
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

FEASIBILITY CUT GENERATION BY SIMULATION: SERVER ALLOCATION IN
SERIAL–PARALLEL MANUFACTURING SYSTEMS

Mengyi Zhang
Andrea Matta

Department of Mechanical Engineering
Politecnico di Milano

Via La Masa 1
Milan, 20156, ITALY

Arianna Alfieri

Department of Management and Production Engineering
Politecnico di Torino

Corso Duca degli Abruzzi 24
Turin, 10129, ITALY

Giulia Pedrielli

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University

699 S Mill Avenue
Tempe, AZ 85281, USA

ABSTRACT

Simulation–optimization problems exhibit substantial inefficiencies when applied to high–dimensional
problems. The problem is exacerbated in case where feasibility also needs to be evaluated using simulation.
In this work, we propose an approximate iterative approach to identify feasible solutions and quickly find good
solutions to the original problem. The approach is based on discrete event optimization (i.e., a mathematical
programming representation of the simulation–optimization problems) and Benders decomposition, which
is used for cut generation while a system alternative is simulated. The procedure is currently tailored for
the server allocation problem in the multi-stage serial-parallel manufacturing line constrained to a target
system time on a specific sample path. Results on randomly generated instances show its effectiveness in
quickly eliminating infeasible solutions, thus decreasing the required computational effort and keeping the
optimality gap low.

1 INTRODUCTION

Optimization of complex discrete event systems may involve discrete–event simulation (DES) as a tool
for performance evaluation, leading to simulation–optimization problems (Fu et al. 2005). Research on
simulation–optimization has witnessed important developments in the last decade. Simulation–optimization
techniques can be classified into two categories: black–box optimization and white–box optimization.
Distinction between the two categories is whether simulation is treated as an evaluation tool targeting
the relationship between its input and output, or the dynamical structure of the problem is exploited
to provide more information besides the output itself. Most of the simulation–optimization techniques
belong to the black–box category, including random search approaches (Andradóttir 2006), surrogate
model–based algorithms (Jones et al. 1998; Osorio and Bierlaire 2013), and partitioning–driven procedures
(Shi and Olafsson 2000; Hong and Nelson 2006). Perturbation analysis and discrete event optimization
(DEO), instead, belong to the white–box category. Perturbation analysis (Ho and Cao 2012) is based on
the computation of output changes induced by decision variable changes and is usually combined with

3633978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Zhang, Matta, Alfieri, and Pedrielli

stochastic approximation (Robbins and Monro 1951). The basic idea behind DEO (Pedrielli et al. 2018)
is, instead, to fully integrate the simulation and the optimization in a unique mathematical program, by
explicitly modeling the event relationships with constraints representing the DES underlying the problem
with the fixed sample path. DEO has been applied to various manufacturing problems such as the buffer
allocation problem (Weiss and Stolletz 2015) and the bottleneck detection problem (Zhang and Matta 2018).
However, previous works mainly dealt with production lines without parallel resources (e.g., single–server
serial systems). When the possibility of having parallel resources is taken into account, even though the
DEO model can be easily derived (Pedrielli et al. 2018), solving it remains a tough task, since the model
is a mixed-integer linear program (MILP) with a huge number of binary variables.

Preliminary work on systems with parallel resources can be found in Zhang et al. (2018). This work
extends the previous work on the Server Allocation Problem (SAP) in serial–parallel manufacturing systems
to address high–dimension problems, which is a more relevant issue in practice. As in the previous work,
the solution approach is based on the Benders decomposition of the DEO model of the problem. First of all,
from an implementation point of view, the algorithms must be redesigned to efficiently exploiting the dual
information from the simulation dynamics, which represents the primal information. Moreover, scaling up
the algorithms from two–stage to multi-stage systems is not trivial due to the non linearity caused by the
structure of parallel servers. Empirical analysis shows that the developed algorithms are able to handle a
17–stage system, whose solution region contains more than 1017 candidates, within reasonable time. The
computation efficiency has been largely improved, due to the fact that a single feasibility cut, generated
from a single simulation run, can remove more than one alternative from the feasible region using the
information contained in the simulation model. This work establishes that the DEO framework, combined
with Benders decomposition, is a promising family of solution methods for simulation–optimization of
queuing systems.

