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ABSTRACT

We consider a simulation optimization problem whose objective function is defined as the expectation
of a simulation output based on a continuous decision variable, where the parameters of the simulation
input distributions are estimated based on independent and identically distributed streaming data from a
real-world system. Finite-sample error in the input parameter estimates causes input uncertainty in the
simulation output, which decreases as the data size increases. By viewing the problem through the lens
of misspecified stochastic optimization, we develop a stochastic approximation (SA) framework to solve a
sequence of problems defined by the sequence of input parameter estimates to increasing levels of exactness.
Under suitable assumptions, we observe that the error in the SA solution diminishes to zero in expectation
and propose a SA sampling scheme so that the resulting solution iterates converge to the optimal solution
under the real-world input distribution at the best possible rate.

1 INTRODUCTION

Simulation optimization (SO) is widely employed for the resolution of decision-making problems that arise
in a complex real-world stochastic systems when the system behavior can be implemented into a simulator.
However, an analytical expression of the performance measure is often difficult to obtain. This randomness
in the real-world system is modeled by input probability distributions in the simulator, which generates
random variates as inputs and the resulting simulation output becomes a function of the inputs. When data
collected from the real-world system is available, these input models may be statistically estimated from
real-world observations. Thus, given any finite number of observations, the input models are afflicted with
error, which becomes the source of input uncertainty in the simulation output.

Accounting for input uncertainty in SO introduces an additional challenge because the estimation error
in the input models renders the SO problem misspecified. Consequently, even if we were to optimally solve
a problem parametrized by an error corrupted input model, the resulting solution is subject to the risk of
being suboptimal when implemented in the real-world system; Song and Nelson (2019) refer to this as
input model risk.

Until recently, much of SO literature has focused on the setting where real-world input data are limited
while additional data collection is either infeasible or expensive. In this context, computing the real-world
optimum with high statistical confidence is challenging as shown by Corlu and Biller (2013) and Song et al.
(2015) in the context of subset selection and ranking and selection (R&S), respectively. Alternatively, Fan
et al. (2013) and Gao et al. (2017) study the distributionally robust R&S paradigm when the uncertainty
about the input models can be represented by an ambiguity set of candidate input distributions. Because
this formulation does not require the real-world input distribution to be known, the robust optimal solution
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can be found with a stringent statistical guarantee; however, it often tends to be too conservative when
implemented under the real-world randomness.

We focus on a different problem where additional input data are indeed available. More specifically,
we assume that the real-world input process generates i.i.d. observations over time, which we refer to
as streaming data. In this setting, the estimation error of the input models and thus input uncertainty in
simulation output decreases over time. Also, we may define a sequence of SO problems parameterized by
the sequence of estimated input models. Then, the question is how to efficiently solve this sequence of
problems such that the resulting sequence of solutions returned by the algorithm converges to the optimal
solution under the real-world input distributions at the fastest rate. Concentrating on SO problems with
continuous decision variables, we design a stochastic approximation (SA) scheme to study this problem.
To the best of our knowledge, Wu and Zhou (2019) is the only other work in SO literature that studies
the impact of input uncertainty to SO with possibility of additional data collection. However, their focus
is on a discrete solution space. For the present, we assume that the system behavior is captured by a
possibly expectation-valued function E[F(x,θ ∗,ω)] and θ ∗ denotes the parametrization of the underlying
distribution, which is available only in the limit.

Similar problems have been studied in the optimization literature under the broad umbrella of misspecified
optimization problems, where the problem of interest is parametrized by a vector that can only be learned
through data, often only available in a streaming form. For instance, the objective of the optimization
problem may be parametrized by θ ∗ ∈ Rm where θ ∗ is only available in the limit through a learning
procedure. Instances of such problems arise in a range of settings, including portfolio optimization which
relies on access to the covariance matrices and mean vectors, production management problems that rely on
a priori knowledge of machine efficiencies, etc. Crucial to this model is the requirement that the learning
of θ ∗ is unaffected by the optimization of E[F(x,θ ∗,ω)]. Research on misspecified optimization and
game-theoretic problems appears to have originated with the research by Szidarovszky (2004), Bischi et al.
(2007), and Bischi et al. (2008). More recently, there has been an effort to addressing both deterministic
problems by Ahmadi and Shanbhag (2014) while stochastic problems have been examined by Jiang and
Shanbhag (2016) and Jiang and Shanbhag (2013). In fact, similar questions have also been examined
in the context of misspecified Nash games (see Jiang et al. (2018)) and misspecified Markov Decision
Processes (MDPs) (see Jiang and Shanbhag (2015)). In particular, Jiang and Shanbhag (2016) considered
a framework where the learning problem is cast as a stochastic convex optimization problem while the
misspecified optimization problem is a parametrized stochastic convex optimization problem. By taking
a single stochastic gradient step in the optimization space (i.e. x) and in the learning space (i.e. θ ), the
sequence of iterates {xk} converges to a minimizer of E[F(x,θ ∗,ω)] in an almost sure sense. Furthermore,
under some conditions, there is no decay in the rate of convergence.

