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ABSTRACT

Adaptive Sampling Trust-Region Optimization (ASTRO) is a class of derivative-based stochastic trust-
region algorithms developed to solve stochastic unconstrained optimization problems where the objective
function and its gradient are observable only through a noisy oracle or using a large dataset. ASTRO
incorporates adaptively sampled function and gradient estimates within a trust-region framework to generate
iterates that are guaranteed to converge almost surely to a first-order or a second-order critical point of
the objective function. Efficiency in ASTRO stems from two key aspects: (i) adaptive sampling to ensure
that the objective function and its gradient are sampled only to the extent needed, so that small sample
sizes result when iterates are far from a critical point and large sample sizes result when iterates are near
a critical point; and (ii) quasi-Newton Hessian updates using BFGS. We describe ASTRO in detail, give a
sense of its theoretical guarantees, and report extensive numerical results.

1 INTRODUCTION

We consider the stochastic unconstrained optimization problem

min.
x∈Rd

f (x) = E[F(x,ξ )] =
∫

Ω

F(x,ξ )dP(ξ ), (1)

where f :Rd→R is a smooth function and ξ is a random object with distribution P. The iterative algorithms
we consider will assume the existence of a filtered probability space (Ω,F,(Fk)k≥1,P) and access to an
unbiased first-order oracle, that is, estimators F : Rd ×Ω→ R and G : Rd ×Ω→ Rd such that for each
x ∈ Rd ,

F(x,ξk) = f (x)+ εk(x,ξk) and G(x,ξk) = ∇ f (x)+ ε̃k(x,ξk),

where εk(·,ξk), ε̃k(·,ξk), k = 1,2, . . . are independent and identically distributed (iid) Fk-measurable random
functions such that, almost surely (a.s.),

E [εk(x,ξk) |Fk−1] = 0; E
[
εk(x,ξk)

2 |Fk−1
]
= σ

2(x);

E [ε̃k(x,ξk) |Fk−1] = 0; E
[
‖ε̃k(x,ξk)‖2

2 |Fk−1
]
= σ̃

2(x).

The notion of a first-order oracle is best interpreted generally. For instance, the estimators F and G could
be outputs from a simulation oracle, or Monte Carlo observations from a large dataset. For the purposes
of this paper solving problem (1) means identifying a sequence of stochastic iterates (Xk)k≥1 such that
‖∇x f (Xk)‖→ 0 almost surely.
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Problem (1) seems to have been posed first in the early 1950s (Robbins and Monro 1951; Kiefer and
Wolfowitz 1952) and enjoyed intermittent attention throughout the ensuing decades (Kushner and Yin 2003).
Interestingly, over the last decade, problem (1) has gained in prominence with the recognition that virtually
all optimization problems involving large data sets in machine learning, e.g., regression, classification,
clustering, sensing, matrix completion, are all conveniently posed as problem (1). See Bubeck (2015) for
further details.

The “workhorse” algorithm to solve problem (1) has been Stochastic Gradient Descent (SGD), given
by the recursion

Xk+1 = Xk−αkH−1
k G(Xk,ξk). (2)

In (2), H−1
k is an approximation to the inverse Hessian ∇xx f (Xk)

−1, and (αk)k≥1 is the sequence of step
sizes chosen so that αk ≥ 0, ∑

∞
k=1 αk = ∞, ∑

∞
k=1 α2

k < ∞. We do not go into further detail but note that
the SGD iteration’s prominence is principally due to its simplicity and the fact that when, for instance,
f is smooth and strongly convex with unique minimizer x∗ and αkH−1

k := k−1∇xx f (x∗)−1, the resulting
iteration satisfies √

k (Xk−x∗) µ−−−→N
(
0,∇xx f (x∗)−1

Σ(x∗)(∇xx f (x∗)−1)T ) , (3)

where
µ−−−→ denotes convergence in distribution and Σ(x∗) is the covariance matrix associated with G(x∗,ξ ).

Importantly, the limit in (3) signifies the attainment of the Cramér-Rao lower bound, implying that SGD
has reached theoretical limits of asymptotic algorithm performance (Nesterov 2003; Toulis et al. 2016).