The remainder of the paper is organized as follows. In section 2, the SAP in serial–parallel manufacturing
systems is defined. The mathematical programming model and its solution approach are addressed in section
3 and section 4, respectively. Section 5 analyzes the performance of the solution algorithm in terms of
computational time, number of iterations, and optimality gap. Section 6 concludes the paper.

2 PROBLEM DEFINITION

The SAP in a serial–parallel system consists of choosing the number of parallel servers to be allocated to
each stage of a serial system to guarantee a maximum average target system time (i.e., the time between
the arrival of a job to the system and its departure) over all the jobs while minimizing the total server cost.
In manufacturing systems, limiting system time is usually applied when the product quality is sensitive to
the time spent in the system due to contamination, or when customers require a certain lead time. Servers
at each stage are identical but they may differ from one stage to another.

An example of such a system is depicted in Figure 1. Each stage is composed of several identical
servers, with s j representing the number of servers at stage j. The servers at a stage share the same input
queue, and waiting jobs will be processed by the first available server. The input queue of the first stage has
infinite capacity, while the inter–stage queue between stage j and stage j+1 has a finite known capacity
b j. Jobs arrive to the system following a general arrival process, and leave the system immediately upon
completion at the last stage.

3 MATHEMATICAL PROGRAMMING MODEL

A DEO model integrating the optimization aspect of the SAP (i.e., the choice of the number of servers
for each stage) and the simulation trajectory (i.e., the dynamics of the system in terms of event times) is
presented in this section. In the model, the objective function deals with the minimization of the total server
cost, while constraints guarantee the correct dynamic behavior of the system and the achievement of the

3634

Zhang, Matta, Alfieri, and Pedrielli

Figure 1: A m–stage parallel server queueing system.

average target system time. In the following, parameters and variables are introduced before presenting
the mathematical programming model.

Parameters
i, i
′

job index (i = 1, · · · ,N)
j stage index (j = 1, · · · ,m)
k server index (k = 1, · · · ,U j)
N number of jobs
b j capacity of the inter-stage queue
L j lower bound of number of servers at stage j
U j upper bound of number of servers at stage j
r iteration index
ti, j service time of the i–th job at stage j
ea

i arrival time of the i–th job
T ∗ target system time
c j cost of a single server of stage j
D, M big-M coefficients in the MILP model

Variables
s j ∈ Z+ number of servers at stage j
s vector representation of of s j

y j,k ∈ {0,1} server allocation variable. y j,k = 1 if at least k servers are allocated to stage j,
y j,k = 0 otherwise.

es
i, j ≥ 0 starting time of job i at station j

ed
i, j ≥ 0 departure time of job i at station j

δii′ j ∈ {0,1} variable linking the arrival sequence and the departure sequence; δii′ j = 1 if the
i–th arrival is the i

′
–th departure at stage j; δii′ j = 0 otherwise.

The decision variables can be partitioned into optimization variables s j, y j,k and simulation variables es
i, j,

ed
i, j, δii′ j representing the event time and relationships within the simulation trajectory. Variables δ and s

are linked by function ∆ii′ j, a black–box correspondence between starting events and departure events. This
reflects the integrated simulation–optimization nature of the DEO model. The DEO model is as follows:

MP–O: min

{
m

∑
j=1

c js j

}
(1)

s.t.
s j ≤ k−1+(U j− k+1)y j,k k = L j, · · · ,U j, j = 1, · · · ,m (2)

y j,k = 1 k = 1, · · · ,L j, j = 1, · · · ,m (3)

3635

Zhang, Matta, Alfieri, and Pedrielli

s j ≥
Um

∑
k=1

y j,k j = 1, · · · ,m (4)

es
i,1 ≥ ea

i i = 1, · · · ,N (5)

es
i, j− ed

i−k, j ≥ D(ky j,k− s j) k = Lm, · · · ,Um, j = 1, · · · ,m, i = k+1, · · · ,N (6)

ed
i′ , j− es

i, j ≥M(δii′ j−1)+ ti, j j = 1, · · · ,m, i, i
′
= 1, · · · ,N (7)

es
i, j− ed

i, j−1 ≥ 0 j = 2, · · · ,m, i = 1, · · · ,N (8)

ed
i, j− es

i−b j, j+1 ≥ 0 j = 1, · · · ,m−1, i = b j +1, · · · ,N (9)

