘ. A stronger assumption, i.e., Assumption 2 is standard in analyzing
likelihood-ratio-based green simulation estimators such as ILR and MLR.
Assumption 2 For any sampling and target input parameters θθθ

?
b,θθθ s ∈ΘΘΘ, the target-θθθ ?

b-sample-θθθ s variance
is finite, i.e., σ2(θθθ ?

b,θθθ s)< ∞ for any θθθ
?
b,θθθ s ∈ΘΘΘ.

Conditioning on the sampling input parameters θθθ 1, . . . ,θθθ R, the sample paths Zs’s in the ILR estimator
are independent. Therefore Var

[
µ̂ILR

R (θθθ ?
b)|θθθ ?

b,θθθ 1, . . . ,θθθ R

]
= 1

R2 ∑
R
s=1 σ2(θθθ ?

b,θθθ s), so Assumption 2 ensures
that the ILR estimator has a finite conditional variance. While Assumption 2 is difficult to verify in general,
we present some mild sufficient conditions when fθθθ belongs to the exponential family below.

The probability density or mass function of an exponential family distribution in its natural form can
be written as fθθθ (z) = c(z)exp(θθθ ·T (z)−A(θθθ)) , where θθθ = (θ1, . . . ,θp) are the natural parameters and
c(z), T (z), and A(θθθ) are known functions. The natural parameter space, denoted by Ξ, is the set of natural
parameters such that f (z|θθθ) is a well-defined probability density or mass function on the support Z , i.e.,
Ξ := {θθθ ∈ Rp|∫Z fθθθ (z)dz < ∞}.
Proposition 1 Consider a simulation model g(z) whose input distribution is given by fθθθ (z) and has finite
Monte Carlo variance for any input parameter θθθ ∈ Ξ. Suppose fθθθ (z) is a member of the exponential family
where θθθ is its natural parameter. If the input parameter space ΘΘΘ satisfies 2θθθ

?
b−θθθ s ∈ Ξ for any θθθ

?
b,θθθ s ∈ΘΘΘ,

then σ2(θθθ ?
b,θθθ s)< ∞ for any θθθ

?
b,θθθ s ∈ΘΘΘ.

With Proposition 1, we can verify Assumption 2 by examining the input distribution and the geometry of
the input parameter space. For example, consider the pdf of an exponential distribution, fθ (z) = θ exp(−θz),
and a simulation model g such that Var[g(Z)|θ ]< ∞ for any θ ∈ Ξ :=R+. Then Proposition 1 implies that
Assumption 2 holds for any parameter space Θ := [θmin,θmax] such that 2θmin > θmax.

For completeness we state two known results for ILR and MLR, on which our analysis is based.
Lemma 2 dictates that both ILR and MLR are conditionally unbiased estimators. Lemma 3 states that the
conditional variance of the MLR estimator, given the sampling and target input parameters, is not greater
than that of the ILR estimator. Such inequality provides a shortcut for analyzing the convergence property
of the variance of MLR estimator, which is bounded by that of the ILR estimator.
Lemma 2 [Paraphrase of Lemma 9.1 in Veach (1997) and Proposition 2.4 in Feng and Staum (2017)]
Given the set of sampling input parameters θθθ s ∈ΘΘΘ, s = 1, . . . ,R and any bootstrapped parameter θθθ

?
b ∈ΘΘΘ.

If Assumption 1 holds, then both the MLR estimator is unbiased, i.e.,

E
[
µ̂

ILR
R (θθθ ?

b)|θθθ ?
b,θθθ 1, . . . ,θθθ R

]
= E

[
µ̂

MLR
R (θθθ ?

b)|θθθ ?
b,θθθ 1, . . . ,θθθ R

]
= µ(θθθ ?

b)

Lemma 3 [Paraphrase of Theorem A.2 in Martino et al. (2015) and Proposition 2.5 in Feng and Staum
(2017)] Given the set of sampling input parameters θθθ s ∈ ΘΘΘ, s = 1, . . . ,R and any bootstrapped parameter
θθθ
?
b ∈ΘΘΘ. If Assumptions 1 and 2 hold, then the following inequality holds,

Var
[
µ̂

MLR
R (θθθ ?

b)|θθθ ?
b,θθθ 1, . . . ,θθθ R

]
≤ Var

[
µ̂

ILR
R (θθθ ?

b)|θθθ ?
b,θθθ 1, . . . ,θθθ R

]
.

In Algorithm 2, even for a given set of real-world observations X the sampling input parameters θθθ s’s
may be random as they may depend on the randomly bootstrapped input parameters θθθ

?
b’s and may be
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randomly selected from some input parameter space. We will analyze the expected value and variance of
the ILR and MLR estimators subject to such randomness. For notational convenience, denote the random
selection of R input parameters by θ̃θθ R = {θθθ 1, . . . ,θθθ R}. Proposition 2 shows that both the ILR and MLR
estimators are conditionally unbiased given any bootstrapped input parameter θθθ

?
b and their conditional

variances given θθθ
?
b converges to zero at O(R−1).

