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ABSTRACT

We study the staffing and shift scheduling problem in a multi-skill multi-channel contact center, containing
calls, emails and chats. Due to the fact that each channel has its own operating characteristics, the existing
solutions developed for multi-skill call centers are not applicable to our problem. In this paper, we first
build a high fidelity simulation model at a weekly level to evaluate various Quality of Service (QoS)
measurements for a given schedule. Then we propose a simulation-based optimization algorithm to solve
the staffing and shift scheduling problem integrally to minimize the total costs of agents under certain QoS
requirements. In the numerical experiments, we show the effectiveness of the proposed approach with
realistic instances.

1 INTRODUCTION

A contact center as one of the classical service systems, often functions as the first point of contact for
customer inquiries and complaints. Nowadays, the modern contact center not only solves customer issues,
but also plays significant roles in sales and marketing. According to a global strategic business report
(Global Industry Analysts, Inc. 2019), the contact center industry is estimated to have generated $200
billion in revenue worldwide in 2017 and is expected to reach over $400 billion by 2022.

As technology progresses, making telephone calls is not the only way to reach a contact center any
more. Other channels, such as email, ticket, and chat are becoming more and more popular. Young
customers, for example, prefer chatting over calling since it is convenient. Moreover, emails and chats
allow customers to review the dialogue at any time, whereas following instructions during a phone call
can be burdensome and tedious. From the operating management point of view, the diversity of channels
can help smooth workload, offloading non-urgent services from real-time channels (calls and chats) to
non-real-time channels (emails) so that agents can handle them during periods of lower calling load. The
chat channel, on the other hand, allows agents to serve several customers simultaneously with slightly
longer service time each. However, the operational challenges faced by contact center managers are also
more complicated with such a system which has multi-skill agents and customers that arrive from various
channels with heterogeneous rates and waiting behaviors. Note that the skill set of an agent may cross the
channel.

One of the fundamental challenges faced by contact center managers is how to schedule agents to meet
quality of service (QoS) targets at minimum costs. On account of the labor-intensive nature of customer
service, in a contact center, almost 60-80% of the operating budget is comprised of the cost of agents.
Thus it is crucial to deploy the right number of agents with the right skills to the right schedules (shifts) so
as to meet the uncertain, time-varying demands of service. This problem is often called agent scheduling
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problem in operations management research. It has been widely discussed in call centers (i.e., with only calls
considered), first for single-skill circumstances (Atlason et al. 2004; Ingolfsson et al. 2010) then extended to
multi-skill circumstances (Avramidis et al. 2010; Bhulai et al. 2008; Cezik and L’Ecuyer 2008). Although
the use of chats and emails is growing, there are few related existing papers. The works considering emails
mostly focus on the analysis of call blended policies (Legros et al. 2015; Legros et al. 2018). The staffing
decisions and routing policies are addressed for single-skill chat systems, see Cui and Tezcan (2016), Luo
and Zhang (2013), and Tezcan and Zhang (2014). As far as we know, no work has studied the scheduling
problem considering calls, emails and chats simultaneously (i.e., multi-skill multi-channel contact centers).
To fill this gap to some degree, in this paper, we propose a simulation-based optimization approach to solve
the staffing and shift scheduling problem integrally for multi-skill multi-channel contact centers. This work
is initially motivated by a requirement from a French contact center. Due to the complexity of the system
caused by introducing multiple channels, the existing methods developed for call centers are not applicable
any more. Therefore, an easy-to-implement approach is strongly needed to help their workforce managers
to make agent scheduling decisions.

In a contact center, the arrival rate of each service type is assumed to be constant within a time interval
(usually between 15 and 30 minutes). A standard way to solve the agent scheduling problem is considering
each interval independently and solve the staffing problem and the shift scheduling problem separately
in two steps: 1) the optimal staffing to meet certain QoS requirements is calculated for each interval; 2)
given the staffing requirements, the shift scheduling problem is solved to minimize the over-staffing or
under-staffing.