δii′ j = ∆ii′ j(s) j = 1, · · · ,m, i, i
′
= 1, · · · ,N (10)

∑
N
i=1 ed

i,m−∑
N
i=1 ea

i

N
≤ T ∗ (11)

L j ≤ s j ≤U j, j = 1, · · · ,m
s j ∈ Z+,δii′ j,y j,k ∈ {0,1},es

i, j,e
d
i, j ≥ 0 j = 1, · · · ,m, i, i

′
= 1, · · · ,N;k = L j, · · · ,U j

Equation (1) is the objective function, i.e., the minimization of the overall server cost. As servers at a given
stage are identical, they have the same cost, while the cost of the servers in different stages can be different.
Constraints (2) to (4) guarantee that y j,1 = y j,2 = · · ·= y j,s j = 1 and y j,s j+1 = y j,s j+2 = · · ·= y j,U j = 0, which
is consistent with the definition of variables y j,k. Constraints (5)–(10) deal with the dynamic behavior of
the system. Specifically, constraints (5) state that the service of a job at the first stage can start only after
it arrives. Constraints (6) show that the service of a job at each stage can start only if there is at least
one server available. Moreover, with parallel servers, the departure sequence and the arrival sequence may
differ from each other. Thus, constraints (7) link the i–th arrived job to the i

′
–th one leaving stage j though

variable δii′ j, which depends on the server allocation as represented in constraints (10), where s corresponds
to the vector containing all the s j, and ∆ii′ j is a black–box representation of this correspondence. These
constraints are non linear and represent one of the difficulties in solving the model. Constraints (8) allow
the service at any stage j to start only after the job leaves the upstream stage. Since the inter–stage queue
has finite capacity, constraints (9) represent the fact that a job can leave stage j only if there is available
space, i.e., if the number of jobs in the queue following stage j is smaller than b j. Constraint (11) is the
performance constraint, which bounds the average system time over all the jobs to be at most the target
value T ∗.

The number of binary variables and constraints of MP–O increase quadratically as the simulation length
increases, but the complexity to solve the model increases exponentially. Thus, a Benders decomposition
based solution approach is proposed in Section 4 to efficiently solve the problem.

4 SOLUTION APPROACH

Benders decomposition is a method developed within mathematical programming to solve a certain class
of large scale complex problems. Specifically, it is based on the partition of variables and constraints to
decompose the original problem into multiple smaller and/or easier subproblems. Usually, the decomposition
leads to a master problem, containing the variables that make the problem difficult to solve, and to a
subproblem, containing all the other variables and constraints. The master problem and subproblem are
then solved in an iterative framework (Benders 1962).

3636

Zhang, Matta, Alfieri, and Pedrielli

4.1 Decomposition

Referring to the original model (MP–O), integer and binary variables s j, y j,k and δii′ j are included in
the master problem, while variables es

i, j and ed
i, j are considered subproblem variables. Constraints are

partitioned accordingly. The master problem and the subproblem are reported in the following.
Master problem

MP–M–1: min

{
m

∑
j=1

c js j

}
s.t.

(2),(3),(4),(10) + (cuts generated from subproblem solution)
Subproblem

min{ε} (12)
s.t.

