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ABSTRACT

We study the problem of coordination control of multiple traffic signals to mitigate traffic congestion. The
parameters we optimize are the coordination pattern and offsets. A coordination pattern indicates which
traffic signals are coordinated. Offsets show how traffic signals can be coordinated. We aim at finding the
optimal combination of the coordination pattern and offsets. In this paper, we treat it as an optimization
problem whose search space is a conditional space with hierarchical relationships; the coordination pattern
determines the controllability of the offsets. Then, we tackle the problem by proposing a novel method built
upon Bayesian Optimization, called BACH. Experiments demonstrate that BACH successfully optimizes
coordination control of traffic signals and BACH outperforms various state-of-the-art approaches in the
literature of traffic signal control and Bayesian Optimization in terms of best parameters found by these
methods with a fixed budget.

1 INTRODUCTION

Metropolitan areas are characterized by the sheer number of traffic signals, and traffic congestion can occur
anywhere. Achieving the optimal control of those signals will greatly benefit society (Koonce et al. 2008).
Traffic signal control has been studied for many years (Papageorgiou et al. 2003) and simulation-based
approaches are popular (Osorio and Chong 2012). Traffic signals, vehicles, roads, obstacles, and their
interaction are simulated using digital models (Bowman and Miller 2016). Our aim is the global optimization
of traffic; we minimize the metric oftime loss. Time loss quantifies traffic congestion, and is the sum of
the time each vehicle lost by being driven slower than the desired speed. We consider all vehicles on the
various routes taken. In this paper, we focus on standard fixed-time control; the signal phase plan and
phase times are fixed. Most existing signals are fixed-time.

Coordination control of traffic signals is especially important to mitigate traffic congestion as shown
in Figure 1. For example, consider two traffic signals on the same road with vehicles passing through
them. Vehicles pass the first traffic signal, then they reach the front of the second one. If the second traffic
signal is green when they arrive at the second one, they can pass through without stopping. As reducing
the number of times vehicles must stop relieves traffic congestion, coordination control is very desirable.
However, some traffic signals should not be coordinated. The cycle length is a parameter traffic signals are
characterized by. This indicates the time for an entire sequence of signal phases at each intersection, where
a signal phase is a timing unit associated with the control system. To establish the coordinated control of
two traffic signals, the cycle lengths of the two traffic signals must be the same. As each traffic signal has
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Figure 1:Illustration of coordination control. Vehicles can cross intersections without stopping by setting
appropriate offsets.

a different optimal cycle length, this requirement leads to an increase in time loss. Therefore, we need to
carefully determine which traffic signals should be coordinated and how to coordinate them.

Two types of parameters for this problem are involved in the problem as shown in the left part of Figure2:
the coordination patternandoffsets. These parameters are associated not with individual intersections, but
pairs of intersections linked by a connected road. A coordination pattern represents a set of decisions as
which pairs of intersections should be coordinated. In Figure2, we show two examples of coordination
patterns. Additionally, each offset represents a decision of how to coordinate a pair of intersections. Offsets
are defined by the time difference between the beginning of the first signal phases of the intersection
pairs. What makes the problem difficult is the hierarchical structures present in the coordination pattern
and offsets. We can control only those offsets associated with coordinated intersection pairs. Controllable
offsets are shown in dark gold lines in the left part of Figure2. The number of controllable offsets depends
on the coordinated pairs found in the coordination pattern.

We model the time loss as a function of the coordination pattern and offsets. Then, the problem is to
find the optimal combination of the coordination pattern and offsets. The direct approach is to use trial
and error via computer simulations to find the optimum combination. Unfortunately, the cost of realistic
simulations usually restricts the number of simulation runs. Recently, there has been a surge of interest
in Bayesian optimization (BO). BO is a gradient-free method for the global optimization of black-box
functions with as few evaluations as possible (Shahriari et al. 2016). An evaluation of black-box functions
can be thought as a simulation run. BO iterates the process of parameter selection and simulation run.
BO selects parameters which seem promising by using surrogate models that predict the simulation result
without making a direct simulation run. BO has been gaining attention from the simulation optimization
community (Pearce and Branke 2017; Poloczek et al. 2016). Figure 2 illustrates application of BO to
traffic signal control. Unfortunately, ordinary BO suffers from the curse of dimensionality. Ordinary BO
considers all combinations of the coordination pattern and offsets in a naive manner. The large number of
parameter combinations makes it very difficult to apply ordinary BO effectively.