Based on this two-step framework, several efficient solutions are proposed (Atlason et al. 2008;
Bhulai et al. 2008), however, solving the staffing and shift scheduling problems separately could yield
highly sub-optimal solutions in multi-skill systems for a number of reasons. Firstly, in practice, the QoS
requirements are usually set for a sequence of many intervals (e.g., a day or a week), so optimizing staffing
independently for each interval can easily lead to over-staffing (Avramidis et al. 2010). Secondly, unlike
in single-skill systems, the QoS of a service type is not only affected by the number of agents who can
handle this service type but also by the configuration of other multi-skill agents. For each interval, similar
QoS performance can be derived by various configurations of multi-skill agents. Therefore, we should
decide the staffing levels with the best configurations over the planning horizon, taken shift patterns into
consideration. These two problems are amplified when we have non-real-time channels such as emails,
where interval-independent approaches fail because emails are not necessary to be handled within the
interval they arrive. Sometimes they are even allowed to be handled the next day/week. As a result, we
have to consider the staffing and shift scheduling problem integrally in the multi-skill multi-channel case,
although it increases the complexity of the model.

The first difficulty of the agent scheduling problem is the lack of closed-form expressions for QoS
measurements. To cope with this, some papers seek for some approximation methods based on queueing
analysis, for example, Pot et al. (2008) proposed an approximation method to evaluate the service level
of each service type based on the blocking model, and Cui and Tezcan (2016) gave an approximation
based on fluid models to evaluate single-skill chat systems. Simulation is also commonly used (Avramidis
et al. 2010; Cezik and L’Ecuyer 2008; Fukunaga et al. 2002). In this paper, we use simulation to evaluate
various QoS measurements for a given schedule. One of the reasons is that queueing analysis becomes
too complicated when there are more than one channel considered. This is because each channel has its
own operating requirements, asking for a different mathematical model to analyze. The details of how
calls, chats, and emails are handled in a multi-skill multi-channel contact center are explained in Section
2. Simulation then can work with more complicated systems. Moreover, it needs fewer assumptions and
allows us to evaluate various QoS measurements at a time which are very important for practice using. It
also takes account of the transience effects between consecutive intervals, which would introduce errors
if neglected (Ingolfsson et al. 2007). The main drawback of simulation is that it takes long computation
time to derive reliable outcomes. However, in a contact center, agent scheduling decisions are usually
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made every week considering weekly shift patterns since agents often have weekly contract hours (e.g.,
40 hours). Thus it is acceptable for managers to wait several minutes or even several hours for a good
schedule.

Another difficulty is how to solve the staffing and shift scheduling problem integrally. In the existing
papers that consider the integral problem, they first model the problem as an integer mathematical program-
ming (Avramidis et al. 2010; Bodur and Luedtke 2017), and solve it with some approximation methods
(e.g., cut generation, branch-and-cut, etc.). However, these methods highly depend on the structure of
solution space. Introducing emails and chats can easily break it. Instead, we propose a simulation-based
local search approach. Considering that we want to solve the agent scheduling problem at a weekly level,
general local search algorithms such as tabu search and simulated annealing can be too slow. To speed up,
we first derive an initial solution by solving a linear programming model, then apply a heuristic-based local
search algorithm to find a local optimal schedule to reach given QoS requirements. To avoid the solution
getting stuck in a poor local optimum, we add a permutation step in the end.

The contributions of our work contain: 1) building a simulation model to evaluate various QoS
measurements for multi-skill multi-channel contact centers; 2) solving the staffing and shift scheduling
problem integrally at a weekly level by proposing an efficient simulation-based heuristic approach.

2 PROBLEM DESCRIPTION

In this section, we first give a high-level description on how a multi-skill multi-channel contact center
functions. Thereafter, we formulate the integral staffing and scheduling problem mathematically as an
optimization problem.

2.1 Modern Contact Centers

A contact center consists mostly of agents, whose major responsibility is handling customers from different
channels. Within each channel, customers can be further categorized to different service types according
to their requirements, and each service type corresponds to a skill of agents. For example, many contact
centers support different languages (e.g., French, English, etc.), and a customer can choose the channel
and language he/she prefers to use. Multi-skill agents are capable to handle more than one service type,
according to some routing policy. Therefore, compared to single-skill agents, they can be more flexible
and efficient. However, they are often more expensive due to training costs.