Proposition 2 Consider a given simulation model g, input distributions h1, . . . ,hL, and an input parameter
space ΘΘΘ that satisfy Assumptions 1 and 2. Then, for any target input parameter θθθ

?
b ∈ΘΘΘ,

E
[
µ̂

ILR
R (θθθ ?

b)|θθθ ?
b

]
= E

[
µ̂

MLR
R (θθθ ?

b)|θθθ ?
b

]
= µ(θθθ ?

b).

Furthermore, if there exists M ∈ R such that sup{σ2(θθθ ?
b,θθθ s)|θθθ ?

b,θθθ s ∈ΘΘΘ}= M < ∞, then

Var
[
µ̂

ILR
R (θθθ ?

b)|θθθ ?
b

]
= O(R−1) and Var

[
µ̂

MLR
R (θθθ ?

b)|θθθ ?
b

]
= O(R−1).

The analysis presented so far is conditional on real-world observations X = {X1,X2, . . . ,XL}. Propo-
sition 3 shows that the marginal distribution of the green simulation estimators converge to a limiting
distribution as the size of X increases. Recall that m` := |X`| may be different for each `. We define
m = ∑` m` and assume m`/m converges to a nonzero constant as m→ ∞ for each `.
Proposition 3 Consider Algorithm 2 with real-world observation X with size m. If R grows faster than
m asymptotically, i.e., R = ω(m), then

√
m(µ̂GS

R (θθθ ?
b)−µ(θ̂θθ))

∣∣∣X D→√m(µ(θ̂θθ)− µ(θθθ c)), as m→ ∞, in
probability over the sample space of X, where GS may be ILR or MLR.

Proposition 3 states the convergence of the marginal distribution of µ̂GS
R (θθθ ?

b). If the conditional
performance estimators µ̂GS

R (θθθ ?
b),b = 1,2, . . . ,B were independent, this would be sufficient to justify that

the CIs constructed in Algorithm 2 are asymptotically valid for µ(θθθ c). But µ̂GS
R (θθθ ?

b)’s are dependent
because they reuse the same set of R sample paths. With additional assumptions, such dependence does not
affect the consistency of the resulting CIs based on empirical quantile estimators as stated in the following
theorem.
Theorem 3 Given real-wold observations X with sizes m` and m = ∑` m` as well as a prescribed confidence
level 0 < α < 1. If

√
m(µ(θ̂θθ)− µ(θθθ c))

D→ N(0,τ2) for some τ < ∞, then the empirical α-quantile
of {µ̂GS

R (θθθ ?
b),b = 1,2, . . . ,B} converges, in probability, to the α-quantile of {µ(θθθ ?

b),b = 1,2, . . . ,B} as
B→ ∞, m→ ∞, and R = ω(m).

5 NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the proposed green simulation procedures, we compare the empirical
coverage probabilities and the average widths of the CIs produced by different procedures as well as their
runtime. In particular, we simulate M/M/1/10 systems whose interarrival and service time distributions
have rates 0.9 and 1, respectively. We assume that these distributions are unknown can be estimated from
m = 50 observations. The simulation is initialized with an empty system and the performance measure
of interest is the steady-state expected time in system (TIS). For each simulation replication, the initial
50 observations are deleted for warm up. The SMC estimator for µ(θθθ ?) will average the 150 TISs after
warm-up. For both ILR and MLR estimators, the simulation output in each replication is also the average
of 150 TISs after warm-up, but all simulated interarrival and service times, including those in the warm-up,
are used in the likelihood ratio calculations. Since the interarrival and service times in the M/M/1/10 system
are exponentially distributed and are members of the exponential family, the sampling input parameters
are selected such that conditions in Proposition 1 are satisfied. Specifically,

• ILR estimator is used when one sampling parameter is used; the sampling parameter is θ =

min{θ̂ ,2×min{θ ?
1 , . . . ,θ

?
B}}, where θ may be the rate of the interarrival or service time distributions.
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• MLR estimator is used when multiple sampling input parameters used; the R parameters are
randomly sampled with replacement from a subset of the bootstrapped input parameters. The
subset in question is {θ ∈ {θ ?

1 , . . . ,θ
?
B}|θ < 2×min{θ ?

1 , . . . ,θ
?
B}}, where θ may be the rate of the

interarrival or service time distributions.

We consider fixed simulation budget experiments where the total number of simulation replications
is at most C = 1,000. For the number of bootstrapped input parameters, i.e., number of outer loops, we
tested two cases B = 100 and 1,000. The following procedures are considered in our experiments:

• Algorithm 1 without inner simulations, which is labeled “Oracle” in Table 1. For the M/M/1/k
queueing simulation model, there exists an analytical oracle to calculate the TIS given the rates of
the interarrival and service time distributions.