Therefore, we propose a novel method calledBAyesian optimization for Conditional spaces with
Hierarchical relationships (BACH). BACH is based on a simple assumption: optimal offsets for a given
coordination pattern can be taken as suggestions for other similar coordination patterns (see Figure3).
Similar coordination patterns can be expected to exhibit similar movements of vehicles and relations among
intersections. Thus, similar environments lead to similar optimal control schemes. In this case, we can
transfer the knowledge gained from the offsets optimized for a given coordination pattern to solve similar
patterns. Based on this assumption, we find combinations of a coordination pattern and offsets by the
following strategy. First, we restrict the targeted coordination patterns and search for optimal offsets for the
targeted coordination patterns. Once we find promising offsets for them, we can apply knowledge transfer
to optimize the offsets of other coordination patterns. This allows us to efficiently search for the optimal
combination of the coordination pattern and offsets.

In an experiment on traffic signal control, we show that BACH can find promising combinations of the
coordination pattern and offsets. To the best of our knowledge, this paper is the first to apply a framework
based on BO to traffic signal control. Furthermore, BACH outperforms state-of-the-art baselines in the
literature of traffic signal control and Bayesian Optimization in terms of the best parameters found by these
methods with fixed iteration numbers.
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Figure 2:Illustration of traffic signal control via Bayesian Optimization (BO). The objective is to find the
optimal parameters (a coordination pattern and offsets) that minimize the time loss. We consider pairs
of intersections. A coordination pattern determines which pairs of intersections are coordinated. Two
examples are represented by maps shown in the left part. For example, the 1st candidate is a coordination
pattern indicating all pairs are coordinated. Each offset determines how a pair can be coordinated. Two
types of parameters have hierarchical relationships. If the coordination pattern determines that the pair of
intersections associated with the offset is coordinated, the offset is controllable; otherwise, it is uncontrollable.
Controllable offsets are shown by the dark gold lines in the coordinate pattern examples. BO iterates the
three processes shown in the figure.

Our contributions can be summarized in three points:

• Model formulation of the coordinated traffic signal control problem;
• Proposal of a method based on Bayesian Optimization to efficiently optimize two types of parameters

with hierarchical relationships (the coordination pattern and offsets);
• Demonstration of the superiority of our method over state-of-the-art baselines.

2 RELATED WORKS

We introduce related works from two viewpoints.
Traffic Signal Control. Genetic Algorithm (GA) (Lertworawanich et al. 2011; Armas et al. 2017) and

Particle Swarm Optimization (PSO) (Garcia-Nieto et al. 2013) are popular gradient-free global optimization
methods used in simulation-based traffic signal parameter optimization.Osorio and Chong (2012)introduces
a metamodel approach for simulation-based optimization. These methods as well as vanilla BO fail to
well handle the hierarchical relationships of the coordination pattern and offsets. Previous works often
omit the relationships by assuming that all traffic signals are coordinated (Lertworawanich et al. 2011)
or by choosing coordination patterns beforehand using non-simulation-based methods (Wang et al. 2013).
Our method can optimize both of them using just simulations. Furthermore, we empirically showed that
BACH outperforms GA and PSO. This paper provides an advance in the practicality of simulation-based
optimization of traffic signal control. Although reinforcement learning is a popular optimization method
(Wei et al. 2018), it is applicable only to adaptive signals that change the signals dynamically according to
observed traffic. Most existing signals are fixed-time, not adaptive, because adaptive ones are expensive. By
contrast, BACH is applicable to standard fixed-time traffic signals, which indicates that BACH is practical.