Agents are working (and paid) by shifts instead of intervals. A typical shift type over a day is 8 hours
long with a 30-minutes break in between. As we mentioned before, in reality, agents are usually scheduled
at a weekly level based on their contract hours. Different shift types according to the length, start/end time
(day/night shifts), and other variables (include weekend or not) can also have different costs.

Calls: when a call arrives, some routing technology will direct the call to an available agent (if any)
who has the skill to handle this call. However, it is often the case that no agents are available, then the
call will be held in a queue. The waiting time is usually unknown in advance, and the customer may
abandon the queue at any time without receiving service. The length of time a customer is willing to wait
before abandonment is called patience, which is usually no more than a few minutes. Once connected to
an agent, the customer will be served until his/her problem is resolved and the time it takes to do so is
called handling time. While the call is being handled, an interruption by another call with a higher priority
may happen. It diverts the agent to the interrupting call, forcing the previous customer to hold until the
agent has finished handling the interrupting call. However, this situation is not preferred/allowed by most
contact centers since it can lead to long handling times or abandonment. When the call is completed, the
agent becomes available again and will handle the next routed call. The waiting time of a call is the time
spent in the queue until it is connected to an agent, and it plays a major role in the QoS indicators. For
example, one of the most commonly used QoS indicators is the service level (SL), which is defined as
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the proportion of customers who wait less than a given time threshold among all arrived customers over a
time period. The given time threshold is also known as the acceptable waiting time (AWT).

Chats: similar to calls, chats are also real-time service. However, unlike calls, chats allow agents to
handle several customers simultaneously. It is because a customer also needs time to read and type in the
reply, and this time can be used by the agent to respond to other customers (if any). Although the chat
channel can be more efficient, the handling time of ongoing chats can become longer when a new chat
request is accepted. In practice, the maximum number of parallel chats is limited to a number (e.g., 2
or 3) such that the service time distributions will not be negatively affected by the level of concurrency.
Interruptions are also not preferred/allowed in the chat channel for the same reason in the call channel.
The waiting time of a chat is also defined as the time spent in the queue until it got handled.

Emails: in contrast to the other two channels, emails are not necessarily answered in real time since
customers do not abandon. We can consider the patience of an email customer to be very long. Thus the
AWT of emails is much longer than calls and chats. Moreover, emails tend to have lower priorities than
the other channels and are often allowed to be interrupted. When emails are not handled within the day of
arrival, backlogs are generated, which is an important measurement of QoS for emails. The waiting time
of an email differs from the other two channels, also includes the handling time since the customer must
wait until receiving the reply.

2.2 Mathematical Model

In our problem, we consider a contact center where arriving customers are categorized into / types of
service, denoted by i. These customers can be calls, emails or chats that are served by agents with some
given routing policy. Agents are divided into G groups, denoted by g, based on the skill set they possessed.
We let a binary parameter Y, ; = 1 to represent service type i can be handled by agent group g. To distinguish
the costs of agent groups, we introduce c?, which can be interpreted as the payment of an agent of group
g working on the basic weekly shift (i.e., the cheapest shift).

There are K different weekly shifts considered with the corresponding costs: cf. We let the basic
(cheapest) shifts have the cost Ci = 1. Other shifts according to length, start/end time, and other variables
as mentioned earlier, can have higher costs compared to the basic ones, for example, ci = 1.5. Note that
instead of using the real payment of a shift, we give the relative cost of each shift compared to the basic
shifts. Thus by multiplying c‘; and cf , we can derive the payment of an agent of group g working on shift
k. Similar to Y, ;, we introduce a binary parameter X;, to represent the availability of shift & in interval
t; Xx, = 1 means shift k includes interval s, X ; = 0, otherwise. We let T represents the total number of
intervals of the week, denoted by z. For example, if the interval length is 30 minutes, 7 = 336 with 48
intervals daily. As we mentioned earlier, the arrival rate of each service type is considered to be constant
within each interval. Therefore, we can use A;; to represent the estimated arrival rate of service type i in
interval ¢. Note that we do not restrict our model to any particular arrival process, handling time distribution,
or patience distribution, instead we only need to be able to simulate them. In practice, the arrival rates are
normally derived from the forecast results, and redials and reconnects can also be included. Finally, the
schedule can be represented easily by the decision variable ng , which is the number of agents staffed to
group g, and shift k.