In this paper, we revisit the far broader question of contending with input model uncertainty in the
context of simulation optimization by viewing the problem through the lens of misspecified optimization.
In contrast with the framework presented by Jiang and Shanbhag (2016), given a sequence {θk}→ θ ∗, each
step in the proposed optimization process computes an inexact solution xk of E[F(x,θk,ω)]. This requires
a sequence of gradient steps in x and we show that under suitable requirements, the overall sub-optimality
error diminishes at the Monte-Carlo rate of O(1/

√
Nk), which governs the convergence rate of {θk}.

The remainder of the paper is organized as follows: Section 2 provides a mathematical formulation
of the SO problem under input uncertainty when streaming data are available. Section 3 introduces our
stochastic approximation (SA) scheme and analyze its convergence properties. Preliminary numerics are
provided in Section 4 and we conclude in Section 5.

2 PROBLEM STATEMENT

Suppose we observe i.i.d. streaming data from a real-world input distribution G(θ ∗). We assume that the
distribution family G is known while the true value of θ ∗ is unknown and may be estimated from the data
via maximum likelihood estimation (MLE). Let us denote the sequences of incremental and cumulative
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number of real-world observations by {nk}k≥1 and {Nk}k≥1 , respectively. In other words, Nk = ∑
k
i=1 ni

while at any epoch k, the vector θk is estimated from Nk observations, where it is assumed that θk ∈Θ, a
compact set in Rd . Additionally, we assume {nk}k≥1 is determined by the data streaming process which
we cannot control. Under some regularity conditions for G(θ ∗) (Newey and McFadden 1994),

θk
k→∞−−−→

a.s
θ
∗ and E[‖θk−θ

∗‖] = O(N−1/2
k ). (1)

Our objective is to solve the following SO problem using a SA scheme:

Opt(θ ∗) : min
x∈X

f (x,θ ∗), E[F(x,θ ∗,ξ (ω))],

where X ⊆ Rn is a closed, convex, and bounded set, F : X ×Rm×Rd → R is a real-valued function that
generates the simulation output, ξ : Ω→ Rd denotes a random variate generated from estimated input
distribution G(θk). Throughout, we assume the associated probability space is denoted by (Ω,F ,P) while
E[·] denotes the expectation operator. We denote the optimal solution to Opt(θ ∗) by x∗.

At any finite epoch k, Opt(θ ∗) is not available, but its plug-in version Opt(θk) is indeed available. We
denote the optimal solution to the latter by x∗k . In general, x∗k 6= x∗ unless f (·, ·) has a very simple structure.
When SA is applied to solve Opt(θk), one can only find its approximate solution xk(6= x∗k) in a finite number
of SA iterations. As the data streaming process continues, an important question is how much SA effort to
expend on solving each Opt(θk) so that the resulting sequence of solutions, denoted by {xk}, converges to
x∗ at the best rate. A naive approach to tackle this problem is to solve Opt(θK) for some large K to obtain
an approximate solution xK . Unfortunately, such an approach provides, at best, an approximate x∗K . An
alternative is to restart the algorithm at each k and utilize a large number of SA steps to approximate x∗k with
high accuracy. This approach is wasteful since each SA step requires running (potentially computationally
expensive) simulations to estimate the gradient of f (x,θk) as discussed in Section 3.1.