Bayesian Optimization. The idea of using BO in conditional spaces with hierarchical relationships has
already been explored in the literature. Independent BO uses independent GPs across different coordination
patterns (Bergstra et al. 2011). As ordinary GPs cannot share information across different coordination
patterns, Arc BO and SMAC enable BO to do so through the use of Arc-GPs (Swersky et al. 2014) and
Random Forest (Hutter et al. 2011), respectively. BACH builds upon Arc BO. Even with the successes of
BO in many applications, the curse of dimensionality is a major barrier to the application of BO to real world
problems. Many approaches have been proposed to overcome the curse of dimensionality (Kandasamy
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Figure 3: Illustration of the main assumption of the proposed method. Three coordination patterns and
optimal offsets are shown. Each offset shown in the figure is associated with a pair of intersections located
in the same position. The assumption states that when coordination patterns of the 1st and 2nd candidates
are similar, their optimal offsets are also similar. The assumption originates from the idea that similar
environments demonstrating similar coordination patterns exhibit similar optimal offsets.

et al. 2015). However, most are designed for spaces without hierarchical relationships. Few approaches
tackle the curse of dimensionality for conditional spaces with hierarchical relationships. Tree BO has been
developed toward the efficient optimization of parameters with tree-structured relationships (Jenatton et al.
2017). BACH outperformed Arc BO, Independent BO, Tree BO, and SMAC in all experiments conducted
herein.

3 PROBLEM FORMULATION

In this paper, we construct the optimization problem of coordinated control of traffic signals as follows.
Parameterxi is the offset of the intersection pairi. Letxxx= [x1, . . . ,xD] denote the concatenation of all offsets,
whereD is the number of intersection pairs. Note that we consider only intersection pairs directly connected
by a road. In contrast to ordinary optimization problems that deal with only one kind of parameter, we
tackle two parameters. Parameterzi is a binary parameter that represents whetherxi is controllable or not.
Let zzz= [z1, . . . ,zD] denote the coordination pattern. Whenzi = 1 (zi = 0), xi is controllable (uncontrollable).
Whenzi = 0, since we can not controlxi , the value ofxi is missing. LetZ ⊆ {0,1}D denote the set of
all possible coordination patterns, which is given as an input. LetXzzz denote the search space ofxxx given
coordination patternzzz. The spaces{Xzzz | z∈Z } are pairwise disjoint, i.e.Xzzz

∩
Xzzz′ = /0, for all zzz,zzz′ ∈Z ,

zzz ̸= zzz′.
Our solution is to take a straightforward approach: we simultaneously optimize both offsetxxx and

coordination patternzzz. The whole search space is given by

X =
∪

zzz∈Z
Xzzz.

The entire search space is composed of subspaces with different input dimensions, which have to be separately
explored. Note that, for allxxx∈X , there exists only onezzz that corresponds toxxx. LetF : X →R denote the
time loss of the traffic simulation. The objective is to find the optimal combination of coordination pattern
zzz∗ and offsetsxxx∗ ∈Xzzz∗ that minimizes the time lossF (xxx). Note that, althoughF (xxx) can be represented as
a function of just offsetsxxx, the coordination patternzzz is implicitly related toF (xxx) as eachxxx has a unique
correspondingzzz.
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We note thatZ is not always equal to{0,1}D. Some coordination patterns represent the same groups
of coordinated traffic signals. Therefore, we remove some coordination patterns beforehand so that a way
of grouping coordinated traffic signals and azzz∈Z are in one-to-one correspondence. For example, we
consider three intersections connected by roads, A, B, and C. All pairs are connected by a road. We should
consider offsets of B from A, C from B, and A from C.zzz is a binary vector whose number of elements
is three. In this case, aszzz= [1,1,1], zzz= [1,1,0], zzz= [1,0,1], andzzz= [0,1,1] represent the same groups
of coordinated traffic signals. Therefore, we select onezzz included inZ from them before optimization
is commenced as follows. First, we count the number of vehicles passing on each road. Then, we find
the intersection pair corresponding to the road carrying the least number of vehicles. Finally, we regard
this intersection pair as not being coordinated. In the example of three traffic signals, when the number of
vehicles passing on the road between A and B is the least, and the first element ofzzz represents whether
A and B are coordinated,zzz= [0,1,1] is included inZ . By pruning elements ofZ beforehand, we can
remove some coordination patterns that would otherwise introduce extra constraints on offsets fromZ .
For example,zzz= [1,1,1] indicates that all traffic signals are coordinated. In this case, when the offsets of
B from A and C from B are given, the offset of A from C is determined. Nevertheless, as thiszzz= [1,1,1]
andzzz= [0,1,1] represent the same groups of coordinated traffic signals,zzz= [1,1,1] is not included inZ .
zzz= [0,1,1] does not have such an issue.