The objective of our optimization problem is reaching QoS targets at minimum costs. We choose
service level (SL) as the QoS measurement. It is the most commonly used measurement which is defined as
the proportion of customers who wait less than a given time threshold (AWT) among all arrived customers
over a time period. In practice, managers often pay attention to daily or weekly SLs and set a target to each
service type and sometimes a set of several service types. All of them are considered in our problem. The
QoS target is often called service level agreement (SLA), and it is the minimum SL a service type (or set)
needs to meet. For emails, an additional QoS target related to the backlog is considered. The backlog target
suggests the maximum percentage of received emails that can be transferred to the next day (or week). A
penalty (cost) is generated proportional to the percent of emails carried over. Other QoS measurements
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such as abandonment and occupancy are evaluated using simulation, but they are not considered in the
current optimization model.

Now, we give the mathematical model for the integral staffing and shift scheduling problem. The
objective function is composed of two parts: the penalty cost caused by breaching the QoS targets Cgp,s
and the agent cost Cygepns. It can be written as:

Coverall = CQOS + Cagenta

Cqos = W1Cgy pweek +W2Cg; pday + W3Chacklogs (D
1 S
Cyppveek = Y E(max{SLAY** —SL;,0}) + } E(max{SLA}** —SL,,0}), )
i=1 s=1
I 7 d
Csppsy = Y Y E(max{SLA{™ —SL; 4,0}), (3)
i=1d=1
G
Cagent = Z Z C?Cing,k,
g=1k=1

where wi, wy and w3 are weights to adjust the importance between different targets, s in Equation (2)
represents the index of the set of service types, and d in Equation (3) is the index of the day. In reality,
the SLA of each day is usually the same. Cpackiog can be calculated in a similar way as Cg; ,week, hence we
do not write down all the details for simplicity.

In the end, the optimization problem can be modeled as

min CQOS +Cagent 4
G
st. Ne< Y mex <N{, Vke{l,... K},
g=1
K
Néézngké gv vg€{177G}7
k=1

ngr €N, Vke{l,....,K},ge{l,...,G},

where Né,, Ny (NL, N) correspond to the minimal and maximal number of agents can be scheduled for
group g(shift k) respectively. We can set Ni, = N,ﬂ =0, and Ny = N} = o0 if we do not want to cut out any
optimal schedules. However, in practice, these constraints can be necessary when the number of agents
could be hired (has been hired) is fixed. To avoid infeasible solutions, instead of setting the QoS targets as
hard constraints, we put them into the objective function as penalty costs. Note that the weight of Cagen is
set to 1 as a reference. In order to ensure that the QoS targets are met, the weights in Equation (1) should
be set much higher than the agent costs.

3 SIMULATION SETTING

In this section, we explain how the simulation model is built to evaluate all the QoS measurements needed
in the optimization problem. The simulation model is built in C++, to let the simulation as realistic as
possible, we take many details of the operation of a contact center into consideration. Similar simulation
models that only consider calls have been built in other research. However, this is the first one to deal
with a blend of calls, emails and chats. A number of special points need to be treated differently when
considering email and chat.

The operation of a contact center is modeled via a discrete-event simulation, where the change of
system states is triggered by events, but different states also affect the time at which an event happens.
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The input of the simulation model is the setting of the contact center, and for a given schedule the QoS is
evaluated for each interval, each day and the whole week.