Notwithstanding the attractive theoretical properties, a number of criticisms have been raised about SGD
over the years. Chiefly, notice that the optimal parameter choice within SGD depends on unknown curvature
constants. Moreover, it has been shown (Nemirovskii et al. 2009) compellingly that mis-estimation of the
optimal step choice, specifically, the inverse of the Hessian at x∗, can result in a rapid deterioration of the
convergence rate. This last observation is far from just being theoretical; instead, it is generally believed
that “playing with the step size” αk is needed to get SGD to work well in practice.

1.1 Trust-Region Methods

Our investigation in this paper is motivated by the worldview that problem (1) is best solved by appropriately
“stochasticizing” the best performing algorithms in the deterministic context. We use the word stochasticizing
in a loose sense, to mean adding and modifying elements of a deterministic solver in such a way as to
facilitate tackling problem (1). This worldview is strongly supported by practice, where our experience has
been that the best performing algorithms for solving problem (1) tend to be well established deterministic
solvers that are appropriately modified to account for the sampling variability of the estimators F and G.

Accordingly, our focus in this paper is a stochasticized version of the trust-region method (Conn et al.
2000), which is arguably amongst the most successful iterative techniques to solve deterministic versions
of problem (1).

The (deterministic) trust-region method is easily stated and understood. During each iteration k, a
first-order or a second-order local approximation of the objective function f is constructed around an
incumbent solution xk. The approximating function is then imprecisely minimized within a region called
the trust region, which is usually a ball centered on the incumbent xk. The resulting imprecise minimizer
x̃k of this trust-region subproblem is then accepted as a new incumbent if a simply computed number called
the success ratio is large enough. The success ratio also determines how to update the trust-region, e.g.,
expand or contract, for use during the subsequent iteration. The procedure is then repeated to generate a
sequence of iterates that converges to a first-order critical point under mild conditions on the constructed
function approximation and if f is twice continuously differentiable.

The trust-region method seems to have been developed in parallel within the optimization and the
statistics communities, with the latter under the name ridge analysis. The method was originally conceived
in the early 1940s as a way to stabilize Newton’s method for solving nonlinear least squares problems.
See Trosset (2011) for an interesting commentary on this history, especially on parallel development within
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the statistics community. Since the 1970s, due to the work of Powell (1970) and others (Trosset 2011), the
trust-region method has become remarkably popular and evolved to be amongst the most stable techniques
for solving deterministic versions of problem (1).

1.2 Stochastic Trust-Region Methods

The challenge in creating stochastic versions of the trust-region method stems from the fact that the objective
function f (·) and its gradient ∇ f (·) can no longer be observed without error in the context of problem (1).
Sampling to construct estimators of f and ∇ f is the obvious remedy to this impasse. However, sampling is
usually computationally burdensome, leading one to ask how much sampling is really adequate? Too much
sampling will lead to computational inefficiency, while too little might lead to highly spurious estimates
that result in non-convergence. Hence, effective sampling within trust-region methods should estimate the
accuracy of the obtained function and gradient estimates, and accordingly make decisions on the adequacy
of sampling.

There have been a number of recent attempts at constructing stochastic versions of the trust-region
method. For example, the Basic Trust-Region with Dynamic Accuracy algorithm (Bastin et al. 2006)
employs variable sample sizes for estimation within a trust region framework, with an upper finite limit
on the sample size. The method is shown to generate iterates that converge almost surely to a first-
order and a second-order critical point under stringent conditions. STRONG or Stochastic Trust-Region
Response-Surface Method (Chang et al. 2013) is a more general trust-region framework that generates
iterates attaining almost surely convergence by (i) assuming a normally distributed error on the function
evaluations, and (ii) two hypotheses tests designed to accept or reject a new iterate. STRONG-X (Chang
and Wan 2009) relaxes the parametric assumption in STRONG but assumes that the errors are additive with
bounded variance. STORM or Stochastic Trust-Region Method with Random Models (Chen et al. 2018)
is a more recent algorithm that is based on assumed access to a random model of specified accuracy within
the trust-region framework. Blanchet et al. (2019) provide the complexity results for STORM, identifying
the expected number of iterations required to reduce the norm of the gradient below ε ∈ (0,1), yielding
O(ε−2) and O(ε−3) for first-order and second-order Taylor models, respectively.