es
i,1 ≥ ea

i : ηi i = 1, · · · ,N
es

i, j− ed
i−s j, j ≥ 0 : βi, j j = 1, · · · ,m, i = s j +1, · · · ,N

ed
i′ , j− es

i, j ≥ ti, j : αi, j j = 1, · · · ,m, δ̄ii′ j = 1

es
i, j− ed

i, j−1 ≥ 0 : γi, j j = 2, · · · ,m, i = 1, · · · ,N
ed

i, j− es
i−b j, j+1 ≥ 0 : νi, j j = 1, · · · ,m−1, i = b j +1, · · · ,N

∑
N
i=1 ed

i,m−∑
N
i=1 ea

i

N
− ε ≤ T ∗ : ϑ (13)

es
i, j,e

d
i, j ≥ 0 j = 1, · · · ,m; i, i

′
= 1, · · · ,N

The subproblem is a feasibility problem by introducing a feasibility variable ε in (12) and (13); hence,
only feasibility cuts will be generated. This is due to the fact that the only variables in the objective function
of MP–O are s j, and they cannot be a part of the subproblem. ηi, βi, j, αi, j, γi, j, νi, j and θ are the dual
variables associated to the related constraints. The feasibility cut from the subproblem is:

N

∑
i=1

ea
i η̄i +D

m

∑
j=1

(s̄ jy j,s̄ j − s j)
N

∑
i=1

β̄i, j +
m

∑
j=1

N

∑
i=1

ti, jᾱi, j +M
m

∑
j=1

N

∑
i=1

N

∑
i′=1

(δii′ j−1)− ϑ̄(T ∗+
∑

N
i=1 ea

i
N

)≤ 0, (14)

where η̄i, β̄ r
i, j, ᾱi, j, ϑ̄ are the dual solution of the subproblem, and s̄ j are the server number of the system

(i.e., master problem solution of last iteration).
According to the strong duality theory, the following equation holds:

N

∑
i=1

ea
i η̄i +

m

∑
j=1

N

∑
i=1

ti, jᾱi, j− ϑ̄(T ∗+
∑

N
i=1 ea

i
N

) = ε̄.

Thus, the feasibility cut (14) can be rewritten as (15).

D
m

∑
j=1

(s̄ jy j,s̄ j − s j)
N

∑
i=1

β̄i, j +M
m

∑
j=1

N

∑
i=1

N

∑
i′=1

(δii′ j−1)+ ε̄ ≤ 0 (15)

However, the master problem MP–M–1 with feasibility cuts (15) and constraints (10) is not linear or
convex. To address such complexity issue, i.e., to linearize the master problem, first of all, constraints

3637

Zhang, Matta, Alfieri, and Pedrielli

(10) have been considered as black-box, where the value of δi,i′ . j is evaluated through simulation. Once
the server allocation s is known, the system can be simulated, and if the i–th arriving job is the i

′
–th one

leaving stage j, ∆ii′ j(s) is set to 1, otherwise ∆ii′ j(s) is set to 0. Using simulation to address constraints
(10), introduces a first approximation. However, this is necessary as, even though a MILP formulation of
constraints (10) exists (Chan and Schruben 2008), the huge number of big-M constraints would make the
model difficult to tackle.

A second approximation is introduced to linearize feasibility cuts (15); in particular, linearization is
achieved by eliminating the term M ∑

m
j=1 ∑

N
i=1 ∑

N
i′=1

(δii′ j−1), i.e., by neglecting the impact on the system
time by a change in the departure sequence. The linearized cut is then:

D
m

∑
j=1

(s̄ jy j,s̄ j − s j)
N

∑
i=1

β̄i, j + ε̄ ≤ 0. (16)

In the feasibility cut (16), if the big-M coefficient D is too large, the linear relaxation is very weak,
negatively impacting on the computational time. Combinatorial cuts (Codato and Fischetti 2006) could
strengthen the model; however, it would still have an enumeration nature. D equal to the maximum
inter–departure time can activate constraints (6) only for k = s j, and deactivate the constraints for all k 6= s j,
since

D(s j− k)≥ ed
i−k, j− ed

i−s j, j ≥ ed
i−k, j− es

i, j, ∀k ≤ s j−1.

If D is set to a smaller value, the cut is strengthened and its efficiency can be assured. However,
it will also introduce an approximation. In the approximate formulation, D is set equal to the average
inter–departure time C̄T of the system.

The approximate and linearized master problem is then as follows:

MP–M–2: min{
m

∑
j=1

c js j}

s.t.

C̄T
m

∑
j=1

(s̄r
jy j,s̄r

j
− s j)

N

∑
i=1

β̄
r
i, j + ε̄

r ≤ 0, ∀r

(2),(3),(4).