• Algorithm 1 with inner simulation, which is labeled “SMC” in Table 1. In this case the simulation
budget is C = BR so we tested two cases: R = 10 and R = 1.

• Algorithm 2 using ILR or MLR, , which are labeled “ILR” and “MLR”, respectively, in Table 1.
In these cases, the simulation budget C = R and we tested two cases R = 1,000 and R = 100. Note
that the experiments with R = 100 use only 10% of the given simulation budget.

All experiments are repeated 10,000 times and the target coverage was set to 1−α = 0.9.
The first two columns of Table 1 show the empirical coverage probabilities and the average widths

for CIs produced by different estimators. When the number of outer loop is insufficient, i.e., R = 100, the
oracle method’s CI shows under-coverage, which is due to the errors associated with quantile estimations.
Comparing the second rows to the first rows in both panels of Table 1 we see that the CIs produced by
the SMC method are wide and has over-coverage. This is consistent with the common knowledge in the
literature. Comparing the third rows to the second rows in both panels of Table 1 we see that, with the same
simulation budget, the CIs produced by the MLR estimator has both narrower widths and better empirical
coverage probabilities, i.e., closer to the empirical coverage probabilities of the CIs produced by the oracle
method, than those of the SMC procedure. Moreover, adding the fourth rows in both panels of Table 1 to
the above comparison we see that, with only 10% of the simulation budget, the MLR CIs still have better
empirical coverage probabilities than the SMC CIs; the MLR CIs’ widths are still narrower than the SMC
CIs’ widths when B = 1,000 and are only slightly wider than the latter when B = 100. The last two rows in
both panels of Table 1 show that the ILR CIs show under-coverage and are wide; reducing the simulation
runs aggravates under-coverage and widens the CIs. This last observation show some deficiencies of the
ILR, which indicates a potential venue for future research.

The three columns on the right of Table 1 show a breakdown of runtime for different procedures: The
“Simulation” column is the time for running the simulation replications. The 90% reduction of simulation
budget for some ILR and MLR experiments is reflected in this column. The “Likelihood Ratios” column
shows the time it takes to perform all the required likelihood ratio calculations. This column shows that
the likelihood ratio calculations can be significant or even takes longer than the simulation runs. The
computational burden for the MLR estimator is more prominent, especially when the number of simulation
runs, R, is large. Reducing the computational burden of the MLR estimator is another potential venue for
future research. Note that, when MLR uses only 10% of the simulation budget, i.e., R = 100, it takes only a
fraction of the total runtime required for the SMC estimator. Specifically, in the top panel when B = 1,000,
the MLR estimator produces CIs that are narrower and have better coverage probabilities compared to the
SMC procedure, and reduce the total runtime by over 50% compared to the latter. In the bottom panel
when B = 100, the CIs produced by the MLR estimator still have better coverage probabilities and are only
slightly wider than those by the SMC procedure, and the total runtime is reduced by almost 75%.

In summary, taking into account for empirical coverage probabilities, CI widths, and the total runtime,
we recommend using the MLR estimator in Algorithm 2 with reduced number of simulation runs for input
uncertainty quantification.

3702



Feng and Song

Table 1: Empirical coverage probabilities, widths of confidence intervals, and breakdowns of runtime
produced by different procedures. All results are calculated based on numerical experiments with 10,000
macro replications. Numbers in brackets are the respective standard errors.

Runtime per macro replication (secs)

Coverage Width Simulation LR Calculation Total

No. of bootstraps = 1,000
Oracle 89.97% (0.30%) 6.04 (0.015) N/A N/A 2.66E-03
SMC (R = 1) 97.53% (0.16%) 8.38 (0.020) 1.58 N/A 1.58
MLR (R = 1,000) 89.85% (0.30%) 6.05 (0.017) 1.56 36.34 37.90
MLR (R = 100) 90.26% (0.30%) 6.72 (0.025) 0.16 0.57 0.73
ILR (R = 1,000) 87.94% (0.33%) 7.69 (0.129) 1.60 1.89 3.49
ILR (R = 100) 83.89% (0.37%) 10.71 (0.184) 0.16 0.23 0.39

No. of bootstraps = 100
Oracle 89.25% (0.31%) 5.97 (0.016) N/A N/A 4.22E-04
SMC (R = 10) 90.70% (0.29%) 6.24 (0.017) 1.58 N/A 1.58
MLR (R = 1,000) 89.14% (0.31%) 5.98 (0.017) 1.58 5.26 6.84
MLR (R = 100) 89.30% (0.31%) 6.48 (0.024) 0.16 0.08 0.24
ILR (R = 1,000) 86.01% (0.35%) 7.38 (0.078) 1.57 0.18 1.74
ILR (R = 100) 83.47% (0.37%) 10.50 (0.377) 0.16 0.02 0.18
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