We present an efficient SA scheme which parsimoniously allocates simulation effort at each k while
still achieving the best convergence rate of xk. Crucial to our framework is the requirement that the data
generating process is unaffected by the optimization of x (which is clearly reliant on θ ). Before proceeding,
we discuss some classical instances where such problems arise.
(I) Queueing systems. Designing a queueing system that balances service quality and operation costs arises
frequently in operations research. Consider an optimization problem that requires minimizing the overall
expected cost while controlling the service rate of the system. Faster service requires higher operational
cost, whereas slower service leads to longer waiting time and may ultimately cause customers to abandon
the queue, incurring lost sales cost. The optimal service rate balances both costs and depends on the arrival
rate θ ∗ of the customers, which needs to be estimated by observing real-world arrival process. We provide
an example of a simplified M/M/1/c queueing system in Section 4 as a demonstration.
(II) Misspecified portfolio optimization. Consider the problem of choosing a portfolio of assets from a
set indexed by i ∈ {1, . . . ,n} while minimizing a suitably defined mean-risk criterion. Specifically, if µ∗

denotes the mean return while Σ∗ denotes the covariance matrix, then the misspecified portfolio optimization
problem can be cast as follows.

min
x≥0

xT
µ
∗+

1
2

xT
Σ
∗x

subject to
n

∑
i=1

xi ≤ 1.

This can be viewed as a special case of (Opt(θ ∗)) where f (x,θ ∗), xT µ∗+ 1
2 xT Σ∗x and (µ∗,Σ∗) requires

solving a stochastic learning problem.
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3 ALGORITHM STATEMENT AND ANALYSIS

In this section, we formally describe our SA framework in Section 3.1 and analyze its performance in
Section 3.2.

3.1 Algorithm Statement

Consider the following SA framework for k ≥ 1 starting with initial point x0 ∈ Rn. At step k, given an
estimate θk, we consider taking Mk stochastic gradient steps in x. Note that this in sharp contrast with
Jiang and Shanbhag (2016) where a single stochastic gradient step was taken both in x and θ . If ΠX(u)
denotes the Euclidean projection of u onto X , then the sequences {xk} and {xk, j} are generated as follows:

xk,1 := xk−1

xk, j+1 := ΠX
[
xk, j− γk, j∇xF(xk, j,θk,ω j,k)

]
, j = 1, . . . ,Mk−1,

xk := ΠX [xk,Mk − γk,Mk ∇xF(xk,Mk ,θk,ωMk,k)] .

(2)

Here, ∇xF(x,θ ,ω) denotes the estimator of ∇x f (x,θ) obtained from simulations while γk, j denotes the SA
step size for the kth problem at the jth inner step. The “cost” of a SA step captures the cost of computing
∇xF(x,θ ,ω). Notice that we “warm-start” solving the kth problem by taking xk−1 as the initial solution.

3.2 Analysis

Throughout the remainder of this paper, we make the following assumption on the function f .
Assumption 1 (Properties of f ,X , and Θ) Suppose X is a closed, convex, nonempty, and bounded set in
Rn and Θ is a compact set in Rd . Suppose f (x,θ) is a µ-strongly convex and continuously differentiable
function in x for every θ ∈Θ. Furthermore, ‖∇x f (x,θ)−∇x f (y,θ)‖ ≤ L‖x−y‖ for all θ ∈Θ. In addition,
we assume that ‖∇x f (x,θ)‖ ≤Cx and ‖∇θ f (x,θ)‖ ≤Cθ for all x ∈ X and θ ∈Θ.
We assume the existence of an oracle that can produce unbiased (parametrized) gradients with suitable
properties.
Assumption 2 Given a θ , there exists a first-order oracle that produces a sampled gradient ∇xF(x,θ ,ω). If
w=∇xF(x,θ ,ω)−∇x f (x,θ), thenE[w] = 0 andE[‖w‖2]≤ ν2 for all x,θ . Moreover, E[‖∇xF(x,θ ,ω)‖2]≤
C2.
The following lemma shows convergence in mean when the step size for the SA scheme is set as γk, j =

1
µ j

for all k ≥ 1.
Lemma 1 Suppose Assumptions 1 and 2 hold. Consider the sequences {xk} and {θk} generated by (2),
given x0. Then for any k, we have that the following holds.

E[ f (xk,θ
∗)− f (x∗,θ ∗)]≤

(
2Cθ +

CxL
µ

)
E[‖θk−θ

∗‖]+
Lmax{C2

µ2 ,E[‖xk−1− x∗k‖2]}
Mk

. (3)

Proof. We begin by casting the sub-optimality gap in f (x,θ ∗) as the sum of the following four terms.

| f (xk,θ
∗)− f (x∗,θ ∗)| ≤ | f (xk,θ

∗)− f (xk,θk)|︸ ︷︷ ︸
Term a

+ | f (xk,θk)− f (x∗k ,θk)|︸ ︷︷ ︸
Term b

+ | f (x∗k ,θk)− f (x∗,θk)|︸ ︷︷ ︸
Term c

+ | f (x∗,θk)− f (x∗,θ ∗)|︸ ︷︷ ︸
Term d

. (4)

Consider Term a and let θ̃ ∈ [θk,θ
∗]. Since f (x,θ) is differentiable in θ at any x, we have the following

series of equalities and inequalities by invoking the mean-value theorem and Cauchy-Schwarz inequality
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for θ̃ ∈ [θk,θ
∗].

