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ABSTRACT

In this study, we consider the budget allocation problem for binary classification with noisy labels. The
classification accuracy can be improved by reducing the label noises which can be achieved by observing
multiple independent observations of the labels. Hence, an efficient budget allocation strategy is needed to
reduce the label noise and meanwhile guarantees a promising classification accuracy. Two problem settings
are investigated in this work. One assumes that we do not know the underlying classification structures
and labels can only be determined by comparing the sample average of its Bernoulli success probability
with a given threshold. The other case assumes that data points with different labels can be separated
by a hyperplane. For both cases, the closed-form optimal budget allocation strategies are developed. A
simulation analytics example is used to demonstrate how the budget is allocated to different scenarios to
further improve the learning of optimal decision functions.

1 INTRODUCTION

Ranking and Selection (R&S) is a well-developed research area that aims at selecting the best of a finite
set of alternatives whose performances are uncertain and can only be estimated with noisy simulation (Fu
et al. 2015). Various budget allocation strategies are developed to solve different kinds of R&S problems
such as single-objective problem (Chen et al. 2000; Glynn and Juneja 2004; Frazier 2014), multi-objective
problem (Lee et al. 2010; Feldman and Hunter 2018; Li et al. 2018), constrained optimization (Lee et al.
2012; Hunter and Pasupathy 2013; Healey et al. 2014), feasibility determination (Szechtman and Yucesan
2008; Gao and Chen 2017) and input uncertainty (Lam 2016; Gao et al. 2017; Liu et al. 2017; Song and
Nelson 2019).

Besides ranking problems which define a measure function to rank alternatives, few studies have
been done for the other evaluation problems with stochastic noises. Ryzhov (2018) developed a local
time method for the targeting and selection problem which intends to select the alternative whose mean
performance matches a prespecified target as closely as possible. Other new problem classes worth studying
for simulation optimization community might include but are not limited to the classification with noisy
labels, and clustering with noisy queries. In this study, we investigate the classification with noisy labels or
unreliable labels. This type of problem is commonly seen in the real world. For example, people might post
their labeling task on the outsourcing platform like Amazon Mechanical Turk (https://www.mturk.com/)
due to its cheap cost. However, the annotators might make mistakes and give the wrong labels for certain
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data records such that the data quality of training datasets for classification can be very low, and thus the
classification models can be misled. Bertsimas et al. (2018) applied robust optimization techniques to the
formulations of support vector machines, logistic regression, and decision trees when uncertainty exists
in data features and labels. Promising out-of-sample accuracy of their method has been shown through
high-dimensional and difficult classification problems. Li et al. (2018) proposed a noise-tolerant training
algorithm through a meta-learning method that simulates actual training by generating synthetic noisy labels
to avoid the overfitting to the specific noise. Natarajan et al. (2018) provided some unbiased estimators of a
family of loss measures for cost-sensitive learning considering class-conditional random noise with known
noise rates. Fawzi et al. (2016) developed theoretical bounds on the robustness of nonlinear classifiers facing
random and adversarial noises. Menon et al. (2015) adopted mutually contaminated distribution framework
to estimate class-probability whose labels are corrupted in some ways. Zhang et al. (2015) proposed an
active learning framework to deal with imbalanced multiple noisy labeling problem by introducing label
integration and instance selection procedures. Cavallanti et al. (2011) introduced efficient margin-based
algorithms and showed the bounds on the convergence rate to Bayes risk by adopting Mammen-Tsybakov
low noise condition and assuming linear label noise. Frénay and Verleysen (2014) provided a comprehensive
survey for the classification in the presence of label noise including different types of label noise, their
impacts and the algorithms dealing with label noise.

