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ABSTRACT

We consider the question of identifying the set of all solutions to a system of nonlinear equations, when
the functions involved in the system can only be observed through a stochastic simulation. Such problems
frequently arise as first order necessary conditions in global simulation optimization problems. A convenient
method of “solving” such problems involves generating (using a fixed sample) a sample-path approximation
of the functions involved, and then executing a convergent root-finding algorithm with several random
restarts. The various solutions obtained thus are then gathered to form the estimator of the true set. We
investigate the quality of the returned set in terms of the expected Hausdorff distance between the returned
and true sets. Our message is that a certain simple logarithmic relationship between the sample size and
the number of random restarts ensures maximal efficiency.

1 INTRODUCTION

In this paper we consider the question of identifying the “true set” π∗ of all solutions to a system of stochastic
nonlinear equations g(x) = 0, for g : D⊂ IRq→ IRq. We call the nonlinear systems we consider “stochastic”
because we assume that the underlying vector function g can be observed only using a stochastic simulation.
In other words, we do not know the function g but instead have a consistent estimator Gm : D→ IRq of g.
The subscript m refers to some measure of simulation effort (usually sample size) expended to obtain an
estimate of g at the requested location. A typical example arises when g is an expectation of some random
function G (i.e., g(x) = E[Y (x)]) and its value at any location x ∈D is obtained as a sample average of
independent and identically distributed (iid) replicates of Y (x) (i.e., Gm(x) = m−1

∑
m
i=1Yi(x)).

The question of identifying solutions (some or all) to a system of stochastic nonlinear equations
has recently generated much attention. This is primarily owing to its flexibility — instead of having to
analytically specify the functions involved, a user can simply “embed” these functions within a simulation
of virtually any complexity. Some key application areas include equilibrium problems appearing within
transport systems, problems in financial portfolio management, stocking problems in inventory management,
and problems on bandwidth management in telecommunication networks. See (Pasupathy 2010) for a long
list of references pertaining to several application areas.

In each of the above application contexts, depending on the prevailing needs, the user might seek some
solution to the stochastic nonlinear system, or all solutions to the stochastic nonlinear system. The latter
scenario, which is the broad focus of this paper, is typical of global stochastic optimization contexts, that
is, contexts where the user seeks the optimal value (or location) of an estimable objective function, subject
to a set of estimable constraints. In such cases, the need to identify all solutions of a stochastic nonlinear
system arises either from specifying the first-order necessary conditions for local optimality, or simply due
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to the feasible region being specified through equality constraints. In either case, the identification of all
solutions to the specified nonlinear system is a necessary first step within the global optimization process.

While such global optimization contexts are important motivators, the need to identify all solutions to
a stochastic nonlinear system also arises in its own right. For instance, the long-term equilibrium behavior
of vehicular-traffic networks (Bierlaire and Crittin 2006; Sheffi 1985), telecommunication networks, and
economic systems are frequently of interest for purely descriptive purposes. The equilibrium behavior in
such contexts is routinely characterized through a stochastic fixed-point (vector) equation. The “manager”
within such contexts might then be interested in all solutions to such a fixed-point equation, since the
solutions describe the potential final states of the system that he commands.

How does one solve a stochastic nonlinear system of equations? While various solution strategies are
available (Pasupathy 2010; Kushner and Yin 2003; Spall 2003; Pasupathy and Kim 2011), our interest in this
paper is limited to a conceptually simple solution method called sample average approximation (SAA). SAA,
in its basic form, involves generating a sample-path of the function g using an “appropriately chosen” sample
size m, and then solving the resulting deterministic problem to desired precision using a chosen numerical
procedure. Owing to its simplicity, SAA has recently found enormous expediency alongside stochastic
approximation methods (Pasupathy 2010; Kushner and Yin 2003; Spall 2003; Pasupathy and Kim 2011)
amongst researchers and practitioners. SAA and more generally sampling based simulation optimization
methods have been investigated extensively towards establishing large-sample properties (Robinson 1996;
Shapiro et al. 2009; Shashaani et al. 2018; Pasupathy et al. 2018; Pasupathy and Song 2019), small-sample
theories on solution quality (Mak et al. 1999; Bayraksan and Morton 2007), and various implementable
refinements (?; Pasupathy 2010; Pasupathy and Schmeiser 2009).