4.2 Solution Algorithm

The complete solution approach for the multi–stage SAP is shown in Figure 2. At the beginning, the arrival
times ea

i and processing times ti, j are generated from specific distributions, and the server number at each
stage is set to the lower bound. By default, we set the lower bound equal to the minimal server number
allowing system stability, and D equal to average inter–arrival time. However, it should be noticed that
D and L j are the two user–defined parameters of the approximate algorithm. When different values are
chosen for these two factors, the algorithm performance might be different, and the effect can be seen in
the empirical study in section 5.2. After simulating the system, the cut is then added to the approximate
master problem that is solved to find the new best server numbers. In each iteration, the master problem,
solved using mathematical programming, updates the lower bound of the solution. The new configuration
is simulated and so on until the target performance is achieved.

3638

Zhang, Matta, Alfieri, and Pedrielli

Figure 2: Algorithm.

5 NUMERICAL ANALYSIS

In this section, a numerical analysis is conducted on random generated instances. The aim is to study the
algorithm performance in terms of optimality gap and computation time, the impact of parameter choice
on the algorithm performance, and the analysis of high dimension problems.

The numerical tests have been performed on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
processor and 256GB RAM. The solution algorithm is coded in Java. Cplex 12.5 with default settings is
used to solve the master problem.

5.1 Algorithm Performance with Different Problem Parameters

The performance of the algorithm is studied in terms of efficiency and optimality gap. Seven factors have
been identified to possibly affect the performance: stage number, coefficient of variation (CV) of processing
time, CV of inter–arrival time, queue space, equality of machine processing time, target system time and
simulation length. The arrival rate is fixed and equal to 1/2 jobs per time unit. All the queues, with the
exception of the first one, are assumed to have the same capacity. Experiments with both truncated normal
distribution and exponential distribution for inter–arrival time and processing time are performed based on
a two-level full factorial design with 10 replicates. Table 1 shows the high level and low level values of
each factor.

In the systems with identical processing time among stages, the mean processing time is equal
to 10 time units. In the systems with different processing time, the mean processing time is equal
to 15 time units for the first stage, and 10 for the other stages. The target system time is equal to
(1+Target)×overall mean processing time (e.g., for a system with 4 stages of identical average processing
time equal to 10, the high level target system time is equal to (1+12%)×4×10 = 44.8 time units).

The exact solution of the problems is obtained using an enumeration algorithm on the same sample
path. Starting from a number of servers equal to the lower bound, this number is increased by one if all
the alternatives proved to have infeasible solution.

The optimality gap is then calculated as the difference of total server number provided by the pro-
posed approximate DEO approach and the one provided by the enumeration algorithm. Furthermore, the
computational times of the two approaches are also compared. As the exact DEO model has enumeration
nature, the comparison on computation efficiency can show the performance of the approximation relative
to the original model. In fact, the approximate approach reduces the computational time for simulation
with respect to the cost of solving the MILP. On the contrary, the enumeration algorithm has negligible
time for optimization but long simulation time, because it visits all the alternatives.

3639

Zhang, Matta, Alfieri, and Pedrielli

Table 1: Experimental conditions (factors and levels).

Normal Exponential
Factor High (1) Low (-1) High (1) Low (-1)

Stage number 6 4 6 4
Processing time CV 1 0.5 – –

Inter–arrival CV 1 0.5 – –
Queue capacity 5 2 5 3

Machine Processing time Identical Different Identical Different
Target 12% 7.5% 12% 7.5%

Simulation length 100,000 10,000 100,000 10,000

5.1.1 Truncated Normal Distribution

In this experiment, the processing time and inter–arrival time follow a truncated normal distribution, where
the normal distributed random variate smaller than zero and greater than 2µ is discarded.

For all the 1,280 samples, the optimality gap is equal to 0. The computation time of the proposed
approach and of the enumeration algorithm in each sample is shown in Figure 3. The blue dots and the
red dots refer to the samples in which the proposed DEO approach is faster than the enumeration, and in
which it is slower, respectively. In 173 over the 1,280 samples in which the DEO approach requires longer
computation time, the difference is smaller than 1 second, and the total computational time is smaller than
5 seconds. These results show that, for truncated normal distributed processing time and inter–arrival time,
the approximation approach leads to null optimality gap, and significant improvement in the computation
time.