In this study, we revisit the binary classification with label noise problem from a budget allocation
perspective. That is, given chance and resources to recollect the labels of certain corrupted data, how
should we allocate the budget to different data points to improve classification accuracy. We proposed two
closed-form asymptotic optimal budget allocation strategies that maximize the decay rate of probability of
false classification for two problem settings with unknown and known classification structures based on the
large deviation principle. With the successful development of budget allocation strategy for classification
with noisy labels, it can be applied to many other research areas and practical problems. For example, one
might utilize the method developed in this study to learn the optimal decision function for the simulation
analytics which intends to identify the optimal decision under each scenario and learn their mapping to
support real-time decision when the specific scenario is realized (Jin et al. 2019). A simple simulation
analytic example of the M/M/1 queue is demonstrated in Section 4. It may also be extended to identify
the Pareto/non-Pareto alternatives, or feasible/infeasible solutions. To some extents, critical scenarios that
exert a significant impact on the learning of decision boundary can also be identified through the proposed
method.

The remainder of this paper is organized as follows. The budget allocation problem for binary
classification with noisy labels is presented in Section 2. Section 3 provides the derivation of asymptotic
optimal budget allocation strategies for binary classification with unknown and known structures based
on large deviation principle. Section 4 demonstrates how the simulation budget is allocated to different
scenarios through a simulation analytics example. Section 5 summarizes this work and points out some
future research directions.

2 PROBLEM STATEMENT

In this study, we consider the binary classification with noisy labels. That is to classify a set of data points
into two mutually exclusive sets based on noisy observations. The set of data points to be classified are
{(xi, yi) : ∀i ∈ S} where the indices set S = {1, 2, · · · ,m}. The features of data point i, i.e. xi ∈ Rd,
is deterministic and given, while the corresponding label yi ∈ {0, 1} is unknown and can be estimated
by random variable Yi which follows Bernoulli distribution with success probability pi. Given a known
threshold τ , data point i is labeled with yi = 0 (or equivalently, i ∈ S0) if pi ∈ (0, τ ], otherwise data point
i is labeled with yi = 1 (or equivalently, i ∈ S1) if pi ∈ (τ, 1]. Denote the cardinality of set S0 as n, then
the size of set S1 is m− n.

To reduce the label uncertainty of each data point, we can collect more information by observing ni
independent and identically distributed copies of Yi which are denoted as Yi1, Yi2, · · · , Yini . Based on the
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law of large numbers, the sample average of success probability for data point i, i.e. p̂i = 1
ni

∑ni
k=1 Yik,

converges to true success probability pi with probability one when the number of observations ni goes
to positive infinity. Then the estimated label ŷi = 0 if p̂i ∈ (0, τ ]; otherwise the estimated label ŷi = 1
if p̂i ∈ (τ, 1]. In this study, we consider two problem settings with known/unknown structures about the
classification. The first is that there is no clear structure about the problem, and we can only determine data
point i is estimated to be included in S0 if ŷi = 0 (or equivalently, p̂i ∈ (0, τ ]) and data point j is estimated
to be included in S1 if ŷi = 1 (or equivalently, p̂i ∈ (τ, 1)). The second is that there exists a linear decision
boundary β̂Tx = 0 with intercept term that can separate data points with different labels into two half-planes,
and relying on logistic regression, data point i is estimated to be in set S0 if 1/(1 + exp(−β̂Txi)) ∈ (0, τ ];
otherwise data point i is estimated to be in set S1 if 1/(1 + exp(−β̂Txi)) ∈ (τ, 1].

However, it is usually the case that simulation budget is limited, and we cannot observe infinitely many
trials of each data point to estimate its success probability as accurate as possible. The question worth
asking is how to determine budget ni = αin (αi is the budget allocation proportion) allocated to data point
i,∀i ∈ S given limited budget n such that the probability of false classification (PFC) can converge to
zero at the fastest decay rate. The PFC is the probability of the event that there exists a data point falsely
classified into the wrong set. Based on the problem settings, we consider two types of false classification
event defined in Definitions 1-2 which will be further used in Sections 3.3-3.4. Throughout this paper, we
make several common assumptions which can be found in the previous papers (Glynn and Juneja 2004;
Szechtman and Yucesan 2008; Li et al. 2018).