Term a ,| f (xk,θ
∗)− f (xk,θk) |=| ∇θ f (xk, θ̃)

T (θk−θ
∗) |

≤ ‖∇θ f (xk, θ̃)‖‖(θk−θ
∗)‖ ≤Cθ‖θk−θ

∗‖.

Term d can be similarly bounded as shown next.

Term d , | f (x∗,θk)− f (x∗,θ ∗)| ≤Cθ‖θk−θ
∗‖.

Next, we examine term b. Recall that a stochastic gradient scheme with Mk stochastic gradient steps is
employed for computing xk, which is an approximation of x∗k and denotes the unique minimizer of f (x,θk).
Since f (x,θ) is µ-strongly convex in x, L−smooth for every θ with ‖∇x f (x,θ)‖ ≤ Cx for all x,θ , it
follows from the rate statement for stochastic approximation schemes for strongly convex problems that
the following holds for any k.

E[ f (xk,θk)− f (x∗k ,θk)]≤
Lmax{C2

µ2 ,E[‖xk−1− x∗k‖2]}
Mk

.

It can be seen that the following two inequalities hold for x∗k and x∗.

(∇x f (x∗,θ ∗)−∇x f (x∗k ,θ
∗))T (x∗− x∗k)≥ µ‖x∗k− x∗‖2 (5)

∇x f (x∗,θ ∗)T (x∗k− x∗)≥ 0. (6)

Adding (5) and (6), we obtain that

µ‖x∗k− x∗‖2 ≤ ∇x f (x∗k ,θ
∗)T (x∗k− x∗)

= (∇x f (x∗k ,θ
∗)−∇x f (x∗k ,θk))

T (x∗k− x∗)+∇x f (x∗k ,θk)
T (x∗k− x∗)︸ ︷︷ ︸
≤0

≤ ‖∇x f (x∗k ,θ
∗)−∇x f (x∗k ,θk)‖‖x∗k− x∗‖

≤ Lθ‖θk−θ
∗‖‖x∗k− x∗‖, (7)

where the first inequality follows from noting that x∗k = argminx∈X f (x,θk), implying that ∇x f (x∗k ,θk)
T (x∗−

x∗k) ≥ 0. This implies that ‖x∗k − x∗‖ ≤ Lθ

µ
‖θk−θ ∗‖. By invoking the mean-value theorem, we note that

that term c can be bounded as follows where x̃ ∈ [x∗k ,x
∗].

f (x∗k ,θk)− f (x∗,θk) = ∇x f (x̃,θk)
T (x∗k− x∗) =⇒ | f (x∗k ,θk)− f (x∗,θk)| ≤ ‖∇x f (x̃,θk)‖‖x∗k− x∗‖

≤Cx
Lθ

µ
‖θk−θ

∗‖.

By taking expectations on both sides on (4) and by recalling the bounds on each of the terms, we obtain
the following relationship.

E[| f (xk,θ
∗)− f (x∗,θ ∗)|] = E[ f (xk,θ

∗)− f (x∗,θ ∗)]

≤CθE[‖θk−θ
∗‖]+

Lmax{C2

µ2 ,E[‖xk−1− x∗k‖2]}
Mk +1

+Cx
Lθ

µ
E[‖θk−θ

∗‖]+CθE[‖θk−θ
∗‖]

=
(

2Cθ +
CxLθ

µ

)
E[‖θk−θ

∗‖]+
Lmax{C2

µ2 ,E[‖xk−1− x∗k‖2]}
Mk +1

.
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Thus, for the step size sequence γk, j =
1

µ j , if Mk ≥
√

Nk, then the leading term of the right-hand side

of (3) becomes O(N−1/2
k ) from (1). However, such a step size sequence is chosen as if the SA iterations

at each k are completely independent from prior iterations. In other words, Lemma 1 holds even if xk,1
is chosen randomly at each k instead of warm-starting from xk−1. We expect that a randomly selected
xk−1 might prove less efficient than our scheme in (2) and one might expect {Mk} growing much slower
than {