Specifically, three lists are constructed in the simulation model, representing events, working agents,
and queues. All events are stored in the event list sequentially in time. The list is initiated with “arrival”
events of all customers generated according to the given arrival distribution per interval. For each service
type, the arrival process is assumed as Poisson process with rate 4;,, derived from the forecast. The end
of each interval is also considered as a clock event and is inserted in the list. This “end-of-interval” event
will trigger the change of the working agent list according to the given schedule. When an arrival event
happens, the simulation checks whether an agent with the right skill is idle in the current agent list. If
an agent is available, the arrival event (customer) is handled and a “departure” event will be inserted into
the event list after random handling time. Otherwise, the customer will be added to the queue. For the
chat and call customers, an “abandon” event will be inserted after a random amount of patience to the
event list. Consequently, a customer will leave the queue if he/she has not been served by the time the
abandon event occurs. If there are given redial rates or reconnect rates, a new “arrival” event representing a
redial/reconnect will be triggered when an abandon/departure event happens based on the redial/reconnect
probability.

We create two agent lists for each agent group: the main list and a chat list. If an agent group has no
chat skill, the chat list remains empty. When a chat customer occupies an agent, we will remove the agent
from the main list and add to the chat list. Once the agent becomes idle, he/she will be returned back to the
main list. When a departure event happens, the formerly occupied agent becomes idle, and then, according
to a given routing policy, the first customer from the selected queue will be removed from the queue and
occupy the agent. However, if the departure event belongs to a chat customer, we need to check whether
there are any other chats are currently handled by the agent. If so, this agent can only seek for another chat
customer to serve. One will find that this chat property may lead to the agent has less chance to work on
calls or emails, especially when the chat volume is high. Therefore, we let a new arrival chat first search
for the agents in the chat list who are already working on chats but not saturated yet. This routing policy
is called Most Busy First Policy in a chat system (Legros and Jouini 2019). Figure 1 is given to illustrate
the structure of the simulation model intuitively.

During the simulation, all states related to QoS are recorded. In a single simulation run, various QoS
measurements are evaluated. The most important ones are listed here. SL;;: the service level of each
service type per interval. As we mentioned earlier, it cannot be measured per interval independently,
because emails (or the calls/chats arrive at the end of an interval) are not necessarily to be handled within
the interval they arrive. Hence we attach the arrival interval to all the events to trace which interval they
belong to. Moreover, the waiting time of an email also includes the handling time, so that needs to be
treated differently. The service level for each day and the week can also be evaluated in the same way.
Abandonment rate is evaluated only for calls and chats, but we need to evaluate backlogs for emails.
Usually, a weekly backlog is considered in reality. An initial backlog from the previous week is added to
the queue at the beginning of the simulation.

4 SCHEDULE OPTIMIZATION

Simulation optimization works by intelligently exploring different values of decision variables to find the
best objective results for a problem. For the agent scheduling problem, the decision variables are ny g
and the objective function is shown in Equation (4). Given the complexity of this problem, we propose a
heuristic-based simulation optimization method as follows to solve the problem.

Step 1: an Integer Linear Programming (ILP) is solved to obtain an initial schedule.

Step 2: a local search algorithm is designed to add agents to one of the agent group/shift combinations
until either all SLAs are satisfied or the marginal cost for adding new agents is too high.

Step 3: a number of random shift permutations between different agent groups are carried out to check
whether the solution can be further improved.
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’7 event type: arrival; abandon; end-of- All events are included in the list in time sequence
interval; departure
service type [ ) & & & € NULL
- time of the event T - - - -
Event agent ID, agent group ID, customer ID

) ; > First: current first event in the list
interval index this event belongs to

Each agent group includes two agent lists

time of being released 'S . .
longest idle time _ S L A A 4
Agent ID (new agent) busy calling/mailing First idle agent
' chat <>no chat remains the same ID
Agent to find the correct id to release (chat) '+ New agents/ release from chat: insert here}
ChatAgentNode (1 more: chats num) -
; —\ busy chatting

A separate list for chatting agents

Each service type has a queue list
time to enqueue

customer ID NULL
remaining handling time Last
First customer in queue

Customer

Figure 1: Simulation structure.

Before implementing the algorithm, we first check whether a given contact center can be divided into
smaller independent parts based on skill sets of agents. The definition of an independent part here is
the agent scheduling of a part will not affect the QoS of any service type in any other part. In other
words, there is no skill overlapped between agents from different parts. Therefore, we can optimize each
part independently (in parallel). For a small contact center, we can just manually divide it based on the
definition. For a large contact center, we can structure an undirected graph based on the skill sets and then
use the algorithm developed for connectivity in graph theory. A small example is given in Figure 2. In the
following of this section, we explain how the algorithm works in a single part.