1.3 Notation and Convention

We now list important notation that we will heavily use in the ensuing sections.

1. We let f (x,n) denote the sample mean of n iid function estimates at x, that is, f (x,n) :=
n−1

∑
n
j=1 F(x,ξ j). Likewise, we let g(x,n) denote the sample mean of n iid gradient estimates at

x, that is, g(x,n) := n−1
∑

n
j=1 G(x,ξ j).

2. Throughout the paper, we use bold font for vectors, lowercase font for real numbers, and uppercase
font for random variables. Hence {Xk} denotes a sequence of random vectors in Rd and x =
(x1, . . . ,xd) denotes a vector in Rd . We let ‖ · ‖2 denote the `2-norm. So, for a vector x =

(x1,x2, . . . ,xd) ∈ Rd , ‖x‖2 := (∑d
j=1 x2

i )
1
2 . For a d×d matrix A, ‖A‖= σmax(A) is the square root

of the largest eigenvalue of AT A.
3. x∗ is called a first-order critical point of a differentiable function f if ‖∇ f (x∗)‖= 0; x∗ is called

a second-order critical point of a twice differentiable function f if ‖∇ f (x∗)‖ = 0 and the d× d
matrix ∇xx f (x∗) is positive definite.

2 ASTRO ALGORITHM

We now present the Adaptive Sampling Trust-Region Optimization (ASTRO) — a stochastic trust-region
algorithm that employs adaptive sampling, that is, “on the fly” function and gradient estimation for model
construction and related operations within the trust-region framework to ensure efficiency. ASTRO closely
follows its derivative-free counterpart — ASTRO-Derivative Free (Shashaani et al. 2018).
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Broadly speaking, ASTRO generates its incumbent iterates (Xk)k≥1 as follows. During iteration k,
ASTRO constructs a local (convex) quadratic approximation Mk(·) of the objective function f centered at
Xk. The quadratic approximation is then minimized approximately, within a trust region Bk centered on
Xk and having radius ∆k, to obtain a trial point X̃k. The trial point X̃k is either accepted or rejected based
on a success ratio ρ̂k that in a sense quantifies how well Mk(·) approximates f (·) . If the success ratio is
larger than a specified constant η1, the trial point X̃k is accepted, and it becomes the next incumbent Xk+1;
furthermore, if the trial point is accepted, the trust region radius ∆k is expanded by a factor (as a vote of
confidence for the model) if the iteration is deemed very successful, that is, the success ratio is larger than
another specified constant η2. On the other hand, if the success ratio is not large enough, the trial point is
rejected, and the incumbent Xk is not updated. In such a case, the trust region radius is shrunk by a factor
to reflect the idea that the model is not working adequately well and it needs to be constructed in a smaller
region. This concludes the k+1-th iteration, yielding a new incumbent Xk+1 and a new trust region Bk+1
having the updated radius ∆k+1. The process is then repeated.

The above description of ASTRO encapsulates the following four repeating steps in Algorithm 1.

1. Construct local model Mk(·): Step 1 and Step 2 in Algorithm 1.
2. Approximately optimize local model in a trust region to obtain a trial point X̃k: Step 3 in Algorithm 1.
3. Calculate success ratio ρ̂k and update incumbent: Step 4 in Algorithm 1.
4. Update trust region radius: Step 5 in Algorithm 1.

The latter three of the above steps are identical to well-established theory from deterministic trust-region
methods, as detailed beautifully in Chapter 6 of Conn et al. (2000). For example, approximately optimizing
Mk(·) in Bk means finding an approximate Cauchy point Xk +Sk that satisfies the approximate Cauchy
condition

Mk(Xk)−Mk(Xk +Sk)≥ κmdc‖g(Xk,Nk)‖min

{
‖g(Xk,Nk)‖

1+‖Bk‖
,∆k

}
,

appearing in Step 4 of Algorithm 1. Other ideas of solving the trust region sub-problem are possible but
we do not pursue them here — again, see Chapter 7 of Conn et al. (2000) for more. Similarly, Step 4 and
Step 5 in Algorithm 1 are identical to the basic deterministic trust-region algorithm.