Definition 1 (False Classification Event with Unknown Structures) False Classification Event happens if
and only if: 1) there exists a data point i ∈ S0 which is estimated to be falsely classified into set S1
(denoted as i∈̂S1) due to p̂i ∈ (τ, 1]; 2) or there exists a data point j ∈ S1 which is estimated to be falsely
classified into set S0 (denoted as j∈̂S0) due to p̂i ∈ (0, τ ].

Definition 2 (False Classification Event with Known Structures) Given a linear decision boundary β̂Tx = 0
trained by logistic regression and observed datasets {(xi, ŷi) : ∀i ∈ S}, False Classification Event hap-
pens if and only if: 1) there exists a data point i ∈ S0 which is estimated to be falsely classified into
set S1 (denoted as i∈̂S1) due to 1/(1 + exp(−β̂Txi)) ∈ (τ, 1]; 2) or there exists a data point j ∈ S1
which is estimated to be falsely classified into set S0 (denoted as j∈̂S0) due to 1/(1+exp(−β̂Txj)) ∈ (0, τ ].

3 ASYMPTOTIC OPTIMAL BUDGET ALLOCATION STRATEGY

3.1 Decay Rate of Probability of False Classification

Based on Definitions 1-2, False Classification Event happens if and only if there exists a data point i ∈ S0
which is estimated to be falsely classified into set S1 or there exists a data point j ∈ S1 which is estimated
to be falsely classified into set S0. Hence, the general PFC can be mathematically formulated as (1)

PFC = P (∪i∈S0i∈̂S1
⋃
∪j∈S1j∈̂S0). (1)

It is noteworthy that the closed-form expression of PFC is hard to derive, and we present its upper and
lower bound instead in Theorem 1 based on Bonferroni inequality.
Theorem 1 (Bounds of PFC) Let C = max{max

i∈S0
P (i∈̂S1),max

j∈S1
P (j∈̂S0)}, then C ≤ PFC ≤ mC where

m is the cardinality of set S0 ∪ S1.
PFC converges to zero when the number of the budget allocated to each data point, i.e. ni, goes

to positive infinity. However, to achieve a promising finite time performance, we want to maximize
the decay rate of PFC which evaluates how fast PFC decays to zero assuming the number of total sim-
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ulation budget goes to positive infinity. Definition 3 gives the formal definition of decay rate of general PFC.

Definition 3 (Decay Rate of PFC) The decay rate of PFC is

lim
n→∞

− 1

n
log PFC = min{min

i∈S0
lim
n→∞

− 1

n
logP (i∈̂S1),min

j∈S1
lim
n→∞

− 1

n
logP (j∈̂S0)}.

Note that limn→∞− 1
n logP (i∈̂S1) can be a function of not only αi but also some αj , j ∈ S/{i}

in some cases. However, in a myopic perspective, let us write lim
n→∞

− 1

n
logP (i∈̂S1) = Ri(αi) and also

lim
n→∞

− 1

n
logP (j∈̂S0) = Rj(αj).

3.2 Optimality Conditions for Budget Allocation Problem

To derive the optimal budget allocation to each data points such that the decay rate of PFC can be maximized,
the optimal budget allocation problem can be formulated as (2). That is to find the optimal budget allocation
αi,∀i ∈ S and maximum z that is upper bounded with the minimum of rate functions Ri(αi),∀i ∈ S.

max
z,αi

z

s.t. z ≤ Ri(αi),∀i ∈ S0,
z ≤ Rj(αj), ∀j ∈ S1,
m∑
i=1

αi = 1, αi ≥ 0,∀i ∈ S.

(2)

Depending on the structure of Ri(αi), ∀i ∈ S0 and Rj(αj),∀j ∈ S1, budget allocation problem in (2) can
be a convex optimization problem with unique optimal solutions. In this case, the Karush-Kuhn-Tucker
condition (Karush 1939; Kuhn and Tucker 1951) is sufficient and necessary for the optimality of (2).