Service 1

Part 1

Service 2

?@@

Part 2

Figure 2: Two independent parts in a contact center.

min  Cygent
K
s.t. anﬁkaJ:sg’,, Vge{l,...,G},re{l,...,T},
k=1
G
Z OCiPi,tS Z ZY,isg,Iv \V//g{1,...,1},f€{1,...,T}, (5)
ic / i€ g g=1

ngr €N, Vge{l,...,G},ke{l,...,K},
ser €N, Vge{l,...,G},re{l,...,T},
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As discussed before, simulation often takes long computation time. Thus a good initial solution can
help a lot. It also can guide the heuristic algorithm to a better solution. In our case, we relax the service
level requirements so that avoid any simulation in the original optimization problem and turn it into an
ILP. In this way, no simulation is involved so that the initial solution can be derived quickly. The ILP is
modeled as above.

where sg; is the auxiliary variable introduced as the staffing level of agent group g over interval ¢;
pi; is the required workload (translated to the number of agents) of service type i in interval ¢, which can
be estimated by its arrival rate and average handling time; and the set _¢# is defined as all the subsets of
service types. Therefore Constraint (5) implies that for any subset of service types, the total staffing levels
should meet o; times the overall workload requirements, where ¢; is a constant set for each service type.
Note that since the workload is interval-based, we should not consider emails in this model. Moreover, the
workload should be estimated differently for chats. There are several approximation methods can be used.
A simple one can be dividing the total workload by the maximal number of chats an agent can handle at
a time.

The optimal solution of the ILP offers a lower bound of the number of agents needed for each agent
group/shift combination, minimizing the total cost of agents, which gives an excellent start for the local
search algorithm. It can be proved that the optimal solution of the ILP is the minimal cost of agents that
keep the system steady. For the sake of the length of the paper, we do not give the proof here. However, the
number of constraints of the ILP increases exponentially along with the number of service types because
of 7, leading to slow calculation. In that case, several alternatives can be used: either further relax the
ILP to LP, or use a max-flow-problem-based algorithm (Cezik and L’Ecuyer 2008).

Once we derive the initial schedule, we can start the second step: applying the local search algorithm.
In general, a local search algorithm needs four components to structure: an initial schedule, step size,
search direction, and stop conditions. In our problem, a schedule M is an integer vector which can be
written as:

M= (m,l s 125 s N ks 21,1225 -, 2 k5 -+, NG 1, 11G 2,5 --wnG,K)-

Naturally, the step size is 1, and the search direction can be represented by (g, k), which is the combination
of agent group/shift. Therefore, in each step, we add one agent to one of the group/shift combinations. We
stop adding agents if all SLAs are satisfied (Cgos = 0) or the marginal cost for adding new agents is too
high.

The details are shown in Algorithm 1, and heuristics are introduced when we decide which agent
group/shift combination to add next. Specifically, we calculate a score r; for each shift k, considering the
improvement needed for all the intervals the shift can cover:

T I
e = Z Z max(ASL;;,0) Xy sAi;,

t=1i=1

where ASL,;; is the difference between the current service level and the highest SLA among all SLAs that

are related to service type i (SLAY**, SLA™, SLAY*X). Then the shift with the highest score will be
chosen. However, which agent group to add next is evaluated by simulation, by comparing which agent
group/chosen shift combination gives the lowest overall cost. It is because adding an agent with a certain
skill set improves not only the SL of the service types included in the skill set but also all other service
types. Based on the routing policy, the effects on different service types can be quite different and also
very difficult to estimate. Although running simulation for each agent group can be time-consuming, it
can offer us a better searching direction.

Due to the randomness in simulation, it may need hundreds of runs to derive reliable SL results, which
leads to unacceptable computation time. Instead, we only run a small number of times for each trial (five for
instance), implementing Common Random Number (CRN) method, and then use a two-sample t-statistics
to compare two schedules. If the two schedules cannot be distinguished, the number of required runs is
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estimated, assuming they have equal variance, however, if this number is too big, which implies the two
solutions are very close, then the solution with less agent cost will be returned.