Much of the complication involving the construction of a stochastic trust-region analogue thus lies in
Steps 1 and 2 of Algorithm 1. Unlike the deterministic context where the function oracle gives exact values
f (x),∇ f (x) at any requested point x ∈ Rd , much of the challenge to efficiency in the stochastic context
depends on the appropriate choice of the sample size N(Xk). Informally, the sample size Nk should be
small when the incumbent Xk is such that ‖∇ f (Xk)‖ is much larger than zero; and large when Xk is such
that ‖∇ f (Xk)‖ is close to zero. Of course the notions of “large” and “close to” in the previous sentence
are ill-defined and the sample sizing rule

Nk := min
{

n≥ λk :
max{σ̂n(Xk),δ}√

n
≤ θ‖g(Xk,n)‖

}
;

σ̂
2
n (Xk) := Tr

(
1

n−1

n

∑
i=1

(G(Xk,ξi)−g(Xk,n))(G(Xk,ξi)−g(Xk,n))T
)
,

appearing in (4) makes this idea precise. Specifically, Nk is chosen as the smallest sample size n≥ λk such that
the ratio

√
n‖g(Xk,n)‖/max{σ̂n(Xk),δ} exceeds the constant θ−1. The ratio

√
n‖g(Xk,n)‖/max{σ̂n(Xk),δ}

should be reminiscent of the Student’s T ratio (modulo the “max” operation), and is intended to keep the
sampling variability, as connoted by σ̂n(Xk)/

√
n, in “lock step” with ‖g(Xk,n)‖ which measures the prox-

imity of Xk to a first-order critical point. The lower bound sequence λk is to protect against the sample
size spuriously becoming too small. Our choice of Nk in intended to produce small sample sizes during
early iterations when the incumbent point Xk is likely to have a large gradient norm, and large sample
sizes during later iterations when Xk is likely to have a small gradient norm.
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Algorithm 1 ASTRO Main Algorithm
Require: Initial point X0 ∈Rd , initial and upper bound of trust-region radii ∆0 > 0, ∆max > 0, initial sample size n0, acceptance

ratio constants 0 < η1 ≤ η2 < 1, expansion and contraction coefficients 0 < γ1 < 1 < γ2, lower bound sequence λk with
k1+ε = O(λk) for some ε > 0, θ ∈ (0,1), κmdc ∈ (0,1/2), δ > 0 and the Hessian approximation at the initial point B0.

for k = 0,1,2, . . .:
1: Incumbent Solution Estimation: Observe f (Xk,Nk) and g(Xk,Nk) where

Nk := N(Xk) = min
{

n≥ λk :
max{σ̂n(Xk),δ}√

n
≤ θ‖g(Xk,n)‖

}
. (4)

2: Model Construction: Compute the approximated Hessian Bk and form the quadratic model

Mk(Xk +S) = f (Xk,Nk)+g(Xk,Nk)
T S+

1
2

ST BkS.

3: Step Calculation: Compute the step Sk such that ‖Sk‖ ≤ ∆k and

Mk(Xk)−Mk(Xk +Sk)≥ κmdc‖g(Xk,Nk)‖min

{
‖g(Xk,Nk)‖

1+‖Bk‖
,∆k

}
.

4: Trial Point Acceptance: Observe f (X̃k,Nk) where X̃k := Xk +Sk and define

ρ̂k =
f (Xk,Nk)− f (X̃k,Nk)

Mk(Xk)−Mk(X̃k)
.

If ρ̂k ≥ η1, then Xk+1 := X̃k; otherwise Xk+1 := Xk.
5: Trust-Region Radius Update: Set

∆k+1 =



min{γ2∆k,∆max}, if ρ̂k ≥ η2, (very successful)

∆k, if ρ̂k ∈ [η1,η2), (successful)

γ1∆k, if ρ̂k < η1. (unsuccessful)

end for.

It is worth making the important but obvious observation that in Algorithm 1, other choices of model
form Mk(·), and the sample size expression Nk are possible in Steps 1 and 2 of Algorithm 1. For example,
one might choose a linear or a cubic Taylor polynomial approximation as the choice of Mk(·). Similarly,
one might introduce the Hessian approximation to f at Xk in the expression for Nk. Of course, such choices
will have consequences on the nature of convergence, e.g., with a linear model form for Mk(·) one cannot
hope to guarantee convergence to a second-order critical point. Likewise, sample sizing rules that do not
diverge with iteration will in general not produce iterates that converge. While these are important issues,
we do not go into further detail here.