Figure 3: Computational time comparison between DEO algorithm and enumeration algorithm.

5.1.2 Exponential Distribution

In this experiment, the processing time and inter–arrival time follow an exponential distribution. Since the
exponential distribution has always CV equal to 1, the coefficients of variation are not relevant. Hence,
a two-level full factorial experiment with 10 replicates, 320 samples in total, is conducted. The same
enumeration algorithm previously discussed is used to study the optimality gap also in this case.

For the experiment with exponential distribution, the approximate DEO approach solves all the samples
faster than the enumeration approach, but the optimality gap is no longer null, instead, it is always between
0 to 3, except for the case with 6 stages, queue space equal to 3 and different mean processing time among
stages, as shown in Figure 4(a). Figure 4(b) shows the main effect plot of the five factors (being the CV not

3640

Zhang, Matta, Alfieri, and Pedrielli

(a) Indivadual value plot. (b) Main effect plots.

Figure 4: Optimality gap - exponential distribution.

relevant), with p-value of Kruskal-Wallis test provided. It can be shown that the system related factors such
as stage number, queue spaces and machine processing time are more significant than the target system
time and the simulation length.

The results show that, for exponentially distributed processing and inter–arrival time, the proposed
approximate approach does not work as well as in the truncated normal case.

As the performance of the algorithm depends on parameters D and L j, the impact of their choice on
the algorithm performance is studied in section 5.2.

5.2 Effect of Algorithm Parameters

This section analyzes the impact of the server number lower bounds L j (corresponding to the initial solution),
and of the coefficient D on optimality gap and computation time.

It is clear that increasing D will reduce the number of alternatives cut from the feasible region, thus
possibly reducing the optimality gap. Instead, the effect of the initial solution is not that trivial. For
example, considering the 6 stage system with queue space equal to 3 and different mean processing times
among stages, the server allocation (8 6 6 6 6 6) leads to an average system time of 119.0 time units over
10 replicates, higher than that of any other alternatives, which have system time shorter than 100 time
units. Therefore, approximate cut generated after simulating the initial system can lead to very different
optimality gap if different lower bounds L j are used.

The 6–stage system used in the previous example, whose optimality gap ranges from 2 to 16 (as shown
in section 5.1), is used to investigate also the interaction between D and L j, and the target system time
and the simulation length. A two-level full factorial experiment with 10 replicates, 160 samples in total,
is conducted. Table 2 shows the high level and low level values of each factor.

Table 2: Parameters of algorithm parameter calibration.

Factor High (1) Low (-1)
Lower bound (9 6 6 6 6 7) (8 6 6 6 6 6)

D 2C̄T C̄T
Target 12% 7.5%

Simulation length 100,000 10,000

The effect of the four factors and their interaction on the optimality gap are shown in Figure 5, with the
p-value of Kruskal-Wallis test. Both the lower bound and the value of D significantly affect the optimality
gap, as their interaction. On the contrary, L j and D do not show any interaction with the target and the
simulation length.

3641

Zhang, Matta, Alfieri, and Pedrielli

(a) Indivadual value plot. (b) Main effect plots.

Figure 5: Optimality gap - exponential distribution.

5.3 High Dimension Problems

In this section, the performance of the proposed approximate DEO approach is tested on server allocation
problems with a number of stages ranging from 3 to 17. The processing time and inter–arrival time follow
a truncated normal distribution, with coefficient of variation of processing time and inter–arrival time equal
to 0.5. The arrival rate is equal to 1/2, and the machines in all the stages have the same mean processing
time equal to 10 time units. The lower bound of server number is equal to 6. The queue spaces among all
the stages are all equal to 5. The simulation length and the target system time is set to 100,000 jobs and
67.2 time units, respectively. The value of D is set to the average inter–departure time.

The results, including the iteration number, the computation time and the solution are shown in Table
3. It should be noticed that the problem with stage number equal to 18 could not be solved within 48 hours.