4 GAUSSIAN PROCESSES AND BAYESIAN OPTIMIZATION

In this section, we give an explanation of Gaussian Processes, Arc Gaussian Processes, and Bayesian
Optimization.

Gaussian Processes.Gaussian processes (GPs) are nonparametric models specified by a mean func-
tion m : X → R and a covariance kernelk : X ×X → R (Rasmussen and Williams 2006). We use
the constant mean functionm(xxx) = m0. A typical kernel is the squared exponential kernelk(xxx,xxx′) =
exp

(
−∥xxx−xxx′∥2/(2h2)

)
, where hyper-parameterh∈ R+ defines a length-scale. Squared exponential ker-

nels are used in the experiments. GPs use Gaussian distributions for prediction; they can express both belief
and confidence. Letyyyn = [y1, . . . ,yn] andDn = {(xxxi ,yi) | i = 1, . . . ,n} denote the concatenation of outputs
and the set of input-output pairs, respectively. To deal with noisy outputs, we assumeyi =F (xxxi)+εi where
εi ∼ N(0,σ2) for all i = 1, . . . ,n. Then, the predicted meanµn(xxx) and covarianceσ2

n(xxx) are given by

µn(xxx) = kkkn(xxx)
(
KKKn+σ2III

)−1
(

yyy⊤n −m0

)
, σn(xxx) = k(xxx,xxx)−kkkn(xxx)

(
KKKn+σ2III

)−1
kkkn(xxx)

⊤,

wherekkkn(xxx) = [k(xxx1,xxx), . . . ,k(xxxn,xxx)] andKKKn = (k(xxxi ,xxx j) | i, j = 1, . . . ,n).
Arc Gaussian Processes.Arc Gaussian processes (Arc GPs) are based on GPs and used for sharing

information across coordination patterns (Swersky et al. 2014). Our method builds on them. As uncon-
trollable offsets are recorded as missing values, vanilla GP methods cannot deal with such offsets. Arc
GPs embedD dimensional input data with missing elementsxxx into 2D dimensional spaces with cylindrical
coordinates. Letxi denote theith element of theD dimensional parameterxxx. Bounds ofxi are defined as
Xi = [xi,max,xi,min]. For all i, xi is embedded into

T (xi) =

{
[0,0] if zi = 0[
sinπρi

xi
Rxi

,cosπρi
xi

Rxi

]
if zi = 1,

whereρi ∈ [0,1] andRxi = xi,max−xi,min. We can use GPs with standard covariance kernels in this space.
Hyper-parameterρi controls whetherzzz is stronger thanxxx in altering the prediction of GPs. As eachx has
a unique corresponding coordination patternz, GPs model onlyx. Models forz are not necessary because
z is implicitly modeled by GPs that modelx.

Bayesian Optimization. Given search spaceX ⊂RD and black-box functionF : X →R, Bayesian
optimization (BO) is a derivative-free algorithm for the following global optimization problem,xxx∗ =
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argminxxx∈X F (xxx). (Shahriari et al. 2016). We note that finding an optimizer means the best result among
iterations is optimal when the iteration number approaches infinity in our problem as actual applications
pick up only the best parameter set. It differs from methods whose final iteration result is evaluated.

BO is a sequential model based approach that applies three main processes in each iterationt: updating
the surrogate model to fitF (xxx), selecting the next parametersxxxt for the simulation run by using the
surrogate model, and running a simulation. In the first part, GPs are a common choice as surrogate models.
The models are updated with the set of previous observationsDt−1. In the second part, leveraging the
surrogate model, we take the maximizer of the acquisition function in the search space as the parameters
for the next simulation run,

xxxt = argmax
xxx∈X

α (xxx) .