2.1 Analysis of ASTRO’s Behavior

To understand the sort of guarantees that ASTRO could provide, it is instructive to analyze corresponding
guarantees provided by the analogous algorithm in the deterministic context. Consider the “deterministic
context” where the oracle on hand provides exact function and gradient values at any requested point.
We thus set Nk = 1 and notice that the iterates {xk} resulting from the application of ASTRO forms a
deterministic sequence in Rd . For this deterministic setting, the following result can be proved with some
effort.
Theorem 1 Let the following assumptions hold.
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A.1 f is twice continuously differentiable in Rd ;
A.2 f is bounded from below, that is, infx∈Rd f (x)>−∞;
A.3 the `2-norm of the Hessian of f is bounded, that is, supx∈Rd ‖∇xx f (x)‖2 < ∞;
A.4 the model Hessian Bk is chosen so that ‖Bk‖2 ≤ κumh < ∞, where κumh is an unknown constant.

Then,
lim
k→∞

‖∇x f (xk)‖= 0. (5)

Let {xk} be a sequence of iterates converging to a first-order critical point x∗ and that ∇xx f (x∗) is positive
definite. If in addition to the assumptions A.1–A.4, suppose that

A.5 limk→∞ ‖Bk−∇xx f (xk)‖= 0 whenever limk→∞ ‖∇x f (xk)‖= 0.

Then {xk} → x∗, all iterations are eventually very successful, and the trust region radius ∆k is bounded
away from zero.

Analogous to the assertion (5) in Theorem 1 we have been able to demonstrate that the stochastic
sequence {Xk} of iterates generated by ASTRO satisfies

lim
k→∞

‖∇x f (Xk)‖= 0 a.s..

This result makes intuitive sense since Nk → ∞ a.s.. implying that the function and gradient estimates
converge to their population counterparts almost surely.

What is more interesting, however, is the convergence rate behavior of ASTRO’s iterates. Specifically,
note that the total sampling workload incurred by ASTRO after k iterations is Wk = ∑

k
j=1 N j. So, it is

pertinent to investigate the limiting behavior of the quantities W−1
k ‖∇x f (Xk)‖ and W−1

k ‖∇x f (Xk)‖2
2. It

seems likely that under a local strong convexity assumptions on the first-order critical point x∗ to which
the iterates converge, the quantity W−1

k ‖∇x f (Xk)‖2
2 can be shown to converge to an appropriate limit.

Identifying the latter limit will also establish clues as to whether ASTRO attains Cramér-Rao lower bound
for stochastic optimization.

3 NUMERICAL EXPERIMENTS

In this section we report the finite-time performance of ASTRO and the SGD recursion given in (2) on a
suite of unconstrained stochastic minimization problems adapted from problems compiled by Moré et al.
(1981). The problems are 2 to 100 dimensional least squares of the form

f (x) =
m

∑
i=1

f 2
i (x) ,

where each fi : Rd → R is smooth, and most of the functions fi are non-convex.
We incorporate the following noise structure to construct the function and gradient estimators.

1. Additive static structure, that is, ε(·,ξ )∼N(0,σ2);
2. Additive structure proportional to the gradient norm, that is, ε(·,ξ )∼N(0,σ2(1+‖g(·)‖2));
3. Additive structure inversely proportional to the gradient norm, that is, ε(·,ξ ) ∼ N(0,σ2(1 +
‖g(·)‖2)−1).

4. Multiplicative structure, that is, ε(·,ξ )∼N(1,σ2).

The first three of the above settings are additive in the sense that the function estimator F(x,ξ ) =
f (x)+ ε(x,ξ ). In the fourth setting above, F(x,ξ ) = f (x)ε(x,ξ ). In the second and third structure we
investigate cases where the noise decreases and increases when approaching the first-order critical point,
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respectively. Note that the variance changes in the interval [σ2,∞) and (0,σ2] for the second and third
structure, respectively. In the fourth case, the noise variability is fixed but the magnitude changes with the
true function value. The same noise structures are added in vector form to the gradients to create noisy
gradient values.