Let γi ≥ 0,∀i ∈ S0; ηj ≥ 0,∀j ∈ S1; λ ∈ R be the dual variables for the three types of constraints in
(2). Then optimal budget allocation problem is equivalent to

min
z∈R,αi≥0

max
γi≥0,ηj≥0,λ∈R

−z +
∑
i∈S0

γi(z −Ri(αi)) +
∑
j∈S1

ηj(z −Rj(αj)) + λ(
m∑
i=1

αi − 1).

Based on the complementary slackness and the value of dual variables, KKT conditions of (2) can be
simplified, and the optimality conditions of (2) are shown in Theorem 2.
Theorem 2 (Optimality Conditions) The optimal allocation solution to budget allocation problem in (2)
are

1. Ri(αi) = Rj(αj),∀i, j ∈ S;
2.

∑m
i=1 αi = 1;

3. αi ≥ 0, ∀i ∈ S.

In the next two subsections, we will discuss two problem settings with unknown/known structures of
the classification problem. The closed-form optimality conditions for both cases will be presented based
on Theorem 2.
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3.3 Binary Classification with Unknown Structures

In the first case, we consider the false classification event with unknown structures which is defined
formally in Definition 1. The label of each xi is determined by comparing its sample average of success
probability p̂i = 1

ni

∑ni
k=1 Yik with the known threshold τ . Yi1, Yi2, · · · , Yini are the independent and

identically distributed copies of Yi which are assumed to follow Bernoulli distribution with unknown
success probability pi.

In this case, the PFC in (1) can be rewritten as (3)

PFC = P (∪i∈S0{
1

ni

ni∑
k=1

Yik > τ}
⋃
∪j∈S1{

1

nj

nj∑
k=1

Yjk ≤ τ}). (3)

And the decay rate functions in Theorem 2 can be written as

Ri(αi) = lim
n→∞

− 1

n
logP (

1

ni

ni∑
k=1

Yik > τ) = αi[τ log
τ

pi
+ (1− τ) log

1− τ
1− pi

],∀i ∈ S0,

Rj(αj) = lim
n→∞

− 1

n
logP (

1

nj

nj∑
k=1

Yjk ≤ τ) = αj [τ log
τ

pj
+ (1− τ) log

1− τ
1− pj

],∀j ∈ S1.

Therefore, based on Theorem 2, the optimality conditions for the binary classification with unknown
structures are presented in Corollary 1. These results are the same with Szechtman and Yucesan (2008)
which considers the simulation budget allocation for feasibility determination problem.
Corollary 1 (Optimality Conditions for Binary Classification with Unknown Structures) The optimal
allocation solution for binary classification with unknown structures that maximize the decay rate of PFC
is

αi =
[τ log τ

pi
+ (1− τ) log 1−τ

1−pi ]
−1∑m

j=1[τ log τ
pj

+ (1− τ) log 1−τ
1−pj ]−1

, ∀i ∈ S.

It is noteworthy that f(pi) = τ log τ
pi

+ (1− τ) log 1−τ
1−pi is a convex function with global minima zero

when pi = τ . Therefore, intuitively speaking, Corollary 1 suggests that more budget should be allocated
to those data points that have success probability very close to the threshold τ .

3.4 Binary Classification with Known Structures

In the second case, we consider the false classification event with known structures which is defined
formally in Definition 2. Specifically, known structures mean that there exists a linear hyperplane that
can separate the data points with different labels into two disjoint half-planes. In this case, we utilize
the logistic regression model to help classifications. The label of each xi is determined by comparing it
samples average of success probability with a known threshold. Given the dataset {(xi, ŷi)}, we train the
logistic models with parameter β by maximizing its logarithm of posterior probability. Lemma 1 states
the posterior distribution of β given a Gaussian prior by investigating Taylor series of the logarithm of
β’s posterior distribution evaluated at its maximum a posteriori probability (MAP) estimation and Laplace
approximation method.
Lemma 1 (Posterior Distribution of Logistic Regression Parameters) Given a logistic regression model
y = 1/(1 + exp(−βTx)), suppose parameter β has Gaussian prior distribution N(β0,Σ0), then the
logarithm of its posterior distribution can be written as (4)
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Ψ(β) = log

m∏
i=1

[(
1

1 + exp(−βTxi)
)ŷi(

1

1 + exp(βTxi)
)1−ŷi ]

+ log
exp(−1

2(β − β0)Σ
−1
0 (β − β0))√

(2π)mdet(Σ0)
.