Table 3: Results of approximate DEO with variate stage number.

Stage Iteration Computation
number number time (second) Solution

4 1 0.452 6 6 6 7
5 3 0.797 6 6 6 7 7
6 4 1.006 6 6 6 6 7 8
7 7 1.645 6 6 6 7 7 7 8
8 17 4.045 6 6 7 7 7 7 7 8
9 30 7.662 6 6 7 7 7 7 7 8 8
10 45 12.505 6 6 6 6 7 7 8 8 8 9
11 101 39.359 6 6 6 6 7 7 8 8 8 9 9
12 211 108 6 6 6 7 7 7 7 8 8 8 9 9
13 336 264 6 6 6 7 7 7 7 7 8 8 9 9 10
14 729 919 6 6 6 7 7 7 7 7 8 8 8 9 9 10
15 1,178 2,915 6 6 6 6 7 7 7 7 8 8 8 9 10 10 11
16 1,946 10,789 6 6 6 7 7 7 7 7 8 8 8 9 9 9 10 10
17 4,532 136,587 6 6 7 7 7 8 7 7 7 8 8 8 9 9 10 10 11

In Table 3, a pattern of increasing server number along the line can be noticed, i.e., more servers are
allocated to the downstream stages. This behaviour is not consistent with the well-known bowl phenomenon
of serial production lines (Rao 1976). This can be due to the fact that the bowl phenomenon is usually
found when throughput is taken as performance indicator, while in the case discussed in this paper, the

3642

Zhang, Matta, Alfieri, and Pedrielli

system time is the performance indicator. To achieve a shorter system time, the blocking phenomenon
should be reduced, while the starvation does not have any impact. Thus, a higher number of servers is put
in the downstream stages to increase their capacity thus reducing blocking, even though this will increase
starvation probability. These two different behaviours imply the reasonable conclusion that the optimal
design the serial–parallel line can be different if different KPIs are used to evaluate the system.

Table 3 also shows that the iteration number and the computation time increase as the stage number
increases. Specifically, the 17-stage problem requires up to 136,587[s] ≈ 38[h] to be solved. The plot
of the computation time (logarithmic scale) over the stage number is reported in Figure 6, with a fitted
quadratic curve. The figure shows that the computation time increases more than exponentially. This can
be explained by the fact that higher dimension problems usually have a larger set of alternatives and, hence,
require more iterations to be solved. The master problem gets more and more constraints through iterations,
and the computational burden of solving the MILP becomes heavier and heavier. Improvement might be
obtained by reducing the dimension of the master problem, which will be the object of future research.

Figure 6: Logarithm of computation time over stage number.

6 CONCLUSION

This paper develops an approximate simulation–optimization algorithm for solving the server allocation
problem (SAP) in multi-stage serial–parallel manufacturing systems. The approach is based on the Benders
decomposition of a DEO formulation of the problem. To define the feasible region, feasibility cuts are
generated based on the structure of the simulation model. Numerical analysis shows that the optimality gap
is small in most of the cases, and improvements can be obtained by an adequate choice of the parameters.
The proposed approach is able to solve the SAP of systems with up to 17 stages. Future work will be
dedicated to the development of adaptive parameter choice and to the improvement of algorithm efficiency
for high dimension problems. Moreover, the possibility to adapt the approach to other problems, different
from SAP, or to SAP in systems with different architectures, will be investigated.

REFERENCES
Andradóttir, S. 2006. “An Overview of Simulation Optimization via Random Search”. Handbooks in Operations Research and

Management Science 13:617–631.
Benders, J. F. 1962. “Partitioning Procedures for Solving Mixed-Variables Programming Problems”. Numerische Mathe-

matik 4(1):238–252.
Chan, W. K., and L. Schruben. 2008. “Optimization Models of Discrete-Event System Dynamics”. Operations Research 56(5):1218–

1237.
Codato, G., and M. Fischetti. 2006. “Combinatorial Benders’ Cuts for Mixed-Integer Linear Programming”. Operations

Research 54(4):756–766.