√
Nk} may still be sufficient to guarantee the convergence rate of O(N−1/2

k ) in terms of expected
sub-optimality. Indeed, we show in Proposition 1 that if we continue using the same sequence of step sizes
such that γk, j = 1/µ(∑k−1

i=1 Mi + j), then we may reduce the SA effort required to achieve the optimal rate.
We first state the following lemma, which is needed for the proof of Proposition 1.
Lemma 2 Given the sequence of streaming data, suppose θk and θk+1 are MLEs computed from Nk and
Nk+1 = Nk +nk+1 observations. Under the same regularity conditions for (1), E[‖θk+1−θk‖2]≤ Rknk+1

N2
k

for

some finite Rk ∈ R+ for each k ≥ 1, where Rk converges to a constant as k→ ∞.
Here, we omit the proof of Lemma 2 for a general MLE due to space limitations. Instead, we prove
Lemma 2 for a simpler case where θk is a sample average of the Nk observations. For instance, if G(·) is
an exponential distribution, such a θk is the MLE of the mean of the distribution.

Proof. Let {Zi} represents the sequence of i.i.d. observations with variance σ2. For the simple case
mentioned above, θk = ∑

Nk
i=1 Zi/Nk for any k and θ ∗ = E[Zi]. Further, we define Sk,k+1 ≡∑

Nk+1
i=Nk+1 Zi so that

θk+1 =
Nkθk+Sk,k+1

Nk+nk+1
. Thus, θk+1−θk =

Sk,k+1
Nk+nk+1

− nk+1θk
Nk+nk+1

. Since θk is unbiased for all k,

E[|θk+1−θk|2] = Var(θk+1−θk) =
nk+1σ2

(Nk +nk+1)2 +
n2

k+1σ2

Nk(Nk +nk+1)2 .

Thus, for any k, we can find Rk < ∞ such that E[|θk+1−θk|2] = Rknk+1
N2

k
. In this particular case, Rk→ σ2.

Note that Lemma 2 can be generalized to a more general class of estimators including generalized method
of moment and least-squares estimators. Now, we proceed to show the main result of this paper.
Proposition 1 Suppose Assumptions 1 and 2 hold, and the sequence of streaming data arrives whose
cumulative number of observations is {Nk}k≥1.

(i) If {Mk}k≥1 and α > 0 are chosen such that the following holds for every k ≥ 0(
1+∑

k
i=1 Mi

)1+α

≤
N2

k
nk+1

, (8)

then the following holds for any k.

E[| f (xk,θ
∗)− f (x∗,θ ∗)|]≤

(
2Cθ +

CxL
µ

)
E[‖θk−θ

∗‖]

+2L
max{C2

µ2 ,E[‖x0− x∗1‖2]}+ Lθ

µ
∑

k−1
i=1 Ri(1+∑

i
`=1 M`)

−α

1+∑
k
i=1 Mi

,

where {Rk}k≥1 is a sequence of nonnegative real numbers that converges to a constant.
(ii) If in addition Nk satisfies the following requirement,

N
1
2

k ≤ 1+∑
k
i=1 Mi, ∑

k
i=1

(
1+∑

i
`=1 M`

)−α k→∞−−−→ (constant), (9)

then E[| f (xk,θ
∗)− f (x∗,θ ∗)|] = O(N−1/2

k ).
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Proof. (i). From the proof of Lemma 1, the only difference lies in deriving a modified rate statement
for Term b, which is the only part affected by using an alternate set of step-length sequences. When k = 1,
the step sizes are identical to those used in Lemma 1. Thus, we have

E[‖x1− x∗1‖2]≤
max{C2

µ2 ,E[‖x0− x∗1‖2]}
M1 +1

.

For the first step of the k = 2 problem, the following bound is obtained from triangle inequality.

E[‖x2,1− x∗2‖2]≤ 2E[‖x2,1− x∗1‖2]︸ ︷︷ ︸
=E[‖x1−x∗1‖2]

+2E[‖x∗2− x∗1‖2]≤
2max{C2

µ2 ,E[‖x0− x∗1‖2]}
M1 +1

+2E[‖x∗2− x∗1‖2].