(4)

And the posterior distribution of β can be approximated by Gaussian distribution N(β∗,Σm) by
Laplace Approximation where β∗ and Σm can be derived according to (5).

β∗ = arg max
β

Ψ(β),

Σm = [−∂
2Ψ(β)

∂β∂βT
|β=β∗ ]−1 = [

m∑
i=1

xix
T
i

1

(1 + exp(−β∗Txi))(1 + exp(β∗Txi))
+ Σ−10 ]−1.

(5)

A data point i is classified into set S0 if 1
1+exp(− 1

ni

∑ni
k=1 β

T
k xi)

∈ (0, τ) where {βk : k = 1, 2, · · · } are

the independent copies from Gaussian distribution N(β∗,Σm) in Lemma 1, otherwise it is classified into
set S1. In this case, the PFC in (1) can be rewritten as (6)

PFC = P (∪i∈S0{
1

1 + exp(− 1
ni

∑ni
k=1 β

T
k xi)

> τ}
⋃
∪j∈S1{

1

1 + exp(− 1
nj

∑nj
k=1 β

T
k xj)

≤ τ}). (6)

And the decay rate functions in Theorem 2 can be written as

Ri(αi) = lim
n→∞

− 1

n
logP (

1

1 + exp(− 1
ni

∑ni
k=1 β

T
k xi)

> τ)

= αi
(β∗Txi − log τ

1−τ )2

2xTi [
∑m

l=1 xlx
T
l

1
(1+exp(−β∗Txl))(1+exp(β∗Txl))

+ Σ−10 ]−1xi
, ∀i ∈ S0,

Rj(αj) = lim
n→∞

− 1

n
logP (

1

1 + exp(− 1
nj

∑nj
k=1 β

T
k xj)

≤ τ)

= αj
(β∗Txj − log τ

1−τ )2

2xTj [
∑m

l=1 xlx
T
l

1
(1+exp(−β∗Txl))(1+exp(β∗Txl))

+ Σ−10 ]−1xj
, ∀j ∈ S1.

Therefore, based on Theorem 2, the optimality conditions for the binary classification with known
structures are presented in Corollary 2. Intuitively speaking, Corollary 2 suggests that more budget should
be allocated to those data points xi that are close to the decision boundary β∗Tx = log τ

1−τ and with high
variance xTi Σmxi.
Corollary 2 (Optimality Conditions for Binary Classification with Known Structures) The optimal allocation
solution for binary classification with known structures that maximize the decay rate of PFC is

αi =
2xTi Σmxi

(β∗Txi − log τ
1−τ )2

/

m∑
j=1

2xTj Σmxj

(β∗Txj − log τ
1−τ )2

, ∀i ∈ S.

where β∗ and Σm can be calculated based on (5)
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4 NUMERICAL EXPERIMENTS

In this section, we demonstrate how the simulation budget is allocated through a simulation analytics
example of M/M/1 queueing system which intends to learn the best decision of customer given what
she observed to facilitate future decision-making in real time. There are two types of customers with
service time T1 ∼ exp(µ1) and T2 ∼ exp(µ2) respectively. Denote (z1, z2) as the number of type 1 and
type 2 customers already in the system. Suppose a customer now arrives at the system and determines
whether she should enter or leave the system by considering her maximum expected waiting time T and
decision function. This decision function is defined as P (z1T1 + z2T2 < T ) for the case with unknown
structures in Section 4.1, and E[z1T1 + z2T2] for the case with known structures in Section 4.2. Let
µ1 = 1, µ2 = 2, T = 5 and τ = 0.5.