Acquisition functionα(xxx) is used to balance exploration and exploitation; the acquisition function is high
when the prediction uncertainty is high (exploration) and the predicted result is promising (exploitation). A
commonly-used acquisition function is expected improvement (EI) (Vazquez and Bect 2010). EI is written
in closed form asα (xxx) = (τ−µ(xxx))Φ(γ)+σ(xxx)φ(γ), where τ denotes the current minimum of time
losses of the simulation results andγ = (τ−µ(xxx))/σ(xxx). The functionsΦ(γ) andφ(γ) are the standard
normal cumulative distribution function and the standard normal probability density function, respectively.
Optimality guarantees of this method are given byVazquez and Bect (2010).

5 BACH

Here, we introduce BAyesian optimization for Conditional spaces with Hierarchical relationships (BACH).
The strategy used to select parameters differentiates BACH from ordinary BO. We speed up the optimization
process by deliberately restricting the search space in acquisition function optimization. In each iteration
t, we select the parameters for the next simulation run in the following way. A formal description is given
in Algorithm 1. Letzzzt denote the candidate of the coordination pattern to be simulated. We substitute the
coordination pattern selected in the previous iterationzzzt−1 into zzzt (line 5), which is the start point of the
candidate. Then, givenzzzt , we obtain the maximizer of the acquisition function,xxxt = argmaxxxx∈Xzzzt

α(xxx)
(line 6). Note that the search space is restricted; it isXzzzt , not the whole spaceX . Next, we define
neighbors of a coordination pattern as the coordination patterns most similar to it; i.e. neighbors ofzzzt are
obtained by replacing one of the elements ofzzzt by 1 (if it is 0) or 0 (if it is 1). For example, imagine
z= [0,0]. As [1,0] and[0,1] are the closest toz in Euclidean distances, they are neighbors ofz. We run the
following iteration for allźzz in neighbors ofzzzt . Givenźzz, we obtain the maximizer of the acquisition function,
x́xx= argmaxxxx∈Xźzz

α(xxx) (line 9). Then, we compare the acquisition function valueα(xxxt) with α(x́xx). If α(x́xx)
is higher thanα(xxxt), we updatezzzt andxxxt with źzz andx́xx, respectively (lines 10, 11). By running the iteration,
candidatezzzt is updated to the coordination pattern such that the maximum value of the acquisition function
given this coordination pattern is highest among the candidate coordination pattern and its neighbors. Ifzzzt

is updated to a neighbor, we return to the beginning of the iteration with the newzzzt . This means that we
obtain neighbors of the newzzzt and updatezzzt by the procedure stated above. Whenzzzt is not updated; i.e.
α(xxxt) is higher thanα(x́xx) for all źzz in neighbors ofzzzt , we do not return to the beginning of the iteration (lines
12, 13). Finally, we confirmzzzt andxxxt as the parameters for the next simulation run. This selection strategy
restricts coordination patterns searched in each iteration. Note that in the next iterationt +1, as the start
point of the coordination pattern candidatezzzt+1 is zzzt , which differs fromzzzt−1, we iterate the procedures
using the different start point.

The initialization procedure (line 2) is as follows. First, we samplexxxinit
1 , . . . ,xxxinit

N0
uniformly and randomly

from X . In the experiments, we setN0 = 5. Then, we run simulations and obtainyinit
i = F (xxxinit

i ) for
i = 1, . . . ,N0. The initial set of input-output pairsD0 is given byD0 = {(xxxinit

i ,yinit
i ) | i = 1, . . . ,N0}. Finally, the

start point of thecandidatecoordinationpatternzzz0 is such thatxxx0∈Xzzz0, wherexxx0=argminxxx∈{xxxinit
1 ,...,xxxinit

N0
}F (xxx).
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Algorithm 1 BA yesian optimization forConditional spaces withHierarchical relationships (BACH)
1: Input : black-box function (time loss)F (xxx), acquisition functionα(xxx), set of coordination patterns

Z , search spaces given each coordination pattern{Xzzz | zzz∈Z }, maximum number of iterationsT
2: Initialize D0 andzzz0