As shown in (7), we may claim that E[‖x∗2−x∗1‖2]≤ Lθ

µ
E[‖θ2−θ1‖2]. From Lemma 2, we have E[‖θk+1−

θk‖2]≤ Rknk+1
N2

k
for some converging sequence {Rk} ∈ R+. Therefore,

E[‖x2,1− x∗2‖2]≤
2max{C2

µ2 ,E[‖x0− x∗1‖2]}
M1 +1

+
2Lθ

µ

R1n2

N2
1

(8)
≤

2max{C2

µ2 ,E[‖x0− x∗1‖2]}
M1 +1

+
2Lθ

µ

R1

(M1 +1)1+α

=
2max{C2

µ2 ,E[‖x0− x∗1‖2]}+ 2Lθ

µ
R1(M1 +1)−α

M1 +1

Next, we show that for 1≤ j ≤M2−1,

E[‖x2, j+1− x∗2‖2]≤
2max{C2

µ2 ,E[‖x0− x∗1‖2]}+ 2Lθ

µ
R1(1+M1)

−α

M1 + j+1
. (10)

For 1≤ j ≤M2−1, by directly applying the proof from Shapiro et al. (2009), Chapter 5.9.1

E[‖x2, j+1− x∗2‖2]≤ (1−2γ2, jµ)E[‖x2, j− x∗2‖2]+ γ
2
2, jC

2.

Setting γ2, j = 1/µ(M1 + j), we obtain for j = 1

E[‖x2,2− x∗2‖2]≤ (1−2/(M1 +1))E[‖x2,1− x∗2‖2]+C2/µ
2(M1 +1)2

(10)
≤
(

1− 2
(M1 +1)

) 2max{C2

µ2 ,E[‖x0− x∗1‖2]}+ 2Lθ

µ
R1(M1 +1)−α

M1 +1
+

C2

µ2(M1 +1)2 . (11)

We now consider two cases.
Case i. Suppose E[‖x0− x∗1‖2]≥C2/µ2. Then we have that the following holds.

(11)≤
(

1− 2
(M1 +1)

) 2E[‖x0− x∗1‖2]+ 2Lθ

µ
R1(M1 +1)−α

M1 +1
+

E[‖x0− x∗1‖2]

(M1 +1)2

≤
(

2E[‖x0− x∗1‖2]+ 2Lθ

µ
R1(M1 +1)−α

)( 1
M1 +1

− 1
(M1 +1)2

)
︸ ︷︷ ︸
≤ 1

M1+1−
1

(M1+1)(M1+2)

≤
2E[‖x0− x∗1‖2]+ 2Lθ

µ
R1(M1 +1)−α

M1 +2
.
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Case ii. Similarly, if E[‖x0− x∗1‖2]<C2/µ2. Then the following holds.

(11)≤
(

1− 2
(M1 +1)

) 2C2

µ2 + 2Lθ

µ
R1(M1 +1)−α

M1 +1
+

C2

µ2

(M1 +1)2

≤
(

2C2

µ2 + 2Lθ

µ
R1(M1 +1)−α

)( 1
M1 +1

− 1
(M1 +1)2

)
≤

2C2

µ2 + 2Lθ

µ
R1(M1 +1)−α

M1 +2
.

Combining the two cases above, (10) holds for j = 1. For 2 ≤ j ≤M j− 1, we assume that (10) holds.
Taking the last step of the k = 2 problem, it follows that

E[‖x2− x∗2‖2]≤
2max{C2

µ2 ,E[‖x0− x∗1‖2]}+ 2Lθ

µ
R1(M1 +1)−α

M1 +M2 +1
.

Proceeding inductively, we have that the required relation holds for k ≥ 2.

E[‖xk− x∗k‖2]≤
2max{C2

µ2 ,E[‖x0− x∗1‖2]}+ 2Lθ

µ
∑

k−1
i=1 Ri(1+∑

i
`=1 M`)

−α

1+∑
k
i=1 Mi

.

This result provides an upper bound for Term b in (4). The bounds on other terms are identical to those
shown in the proof of Lemma 1. In the end, we have

E[ f (xk,θ
∗)− f (x∗,θ ∗)]≤

(
2Cθ +

CxL
µ

)
E[‖θk−θ

∗‖]

+2L
max{C2

µ2 ,E[‖x0− x∗1‖2]}+ Lθ

µ
∑

k−1
i=1 Ri(1+∑

i
`=1 M`)

−α

1+∑
k
i=1 Mi

.

(ii). If α and {Mk}k≥1 are chosen to satisfy (9), then the first term of the right-hand side of the inequality
above becomes the leading term in O(N−1/2

k ).