3.1 Algorithm Parameters and Implementation

For ASTRO we choose the following initializations for the general trust-region parameters: γ1 = 0.5, γ2 =
2, η1 = 0.25, η2 = 0.75, ∆0 = 0.1, and ∆max = 105. This choice is based on the guidelines that appear
in (Nocedal and Wright 2006). We also choose the adaptive sampling parameters in (4) as δ = 10−3,
θ = 0.90, and λk = k(1+10−4). For SGD, an adaptive learning rate of α/(1+k),α = 0.001 for k = 0,1,2, . . .
was used. As noted in the introduction, SGD’s performance tends to be sensitive to the choice of α and
the choice α = 0.001 was based on some experimentation.

An important step in ASTRO is the use and update of the Hessian approximation Bk during the model
construction and step calculation of Algorithm 1. For executing the latter step, we use the BFGS (Nocedal
and Wright 2006) update. Define Yk−1 = g(Xk,Nk)−g(Xk−1,Nk−1) as the change in the estimated gradient
when moving from Xk−1 to Xk, when k−1 is a successful iteration, and let Sk−1 be the step size computed
at iteration k−1. The BFGS update is then given by

Bk = Bk−1−
Bk−1Sk−1ST

k−1Bk−1

ST
k−1Bk−1Sk−1

+
Yk−1YT

k−1

YT
k−1Sk−1

, (6)

B0 =
YT

0 Y0

YT
0 S0

Id .

It should be noted that the above update provides a positive definite matrix only under the curvature
condition ST

k−1Yk−1 > 0. However, this condition is not guaranteed to be satisfied in the computation of
the step Sk−1 in Step 3 of Algorithm 1. Thus, we skip the update formula (6) when ST

k−1Yk−1 < ε = 10−3.
ASTRO and SGD are executed until a specified simulation budget is exhausted. Then the performance

is recorded in terms of the optimality gap f (Xkmax(i))− f (x∗) where Xkmax(i), i = 1,2, . . . ,m, denotes the
solution returned by the i-th execution of both algorithms, and the true gradient norm ‖g(Xkmax(i))‖. We
then report the median value and the interquartile range of the m = 20 values for each measure at every
specified simulation budget.

3.2 Results

We perform the comparison test for 12 problems as listed in Table 1 and Table 2 (2 separate problems in
each of the dimensions 2, 3, 4, 6, 8, 100), with all the noise structures explained in Section 3. We first
investigate the sensitivity of both algorithms to different levels of variability in the noise, by changing σ2.
We observe that results for all problems and all structures of noise were consistent for σ2 = 0.1, 1, and
10. Since the higher dimensional problems tend to magnify any effect in the performance, Figure 1 shows
the effect of different values of σ on the 100-dimensional trigonometric problem up to 3,000 simulation
calls, with additive static noise.

From Figure 1 we decide to choose σ2 = 1 throughout the rest of our experiments. Next we are interested
in the effect of static or dynamic noise structures. Figure 2 demonstrates the median and interquartile
range (IQR) for the 100-dimensional trigonometric problem for simulations calls up to 20,000. We observe
that in the smaller noise structures that are the static additive and the additive inversely proportional to
the gradient norm, ASTRO outperforms SGD in optimality gap. When the noise variance is fixed but the
magnitude varies (the multiplicative case), we observe that the closer we get to the optimal solution, the
better the performance of ASTRO; although in the first 10,000 oracle calls SGD outperforms ASTRO and
beyond that it stalls for a while. In the case of highly variable noise, that is the additive proportional to
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the gradient norm, ASTRO underperforms SGD. Figures 3 and 4 show the same effect on the true gradient
norm of the 100-dimensional trigonometric function.

The last two observations (in the additive proportional to the gradient norm and the multiplicative case)
were much more visible in the 100-dimensional trigonometric problem. In the lower dimensional problems
ASTRO was more competitive with SGD even for the largely variable cases. To demonstrate this we next
list both the optimality gap and the true gradient norm of all the problems for the bottom two structures
in Table 1 and Table 2, respectively.