3: for t = 1,2, . . . ,T do
4: Fit an Arc GP onDt−1

5: zzzt ← zzzt−1

6: xxxt ← argmaxxxx∈Xzzzt
α(xxx) ▷ given zzzt

7: while True do
8: L←{źzz | źzz is a neighbor ofzzzt}
9: for all źzz in L do

10: x́xx← argmaxxxx∈Xźzz
α(xxx) ▷ given źzz

11: if α(x́xx)> α(xxxt) then
12: Updatezzzt ← źzz, xxxt ← x́xx

13: if no neighbors ofzzzt have higher acquisition function values thanα(xxxt) then
14: break
15: Simulation runyt ←F (xxxt)
16: Dt ←Dt−1∪{(xxxt ,yt)}
17: Return best parameters recorded during iterations

Why do we deliberately restrict the search space? See Figure4 for a graphic overview of BACH. Letxxx∗zzz
denote sets of optimal offsets for given coordination patternzzz, xxx∗zzz = argminxxx∈Xzzz

F (xxx). We consider finding
xxx∗zzz for eachzzz∈ Z as sub-goals as shown in the left figure. With sub-goals, our strategy is as follows.
First, we target at a small number of similar coordination patterns. Letzzza denote one of targeted patterns.
To search forxxx∗zzza

, we run simulations with various offsets while restricting the coordination pattern tozzza.
Selecting coordination patterns similar tozzza also helps the search forxxx∗zzza

as we use the Arc GP model
which can share information across coordination patterns. After we select targeted patterns a sufficient
number of times, we find offsets nearxxx∗zzza

, which we call the knowledge ofxxx∗zzza
. Then, with the assumption

discussed in Section1, when another coordination patternzzzb is similar tozzza, we transfer the knowledge of
xxx∗zzza

to search forxxx∗zzzb
as shown in the center figure. This leads to the quick acquisition of the new knowledge

of xxx∗zzzb
. We iterate the use of knowledge to gain new knowledge by searching coordination patterns not

previously explored. While doing this, we gradually vary the targeted coordination patterns in the direction
of the optimal one as shown in the right figure to discoverxxx∗.

Our strategy has the following advantages. First, because of knowledge transfer, we cut many simulation
runs by not searching for unpromising offsets. If the coordination pattern we target is similar to an already
searched one, we already know the candidates of offsets whose results are likely to be promising. By selecting
them for the next simulation run, we can efficiently discover the optimal offsets for the targeted coordination
pattern. Second, provided that we already know promising offsets for each of several coordination patterns,
we can identify the best of these coordination patterns with ease. Assume that we do not know promising
offsets. Even if the time losses of some simulation results differ, we do not know if this difference is due to the
coordination pattern or offsets. In contrast, assume that the optimal offsets for several coordination patterns
are known. As the simulation results do not have uncertainty in the time losses created by unoptimized
offsets, we know that the difference originates from these coordination patterns. This makes comparison
of these coordination patterns easier. This keeps us from selecting undesirable coordination patterns.
Efficiently selecting promising coordination patterns is important to reduce the number of simulation runs.
We note that we merely state that BACH is based on this assumption. BACH performs well only if this
assumption is true for a problem.
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Figure 4: Graphic overview of BACH in a 2-dimensional case. (left) Each filled circle represents a
coordination pattern. We consider finding the optimal offsets for a given coordination pattern as a sub-goal.
(center) The illustration shows that we transfer the knowledge of the red solid line to the optimization of
the blue dashed line. (right) The illustration shows that we search coordination patterns similar to those
already searched and that targeted patterns gradually approach the optimal one.

6 EXPERIMENTS

We evaluate BACH in two experiments. We first study the property of BACH for the optimization of testing
functions. Then, we show it yields optimum traffic signal control.

Experimental Setup. For BACH and GP-based baselines, we update the hyper-parameters of the GP
kernel by maximizing the GP marginal likelihood in each iteration. Additionally, following (Kandasamy
et al. 2015), we allocate a budget of 200D function evaluations when maximizing the acquisition function.
We use EI as an acquisition function in the experiments. We use multi-start local search when maximizing
acquisition functions. This method randomly chooses some initial points and obtains local optima by using
L-BFGS. To obtain error bars, we performed multiple independent optimization runs of each method and
plot medians results, along with 25% and 75% percentiles as uncertainties.