Remark 1 For given {Nk}, a natural concern is whether there exists a feasible choice of sequence {Mk}
that satisfy the required relationships. Here we provide an example of α,{Nk}, and {Mk} that do satisfy
the conditions in Proposition 1. Suppose nk = k for all k ≥ 2 and n1 = N1 ≥ 4, where in reality, N1
should be large enough so that we have enough degrees of freedom to compute MLE θ1. Consequently,
Nk = N1 +∑

k
i=2 i = N1−1+ k(k+1)/2. Let α = 1+δ where δ is a small positive scalar and we choose

{Mk}k≥1 to satisfy ∑
k
i=1 Mi = d

√
Nke−1. Note that this sampling rule allows for Mi = 0 for some i, which

implies that we skip solving the ith problem. Then,

k−1

∑
i=1

(
1+

i

∑
`=1

M`

)−α

≤
k−1

∑
i=1

N−α/2
i =

k−1

∑
i=1

(
N1−1+

i(i+1)
2

)−(1+δ )/2

converges to a constant because δ > 0. Moreover,
k

∑
i=1

Mi = d
√

Nke−1 =⇒ (1+∑
k
i=1 Mi)

1+α =
(
d
√

Nke
)1+α

≥ N
1+α

2
k .

Furthermore, (1+∑
k
i=1 Mi)

1+α ≤ (
√

Nk +1)1+α ≤ N2
k /(k+1), where the last inequality holds for all k≥ 1

by selecting α to be sufficiently close to 1, given N1 ≥ 4.

Figure 1 provides a plot of N
1+α

2
k ,(1+∑

k
i=1 Mi)

1+α , and N2
k /nk+1 in log-scale for k = 1,2, . . . ,20 when

N1 = 10 and α = 1.1. We observe that (1+∑
k
i=1 Mi)

1+α is strictly bounded between N
1+α

2
k and N2

k /nk+1
for all k. The resulting {Mk}k≥1 is {3,0,0,1,0,1,1,0, . . .} for this example. Notice that we do not take SA
steps for some k.
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Figure 1: A plot of logarithmic values of N
1+α

2
k ,(1+∑

k
i=1 Mi)

1+α , and N2
k /nk+1 for 1 ≤ k ≤ 20 when

α = 1.1,N1 = 10,nk = k for k ≥ 2 and Mk is chosen to satisfy ∑
k
i=1 Mi = d

√
Nke−1 for k ≥ 1.

4 EMPIRICAL PERFORMANCE

In this section, we examine the empirical performance of the proposed SA scheme analyzed in Proposition 1
by applying it to a simple SO problem whose optimal solution can be found numerically. Consider a service
system that may be modeled as a M/M/1/c queue with system capacity c = 20 where the arrival rate is
θ ∗ = 0.7. We assume the latter is unknown to us and needs to be estimated by observing the arrival process
of the system. In particular, suppose the interarrival times are collected periodically and available in the
form of streaming data. We further assume the sequence of sample sizes {nk} for this arrival process is the
same as in Figure 1. Our goal is to control the service rate x to minimize the expected cost of operation:

(cost of operation) = β (number of rejected customers per unit time)+(service cost per unit time),

where β is the cost of rejecting a customer due to the system capacity constraint. In particular, we choose
β = 20 for our experiment and assume (service cost per unit time) = x2, i.e., the cost grows quadratically
as the service rate increases. Thus,

f (x,θ) = E[(cost of operation)] = βθPr{balking}+ x2.

From the steady-state analysis of a M/M/1/c queue, the balking probability can be derived as follows
(see Medhi (2003))

Pr{balking}=


1

c+1
, if x = θ ,

θ c(x−θ)

xc+1−θ c+1 , otherwise.
(12)
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(a) f (x,θ) (b) ∇2
xx f (x,θ) (c) ∇2

xθ
f (x,θ)

Figure 2: The expected cost function, f (x,θ), for the M/M/1/c queueing example.

Note that (12) is continuous at x = θ . Figure 2(a) displays the plot of f (x,θ) for 0.5 ≤ x ≤ 1.5 and
0.5≤ θ ≤ 1. To confirm convexity of f (x,θ) in x, we derive ∇x f (x,θ) and ∇2

xx f (x,θ) for x 6= θ as follows.

∇x f (x,θ) = βθ
c+1
(

1
xc+1−θ c+1 −

(c+1)(x−θ)xc

(xc+1−θ c+1)2

)
+2x,

∇
2
xx f (x,θ) = βθ

c+1
(
(x−θ)

(
2(c+1)2x2c

(xc+1−θ c+1)3 −
c(c+1)xc−1

(xc+1−θ c+1)2

)
− 2(c+1)xc

(xc+1−θ c+1)2

)
+2.