4.1 Binary Classification with Unknown Structures

In this setting, we do not assume the underlying classification structures. The customer will enter the system
if P (z1T1 + z2T2 < T ) > τ = 0.5; otherwise she will leave the system. Instead of running simulation,
the true Bernoulli success rate p (the probability that customer will enter the system based on simulations)
for scenario (z1, z2) is

p =



1 z1 = 0 and z2 = 0,

1− exp(−µ1
z1
T ) z1 6= 0 and z2 = 0,

1− exp(−µ2
z2
T ) z1 = 0 and z2 6= 0,

1− exp(−µ1
z1
T )− µ1

z1
T exp(−µ1

z1
T ) z1 6= 0 and z2 6= 0 and µ1

z1
= µ2

z2
,

1−
µ1
z1

exp(−µ2
z2
T )−µ2

z2
exp(−µ1

z1
T )

µ1
z1
−µ2
z2

z1 6= 0 and z2 6= 0 and µ1
z1
6= µ2

z2
.

Figure 1 shows the contour plot of Bernoulli success probability and its variance, and how the simulation
budget is allocated to different scenarios (z1, z2). The yellow regions have larger values compared to blue
regions. Based on the “Contour of Rank of Simulation Budget Allocation”, it can be concluded that
more simulation budget are allocated to those scenarios that are close to the decision boundary (i.e.
P (z1T1 + z2T2 < T ) = 0.5). The reason is that the Bernoulli success probability of those scenarios is
quite close to the threshold τ = 0.5 and the corresponding variance is also quite large, and thus more
budget is needed to avoid the false classification event for those scenarios.

Figure 1: Demonstration of OCBA for Binary Classification with Unknown Structures.
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4.2 Binary Classification with Known Structures

In this setting, we assume the scenarios (z1, z2) with different labels can be separated by a linear hyperplane
βTz = log τ

1−τ = 0. The customer will enter the system if E[z1T1 + z2T2] < T ; otherwise she will leave
the system. Since we assume µ1 = 1, µ2 = 2 and T = 5, then the true decision boundary is z1 +0.5z2 = 5.
Hence, β = (1, 0.5,−5) and z = (z1, z2, 1). Let the prior of covariance of β to be an identity matrix I3.
Based on Corollary 2, Figure 2 shows the contour plot of βTz and zTΣmz, and how the simulation budget
is allocated to different scenarios (z1, z2). Similar to the case with unknown structures, more simulation
budget is allocated to the scenarios that are close to the linear decision boundary. More interestingly, the
scenarios that lie in the two sides of the decision boundary receive more budget than those at the center
of the decision boundary.

Figure 2: Demonstration of OCBA for Binary Classification with Known Structures.

5 CONCLUSIONS

In this study, we consider the budget allocation problem for the binary classification with noisy labels.
Two types of problem settings are investigated with unknown and known classification structures. Two
closed-form budget allocation strategies are proposed for both cases. Simulation analytics examples are
conducted to demonstrate how the budget is allocated to different scenarios to decrease the probability of
false classification at the fastest decay rate.

For future research, kernel tricks can be used to deal with nonlinear separable classification problems
and generalized linear models can be used to extend the current work. This study can also be easily applied
to multi-class classification with noisy labels by extending binary logistic regression to multinomial version,
or use “One vs One” / “One vs Rest” / “Many vs Many” techniques. An online version of the budget
allocation strategy integrated with classification methods will also be studied. Identification of support
points of classification models is critical to maintain a minimum number of data storage. Model error
caused by the incorrect selection of classifiers should be considered besides the heterogeneous noise of
labels. More efficient sampling techniques for imbalanced datasets are also quite interesting and valued.
Besides classification, the discussed methodology can also be applied to other machine learning tasks like
regression and clustering.
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