In these tables the initial values for the associated measures are also listed, that are the same for both
of the algorithms. Since the progress in both the algorithms significantly slows down after the first few
hundred runs, we list the measures at n = 500 and n = 20,000 noting that the changes in the last 10,000
is stable and small consistently for all the problems. Each cell of the tables includes the median and
the interquartile range or IQR in parentheses. For problems with dimensions higher than 4, we observe
that in the first 500 oracle calls ASTRO does not reach a solution as good as SGD in both performance
measures. This shows a somewhat faster convergence of SGD in the first iterations. However the converges
significantly slows down in SGD and we can compare the performance of all cases but one (trigonometric
problem with additive noise proportional to gradient norm – as shown in the figures before) ASTRO reaches
a better incumbent solution, reasonably close to the optimal value for most instances.

Table 1: The estimated median and interquartile range of the true optimality gap at a (random) returned
solution of ASTRO and SGD, as a function of the total simulation budget. The statistics were computed
based on 20 independent runs of ASTRO and SGD on each problem.

Dim Problem Initial Optimality Algorithm Additive Noise Variance 1+‖g(·)‖2 Multiplicative Noise
Gap n = 500 n = 20,000 n = 500 n = 20,000

2
ROSENBROCK 201.77

ASTRO 1.40 (5.16) 0.05 (0.04) 0.61 (1.44) 0.04 (0.13)
SGD 2.12 (2.03) 1.43 (2.08) 2.23 (2.70) 1.17 (2.54)

FREUDENSTEIN & ROTH 889.70
ASTRO 59.38 (25.38) 6.28 (12.58) 55.01 (14.47) 3.66 (6.96)

SGD 54.63 (13.99) 54.19 (13.88) 51.00 (14.24) 49.60 (12.07)

3
HELICAL 511.10

ASTRO 4.73 (257.42) 0.03 (0.06) 1.94 (3.18) 0.04 (0.20)
SGD 14.27 (80.88) 5.87 (17.27) 6.83 (18.80) 2.84 (3.95)

BARD 1,258.30
ASTRO 56.38 (61.09) 19.95 (21.63) 30.02 (39.87) 0.90 (21.25)

SGD 127.14 (350.16) 106.73 (269.89) 44.79 (70.21) 37.21 (63.05)

4
WOOD 579.01

ASTRO 1.83 (9.23) 0.01 (0.01) 11.56 (16.95) 2.45 (3.29)
SGD 12.26 (13.03) 5.39 (5.21) 20.88 (22.84) 15.45 (19.72)

KOWALIK & OSBORNE 8.86
ASTRO 0.26 (1.10) 0.03 (0.09) 0.07 (0.11) 0.03 (0.10)

SGD 1.43 (2.64) 1.26 (2.35) 2.44 (3.93) 2.01 (3.70)

6
BIGGS EXP6 125.43

ASTRO 12.87 (30.90) 0.27 (0.04) 1.39 (12.98) 0.30 (0.11)
SGD 5.61 (7.90) 4.07 (6.14) 7.13 (9.14) 6.09 (7.09)

WATSON 398.40
ASTRO 134.10 (199.54) 0.02 (0.06) 8.68 (35.47) 0.03 (0.11)

SGD 16.51 (14.62) 12.28 (9.80) 13.82 (20.53) 8.15 (13.83)

8
EXTENDED POWELL 425.33

ASTRO 226.29 (441.22) 0.01 (0.01) 8.51 (15.15) 0.03 (0.06)
SGD 53.33 (52.41) 25.14 (26.52) 32.38 (23.59) 14.71 (7.51)

PENALTY II 961.60
ASTRO 325.92 (594.24) 0.01 (0.01) 1.98 (76.35) 0.02 (0.06)

SGD 19.59 (17.61) 10.11 (7.89) 9.88 (4.78) 4.06 (3.83)

100
TRIGONOMETRIC 3,774,634.00

ASTRO 349,382.40 (149,783.30) 185,692.10 (112,289.00) 64,280.76 (68,859.61) 2.27 (4.57)
SGD 1,380,964.00 (750,351.10) 45.30 (35.78) 29.38 (30.42) 7.08 (4.03)

DISCRETE INTEGRAL EQ. 161.66
ASTRO 102.10 (27.28) 50.17 (33.41) 21.22 (10.73) 0.29 (0.31)

SGD 104.40 (26.04) 102.45 (24.97) 105.45 (18.24) 103.26 (17.14)
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Figure 1: The median and interquartile interval of the optimality gaps of 20 independent runs for ASTRO
and SGD on a 100-dimensional problem.