Additionally, it can be shown that limx→θ− ∇x f (x,θ) = limx→θ+ ∇x f (x,θ) and limx→θ− ∇2
xx f (x,θ) =

limx→θ+ ∇2
xx f (x,θ). Figure 2(b) shows that ∇2

xx f (x,θ) ≥ 2, which confirms the first part of Assump-
tion 1 holds for this example. Given θ ∗ = 0.7, it can be found numerically that f (x,θ ∗) = 0 has a unique
optimum at x∗ = 0.8386. Moreover,

∇
2
xθ f (x,θ) = β (c+1)

{
θ c

xc+1−θ c+1 +
θ c+1(xc +θ c)− (c+1)θ c(x−θ)xc

(xc+1−θ c+1)2 − 2(c+1)θ 2c+1(x−θ)xc

(xc+1−θ c+1)3

}
,

which is displayed in Figure 2(c). Thus, by choosing Θ to be a compact set of θ ≥ 0, the second part of
Assumption 1 can be satisfied.

Although f (x,θ) is known for this example, we did not take advantage of this knowledge when applying
the SA scheme and only used it for the purpose of evaluation. Instead, we implemented a discrete-event
simulator that estimates the cost function by simulating the system until 200 customers leave the system.
To avoid the issue of initial bias, we sample the number of customers in the system at the beginning of the
simulation from the steady-state number-in-system distribution of the M/M/1/c queue. A similar trick
is used in Song and Nelson (2015). To obtain the gradient estimator, ∇xF(xk, j,θk,ω j,k), in (2), we apply
the finite-difference method (Fu 2006) by running 10 replications at xk, j and xk, j +δ , respectively, where
δ = 0.02. We acknowledge that this introduces bias in the gradient estimation, a concern which will be
revisited in future work. For the SA sample sizes, {Mk}, we used the same sequence presented in Figure 1.

Table 1 shows the results from 30 runs of our algorithm on this test problem. All runs were made
for k = 500 iterations and the cumulative real-world sample sizes (Nk) and the cumulative number of
SA steps (∑k

i=1 Mi) are presented for k = 50,100, . . . ,500. To evaluate the performance, we estimated
E[| f (xk,θ

∗)− f (x∗,θ ∗)|] from the 30 runs with their standard errors displayed in parentheses. As a
benchmark, we also present E[| f (x∗k ,θ ∗)− f (x∗,θ ∗)|] as the “best possible” sequence of error. Recall that
x∗k is the optimal solution for Opt(θk), which is obtained by numerically solving ∇x f (x,θk) = 0 for x.
Clearly, this is the best error possible, even if one expends infinite effort to solve each Opt(θk). Notice
that our proposed algorithm has comparable error to that of the best possible case for k ≥ 200, while the
corresponding SA sample size grows slowly as k increases.
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Table 1: Comparison between the proposed SA scheme with the best-possible progress.

k 50 100 150 200 250 300 350 400 450 500
Nk 1,284 5,059 11,334 20,109 31,384 45,159 61,434 80,209 101,484 125,259
Proposed SA
∑

k
i=1 Mi 35 71 106 141 177 212 247 283 318 353

E[| f (xk,θ
∗)− f (x∗,θ ∗)|] 0.364 0.1086 0.0295 0.0087 0.0062 0.0057 0.0046 0.0039 0.0038 0.0036

(0.0165) (0.0115) (0.0079) (0.0049) (0.0027) (0.0012) (0.0005) (0.0002) (0.0002) (0.0002)
Best possible
E[| f (x∗k ,θ ∗)− f (x∗,θ ∗)|] 0.0311 0.0181 0.0126 0.0103 0.0077 0.005 0.0045 0.0043 0.0032 0.0032

(0.0037) (0.0023) (0.0018) (0.0014) (0.0008) (0.0006) (0.0005) (0.0005) (0.0005) (0.0004)

5 CONCLUSIONS

We consider the development of a stochastic approximation framework for contending with an SO problem
when the parameters of the underlying distribution are unknown but may be learnt through a streaming
data process. This is an instance of an SO problem afflicted by input uncertainty. Given a sequence of
parameters that is converging to the true parameter associated with the input distribution, we present a
framework in which an increasingly accurate solution of the simulation optimization problem is computed
via an SA framework. We proceed to show that the produced sequence of estimators of the solution to the
SO problem converges to their true counterpart in an expected-value sense and at the canonical Monte Carlo
rate. In particular, our analysis provides requirements on the sample-size requirements in the SA scheme
to ensure the achievement of the optimal rate. In future work, we will relax some of the assumptions made
in this paper including that an unbiased estimator of the gradient is available.
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