6.1 On Testing Functions

We consider testing functions given by

F (xxx,zzz) =
D

∑
i=1

4(xi−1/2)2zi +λ exp
(
∥zzz− ẑzz∥2/a

)
.

The objective is to minimize the function. The first term represents the loss model induced by offsets. We
call it the offset term. The term is a sum of sphere functions. Uncontrollable offsets do not influence the
term since they are indicated byzi = 0. Coordination patterns do not directly affect the term; they are related
to the term only to exclude uncontrollable offsets. The term is minimized whenxi = 1/2 for all i such that
zi = 1. The second term represents the Gaussian-like loss model induced by the coordination patterns. We
call this thecoordination term. The term is minimized whenzzz= ẑzz. We setẑzz= [1,0,1,0,1,0,1,0,1,0]⊤

anda= 10 in the experiment. Parameterλ controls the balance between the two terms. Results shown
below are for case ofλ = 1 but similar results were obtained forλ = 0.1,0.2,0.5,2, and 5. Since the
function can be broken down into two terms, we can discuss the losses induced from the coordination
pattern and offsets separately. This contributes to an understanding of method behavior. We call these
functionsSphere-Gaussian functions. We setD = 10. The number of coordination patterns is 1,024. For
each method and parameterλ , we performed 20 independent optimization runs of 100 iterations.
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Baselines.We compare BACH with Random2x, SMAC (Hutter et al. 2011), Tree BO (Jenatton et al.
2017), Independent BO (Bergstra et al. 2011), and Arc BO (Swersky et al. 2014). Random2x is random
search with twice the budget. BACH and baselines (other than SMAC and random2x) are based on GPs.
For SMAC, we use publicly available software (Hutter et al. 2011). For the others, we wrote our own.

Results. Figure5(a) shows the optimization results forλ = 1. The vertical axis plots the optimality
gap, the gap between the best function value obtained so far and the optimal value. The result shows that
BACH outperforms all baselines in terms of the optimality gap with 100 iterations. The optimality gap
of BACH plunges before the number of iterations reach 50. Figure5(b) shows the breakdown results of
BACH and Arc BO. The figure shows that BACH successfully optimized the function using the strategy
stated in Secs.1 and5. At the beginning of the optimization run, BACH offers a faster decrease in the
offset term than Arc BO. This indicates that offsets can be optimized for at least one coordination patterns
by targeting a small number of similar coordination patterns. The main component of total optimality gap is
the coordination term. Next, the coordination term drops to 0 within 50 iterations. BACH finds the optimal
coordination pattern faster than Arc BO in terms of the median performance. After the coordination term
attenuates, the offset term becomes the main factor determining the total optimality gap. The offset term
is kept small when the optimal coordination pattern is found. The drop of the coordination term explains
the plunge in the total optimality gap, which yields the superior performance of BACH.

6.2 On Traffic Signal Control

For the simulations, we employed an open-source microscopic road traffic simulator, Simulation of Urban
Mobility (SUMO) (Krajzewicz et al. 2005). We use the Trapezoid and Luxembourg scenarios. The
Trapezoid scenario was synthetically generated and contains 9 intersections shown in Figure6(a). The
road shape of this scenario is trapezoid-like, hence its name. The scenario contains 12 offsets and 3102
coordination patterns. The Luxembourg scenario is a scenario based on the traffic in Luxembourg (Codeca
et al. 2015). We target 10 intersections in the vicinity of the city center shown in Figure6(b). Traffic
signals during the morning rush hour, from 08:00 to 08:30, are targeted for optimization. Both BACH and
baselines calculates the optimal offsets and coordination pattern for the whole 30 min. As real signals need
to gradually change parameters while taking several cycles of signal indication sequences to adjust new
cycle length and offset setting, updating parameters more frequently is not practical. The scenario contains
11 offsets and 1968 coordination patterns. In all scenarios, the number of vehicles and routes of vehicles
are fixed beforehand. Vehicles do not detour. As discussed above, we minimize the metric oftime loss.
Let Td andTa denote the sum of elapsed time when vehicles are driven at the desired speed and the sum
of actual travel time. Time loss is given byTa−Td. The desired speed is the maximum speed. Time loss
increases as vehicle speed falls. We note that BACH can work with arbitrary metrics. In addition to offsets,
traffic signals have two other types of parameters: cycle lengths and splits. They are optimized by Webster
method (Webster 1958). Although initial offsets of uncoordinated intersection pairs are set to 0, they are
meaningless because they will deviate. For each method and scenario, we performed 20 optimization runs
of 100 iterations.