Figure 2: The median and interquartile interval of the optimality gaps of 20 independent runs of ASTRO
and SGD on a 100-dimensional problem.
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Figure 3: The median and interquartile interval of the true gradient norms of 20 independent runs for
ASTRO and SGD on a 100-dimensional problem.

Figure 4: The median and interquartile interval of the true gradient norms of 20 independent runs of ASTRO
and SGD on a 100-dimensional problem.
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Table 2: The estimated median and interquartile range of the true gradient norm at a (random) returned
solution of ASTRO and SGD, as a function of the total simulation budget. The statistics were computed
based on 20 independent runs of ASTRO and SGD on each problem.

Dim Problem Initial ‖g(·)‖ Algorithm Additive Noise Variance 1+‖g(·)‖2 Multiplicative Noise
n = 500 n = 20000 n = 500 n = 20000

2
ROSENBROCK 333.06

ASTRO 2.17 (12.85) 0.30 (0.12) 2.46 (13.83) 0.32 (0.34)
SGD 18.33 (27.76) 3.89 (9.85) 7.30 (20.34) 2.99 (3.20)

FREUDENSTEIN & ROTH 827.20
ASTRO 19.29 (306.90) 5.21 (12.22) 14.81 (15.18) 3.08 (3.69)

SGD 10.96 (2.36) 9.55 (2.72) 10.76 (2.11) 10.05 (1.62)

3
HELICAL 1,087.88

ASTRO 40.67 (742.40) 0.50 (0.52) 4.42 (99.62) 0.30 (0.50)
SGD 51.87 (114.47) 19.68 (35.22) 66.26 (140.57) 26.47 (37.91)

BARD 3,362.24
ASTRO 469.05 (2,010.12) 0.34 (0.82) 4.17 (342.30) 0.25 (0.25)

SGD 87.84 (1,490.06) 71.89 (1,338.30) 38.66 (32.60) 29.66 (23.10)

4
WOOD 299.22

ASTRO 32.19 (104.04) 0.09 (0.10) 28.78 (39.11) 0.86 (1.38)
SGD 58.92 (32.22) 35.17 (14.53) 41.14 (30.45) 25.27 (7.75)

KOWALIK & OSBORNE 11.16
ASTRO 1.36 (158.02) 0.06 (0.04) 0.20 (0.35) 0.01 (0.03)

SGD 3.36 (34.64) 3.33 (26.07) 5.29 (4.71) 4.93 (4.08)

6
BIGGS EXP6 67.55

ASTRO 18.91 (84.33) 0.15 (0.17) 7.06 (11.82) 0.09 (0.19)
SGD 18.02 (17.96) 14.12 (14.3) 31.89 (41.09) 18.81 (21.12)

WATSON 679.67
ASTRO 327.40 (531.90) 0.15 (0.15) 22.79 (113.21) 0.12 (0.09)

SGD 47.77 (44.29) 32.02 (21.63) 58.73 (35.79) 36.13 (24.39)

8
EXTENDED POWELL 540.69

ASTRO 310.49 (300.88) 0.20 (0.13) 16.43 (23.47) 0.10 (0.26)
SGD 88.08 (57.29) 47.11 (30.10) 97.31 (53.01) 52.16 (23.78)

PENALTY II 1,320.45
ASTRO 692.82 (825.69) 0.09 (0.05) 78.88 (189.26) 0.31 (0.43)

SGD 69.91 (31.24) 39.39 (17.54) 58.40 (27.71) 29.99 (13.99)

100
TRIGONOMETRIC 450,279.30

ASTRO 124,662.80 (22,823.18) 70,628.48 (26,998.55) 41,525.05 (26,483.16) 18.14 (27.64)
SGD 252,336.50 (69,898.79) 180.78 (55.75) 134.56 (66.08) 44.50 (15.29)

DISCRETE INTEGRAL EQ. 25.83
ASTRO 24.39 (6.36) 14.99 (7.01) 9.38 (2.48) 1.08 (0.50)

SGD 24.44 (4.66) 24.06 (4.55) 23.98 (3.99) 23.61 (3.81)
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