Algorithm 1 Local search algorithm for finding near optimal schedules.

1: initialization: M? =M™ evaluate Coyeran(M?), n =10
2: while CQos (Mn) > 0 or Coyerall (Mn) < Coverau(Mnfl) do
3 caleulate ry if {k | ¥&_ ngx <Nf ke {1,...,K}}
4: k" = argmaxy (r¢)

5: run simulation to estimate Coyerail(M" + &g 1) if {g | Y&, ngk <Ng,g€1,.. ., G}
6: g" = argming (Coveran(M" + &, )

7. M =M+

8: n=n+1

9: if Cgos(M") == 0 then
10: return M"
11: else
12: return M !

The last step is used to check whether the schedule can be further improved. Briefly, We first check
whether any of the schedule shift can be removed without breaching any SLA, and then we randomly
permute two scheduled shifts to see whether it leads to a better solution.

5 NUMERICAL RESULTS

In this section, we show how the proposed optimization algorithm can be used to optimize agent scheduling.
We consider a real case from the contact center, which motivates this work.

5.1 Scenario Setting

There are 7 service types and 5 agent groups in the contact center. The parameters for setting up the
agent scheduling problem are in Table 1. The forecasts of each interval (30 minutes) over the week can
be found in Figure 3. Both patience and handling time are assumed as an exponential distribution with
the given average. In the right side of the table, the skill set of each agent group is represented by Y, ;.
The email and chat channels only support French. The maximum number of parallel chats is limited to 2.
Via analyzing the historical data, handling two chats simultaneously (in this contact center) will not affect
the handling time too much. Agents in Group 1 (G1) can communicate in French and G2-G5 have their
own language skills plus French. As a result, agents in G2-G5 cost 1.25 times more than G1. The routing
policy is static priority policy. In specific, G2-G5 handle French calls with a lower priority and G1 gives
the highest priority to calls, then chats, emails in the end.

There are 96 weekly shifts considered in total with the same cost as 1: C,f =1 for all k. There are no
limits on the number of agents can be assigned.

Recall Equation (4) that our objective is to minimize the cost of failing to meet the SLAs plus the cost
of agents. In this case, a weekly SLA of 68% is given for individual service type of calls, and 65% and
80% for emails and chats, respectively. The weekly SLA of both sets (see column Set in Table 1) is given
as 74%. We set wy and w, as 25 times the maximal agent cost among all agent groups, and w3 to be 1/5
of wy. These parameters are set according to the importance of different SLAs; however, to make sure the
schedule can meet the SLAs, they should be much larger than the agent costs.

5.2 Results

In this subsection, we first verify the proposed algorithm in a single-skill scenario and a multi-skill scenario
with only calls, comparing to the revised stationary independent period-by-period (SIPP) model and the
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Table 1: Service types setup.

Service Patience AHT AWT SLA“** Forecast Set | GI G2 G3 G4 G5
French 600s 515s  60s 68% 13109 FR | 1 1 1 1 1
Italian 600s 505s  60s 68% 835 EU 1

German 600s 511s  60s 68% 675 EU 1

Spanish 600s 506s  60s 68% 639 EU 1
Portuguese 600s 502s  60s 68% 36 EU 1
Email-French oo 602s 1h 65% 430 FR | 1

Chat-French 600s 640s  90s 80% 4240 FR | 1

Figure 3: Interval forecast of each service type.

solution proposed by Pot, Bhulai and Koole (Pot et al. 2008; Bhulai et al. 2008). Then it is tested in the
multi-channel scenario using the real case above.

5.2.1 Single-skill Scenario & Multi-skill Scenario

The SIPP model is based on the set-covering problem, see the details in Avramidis et al. (2010). In the
single-class single-skill scenario, its result is a very good approximation of the optimal solution, as the
only error is introduced by ignoring the transience effects. We consider only French calls on Monday in
the above case and apply the SIPP model to optimize the agent scheduling. It scheduled 52 agents to
meet the SLA (68%). This schedule has likely over-staffed as its SL is 0.71 which is 0.03 higher than the
agreement. Using the proposed simulation-based heuristic, we are able to find the optimal schedule with
51 agents and the SL is 68.17%.