3643

Zhang, Matta, Alfieri, and Pedrielli

Fu, M. C., F. W. Glover, and J. April. 2005. “Simulation Optimization: a Review, New Developments, and Applications”. In
Proceedings of the 37th Conference on Winter Simulation, edited by M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and
J. A. Joines, 83–95. Piscataway, New Jersey: Institute of Electrical and Electronics Engineering, Inc.

Ho, Y.-C. L., and X.-R. Cao. 2012. Perturbation Analysis of Discrete Event Dynamic Systems, Volume 145. Berlin: Springer
Science & Business Media.

Hong, L. J., and B. L. Nelson. 2006. “Discrete Optimization via Simulation Using COMPASS”. Operations Research 54(1):115–
129.

Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black-Box Functions”. Journal
of Global Optimization 13(4):455–492.

Osorio, C., and M. Bierlaire. 2013. “A Simulation-Based Optimization Framework for Urban Transportation Problems”.
Operations Research 61(6):1333–1345.

Pedrielli, G., A. Matta, A. Alfieri, and M. Zhang. 2018. “Design and Control of Manufacturing Systems: a Discrete Event
Optimisation Methodology”. International Journal of Production Research 56(1–2):543–564.

Rao, N. P. 1976. “A Generalization of the Bowl Phenomenonin Series Production Systems”. International Journal of Production
Research 14(4):437–443.

Robbins, H., and S. Monro. 1951. “A Stochastic Approximation Method”. The Annals of Mathematical Statistics 22(3):400–407.
Shi, L., and S. Olafsson. 2000. “Nested Partitions Method for Stochastic Optimization”. Methodology and Computing in Applied

Probability 2(3):271–291.
Weiss, S., and R. Stolletz. 2015. “Buffer Allocation in Stochastic Flow Lines via Sample-Based Optimization with Initial

Bounds”. OR Spectrum 37(4):869–902.
Zhang, M., and A. Matta. 2018. “Data-driven Downtime Bottleneck Detection in Open Flow Lines”. In Conference on Automation

Science and Engineering. August 20th-24th, Munich, Germany, 1513–1518.
Zhang, M., A. Matta, A. Alfieri, and G. Pedrielli. 2018. “Simulation–Based Benders Cuts: a New Cutting Approach to

Approximately Solve Simulation–Optimization Problems”. In Proceedings of the 2018 Conference on Winter Simulation,
edited by M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, 2225–2236. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineering, Inc.

AUTHOR BIOGRAPHIES
MENGYI ZHANG is PhD candidate of Department of Mechanical Engineering at Politecnico di Milano, Italy. Her research
interests include simulation optimization of manufacturing systems. Her email address is mengyi.zhang@polimi.it.

ANDREA MATTA is Professor at Politecnico di Milano, where he currently teaches integrated manufacturing systems
and manufacturing. His research area includes analysis and design of manufacturing and health care systems. He is Editor-in-
Chief of Flexible Services and Manufacturing Journal. His email address is andrea.matta@polimi.it.

ARIANNA ALFIERI is Professor at Politecnico di Torino, where she currently teaches production planning and control
and system simulation. Her research area includes scheduling, supply chain management and system simulation optimization.
Her email address is arianna.alfieri@polito.it.

GIULIA PEDRIELLI Giulia Pedrielli is currently Assistant Professor for the School of Computing Informatics System
Design Systems Engineering in Arizona State University. Her research activity in the area of stochastics and simulation with
a particular interest in simulation based optimization. Her email address is giulia.pedrielli@asu.edu.

3644

mailto://mengyi.zhang@polimi.it
mailto://andrea.matta@polimi.it
mailto://arianna.alfieri@polito.it
mailto://giulia.pedrielli@asu.edu

	INTRODUCTION
	PROBLEM DEFINITION
	MATHEMATICAL PROGRAMMING MODEL
	SOLUTION APPROACH
	Decomposition
	Solution Algorithm

	NUMERICAL ANALYSIS
	Algorithm Performance with Different Problem Parameters
	 Truncated Normal Distribution
	 Exponential Distribution

	Effect of Algorithm Parameters
	High Dimension Problems

	CONCLUSION