Additional Baselines. In addition to those stated in Section6.1, we added GA4x (Mitchell 1998) and
PSO4x (Poli et al. 2007) to the baselines. GA4x and PSO4x are implemented with four times the budget
because these methods often require more simulation runs than BO. We used publicly available software
to implement GA and PSO (Fortin et al. 2012).

Results. Figures5(c,d) show the optimization results for the two scenarios. Since GA and PSO
run multiple simulations in each iteration, the result is updated after each iteration. The first part of the
optimization curve is not shown because the first iteration is not finished. Interestingly, BACH outperforms
all baselines in both Trapezoid and Luxembourg scenarios in terms of time losses with 100 simulation runs.
BACH demonstrates behavior similar to that in the test function experiment; optimization speed of BACH
rapidly increases in the middle of the optimization runs. Optimization speed of BACH rapidly increases
in the middle of the optimization runs. We note that mean wall-clock times required for 100 iterations

3653



Ito, Tsutsumida, Matsubayashi, Kurashima, and Toda

Figure 5:(a) Comparison of BACH and baselines for optimizing a testing (Sphere-Gaussian) function with
λ = 1. We plot the optimality gap curves of methods versus the number of iterations. We plot median
and quartile of the best performance across 20 runs. BACH is more efficient than the other methods. (b)
Breakdown of the optimality gap curves shown in the left figure into the offset and coordination terms,
which represent the loss induced by offset and coordination, respectively. BACH finds favorable offsets for
a coordination pattern and then discovers the combination of the best coordination pattern and promising
offsets. (c,d) Performance comparison of BACH and other methods for optimizing traffic signal control in
the (c) Trapezoid and (d) Luxembourg scenarios. In the Trapezoid scenario, competitors include Oracle BO
(i.e., knows the optimal coordination pattern and uses BO to simply tune offsets for the given coordination
pattern). We plot the time loss curves of the methods versus the number of simulation runs. Lower is
better. Among the methods, only BACH converges toward Oracle BO in the Trapezoid scenario. Moreover,
BACH is more efficient than the other methods in all scenarios.

of BACH excluding simulation times are 309 s and 306 s in the Trapezoid and Luxembourg scenarios,
respectively. Because those of methods using GPs are similar, BACH is efficient in terms of wall-clock
times. In addition, mean simulation times are 176 s and 15,244 s in the Trapezoid and Luxembourg
scenarios, respectively. Even light methods can run less than 3 times as more simulations as BACH in the
Trapezoid scenario and most of times are elapsed by simulation runs in the Luxembourg scenario. Since
we demonstrate that BACH outperform GA and PSO with four times the budget, BACH is faster than them.

7 CONCLUSION

We addressed coordination control of traffic signals in detail. Parameters of the problem are the coordination
pattern and offsets. Due to their hierarchical relationships, each coordination pattern has some offsets that
are not controllable. To tackle the problem, we presented BACH, an effective method for optimization in
conditional parameter spaces that exhibit hierarchical relationships. With the assumption that the knowledge
of the offsets optimized for a given coordination pattern can be transferred to those of similar patterns, BACH
starts by intensively selecting similar coordination patterns to collect knowledge, and then shifting its target
to finding the optimal combination of the coordination pattern and offsets by leveraging knowledge transfer.
BACH effectively exploits the structure of the parameter spaces. We thoroughly evaluated its performance
in optimization experiments that examined simulation-based traffic signal control. We demonstrated its
superior efficacy over a variety of state-of-the-art methods.
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Figure 6:Illustrations of road networks of (a) synthetic and (b) Luxembourg scenarios.
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