For the multi-skill scenario, we consider French, Italian, German and Spanish calls on Monday and
apply the proposed two-step based staffing and shift scheduling solution by Pot et al. It scheduled 20 agents
(7,4,2,7) to meet the SLA (80%), however, when we test the suggested schedule in the simulation, the SL
of Spanish call does not reach the SLA. Our approach only deployed 19 agents (7,4,2,6), which leads to
higher service levels, see Table 2 for details. Note that we only consider Monday because the compared
approaches do not support weekly optimization.

Table 2: Service level comparison for multi-skill scenario.

Service types French Italian German Spanish
Sim-base heuristic 83% 84% 83% 85%
Two-step algorithm  82% 86% 86% 72%
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5.2.2 Multi-channel Scenario

For the multi-channel setting, there is no other existing solution can be compared with. Therefore, we
compare the results with what a workforce manager usually do in reality. We also test the algorithm in
different settings to see whether the new requirements are recognized and picked up.

We run the algorithm six times and the best optimal schedule deployed 92 agents with (29,14,17,16,16)
corresponding to G1-GS5. The average computation time is 4.2 minutes per run, and the objective values
do not change much (129.30 - 130.5). The SLs of each service type and set are shown in Table 3.

Table 3: Optimal schedule for the multi-channel case.

Fre Ita Ger Spa Por Email Chat FR EU
Mon 84% 70% 76% 77% 89% 96% 84% 84% T4%
Tue 80% 65% T3% T4% 88% 94% 82% 81% T1%
Wed 83% 74% 81% T7% 93% 94% 79% 82% T7%
Thu 82% 1% T4% T7% 94% 91% T6% 81% T4%
Fri 9% T7% 88% 83% 98% 99% 92% 94% 83%
Sat 91% 85% 73% 73% - 9% 90% 91% T7%
Sun 46% 42% 27% - - 80% 55% 49% 41%
Week 82% 71% 77% T77% 93% 95% 80% 82% 75%

First, we find all the SLAs are met by the schedule, the blank SLs are caused by a closed day. Since we
only give weekly SLAs, some of the days may have lower SLs, see Sunday. This is because the customer
volume is quite low on Sunday, which can be found in Figure 3. Later, we test the algorithm with additional
daily SLAs: 65% for calls and 75% for chats. The obtained schedule deployed 7 more agents but the SLs
on Sunday become 80%, 72%, 74%, -, -, 95%, 75% corresponding to each service type.

Second, we find the SLs of the email channel is quite high although its SLA is only 65% and it
has the lowest priority. This can be explained by three points: 1) the good property of emails that they
can be treated later; 2) the arrival patterns of other real-time channels are similar, thus there are some
intervals when agents have no calls/chats to handle; 3) the volume of emails is not high. We then consider
a scenario which has an agent group dedicated to emails. Not surprisingly, two more agents are added.
For the scenario which has both emails and chats are handled independently, the result is worse with 99
agents scheduled. In reality, due to the lack of optimization tool, the schedule is often obtained by treating
different channels separately and sum up in the end. We are glad to find that the proposed algorithm can
capture the possible efficiency improvement in between within reasonable computation time.

Considering the length of the paper, we can not show all the results. During the work, we have tested
the algorithm in plenty of scenarios and we think implementing our approach can result in a significant
reduction in staffing and scheduling costs for complex multi-skill multi-channel contact centers.

6 CONCLUSION

In this paper, we have considered the staffing and shift scheduling problem integrally for multi-skill multi-
channel contact centers. To solve it, we first build a realistic simulation model to evaluate various Quality
of Service (QoS) measurements for the complex service system with multiple blended channels handled
by multi-skill agents. Then a well-structured simulation-based heuristic algorithm is proposed to find the
(near) optimal schedule to meet the various QoS requirements. Numerical experiments have shown the
effectiveness of the proposed approach. In future work, we want to search for solutions to further speed up
the algorithm, and a promising direction can be training a machine learning model based on the simulation
results.
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