We emphasize that SAA, as described, implicitly solves only for a solution of the specified stochastic
nonlinear system. For the current context of identifying all solutions to a system of stochastic nonlinear
equations, the following simple modification of SAA, henceforth called the method of random restarts
(MRR), is necessary: (i) generate a sample-path problem using an “appropriately chosen” sample size m;
(ii) generate r random initial solutions according to a chosen sampling measure supported on D; and (iii)
execute a convergent root-finding algorithm from each of the r generated initial solutions, and gather the
resulting solutions to form the returned set Π∗m(X0(r)). Such “random restart” algorithms are very popular
in the global optimization community (Pardalos and Romeijn 2002).

Our primary concern in this paper relates to efficiency issues within MRR. It seems intuitively clear
that when implementing MRR as described above, the number of restarts r and the sample size m should
be “in balance” in order to maximize any reasonable measure of efficiency. For a given total computing
budget, “too many” restarts would translate to a small sample size, and a correspondingly large sampling
variance, in the returned set Π∗m(X0(r)). “Too few” restarts, by contrast, will result in a strong bias in
Π∗m(X0(r)) due to the potential non-identification of all solutions to the nonlinear system. This apparent
tradeoff brings us to the central questions addressed in this paper.

– In MRR, can the quality of the returned set Π∗m(X0(r)) be rigorously quantified, particularly as a
function of the chosen number of random restarts r and the chosen sample size m?

– Does there exist an “optimal” trade-off between the number of restarts r and the sample size m that
ensures maximal efficiency in some precise sense? Furthermore, can this trade-off be characterized
in a manner that aids implementation?

As we shall see, the answer to first question is in the affirmative and we establish two results that together
connect the quality of the provided estimator Gm, and the number of restarts r, with the quality of the
returned set Πm(X0(r)). This lays the foundation for an answer to the second question, where we show
that there indeed needs to be a balance between r and m in order to ensure maximal efficiency. More
importantly, we demonstrate that such balance is characterized very simply, through a certain logarithmic
relationship between r and m.
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1.1 Contributions

The problem of identifying all solutions to a system of stochastic nonlinear equations holds great significance
due to its applicability within global stochastic optimization settings, and in general within all stochastic
fixed-point settings. While the broad solution strategy (modify SAA with random restarts) to tackle such
problems seems clear, crucial specific questions surrounding “optimal” parameter choice remain largely
unresolved. This paper, with a view toward aiding efficient implementation, addresses some of these
questions. The following are specific contributions.

(i) We rigorously establish the effect of sample size (Proposition 2), and the number of restarts
(Proposition 3), on the rate at which the expected Hausdorff distance between the returned set and
the true set tends to zero in MRR. We show that the said rate’s dependence on sample size is
canonical, i.e., it is the same as the rate at which the provided simulation estimator Gm tends to
its limit g. By contrast, the dependence on the number of random restarts is relatively weak, and
intimately connected to the nature of sampling employed within MRR.

(ii) Exploiting the rate established in (i), we demonstrate (Proposition 5) that if (and only if) the sample size
and the number of random restarts are chosen to satisfy a simply specified logarithmic relationship,
the resulting behavior of the returned set is optimal in a certain precise sense. Furthermore, we show
that at such optimality, there is no loss in efficiency due to algorithmic choices. The implications
for implementation are easily evident.

(iii) A minor contribution is clarifying the stipulations and the nature of convergence of MRR (Proposition
1). We demonstrate that there are essentially no surprises, i.e., convergence happens in a form and
under conditions that one might intuitively expect.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we introduce some preliminaries including a
formal listing of MRR for clarity, notation and terminology used throughout the paper, and the nature of
basic convergence within MRR. Section 3 contains the main results of this note, i.e., results on convergence
rates and the optimal trade-off between sample size and the number of random restarts. We provide
concluding remarks in Section 4.

2 PRELIMINARIES

We remind the reader of the general problem context: identify all solutions of the vector equation g(x) = 0,
where the function g : D→ IRq is consistently estimated using Gm : D→ IRq for all x ∈D. Also, for clarity,
we list the algorithmic framework of MRR.

Method of Random Restarts (MRR):

1. Generate a sample-path function Gm(x) using the sample size m.
2. Randomly generate r initial solutions X1

0 ,X
2
0 , . . . ,X

r
0 independently, and each governed by the

measure µX0(·) supported on D.
3. Solve (r times) the sample-path root-finding problem Gm(x)= 0 using the initial solutions X1

0 ,X
2
0 , . . . ,X

r
0 .

Record the solutions obtained X∗1 ,X
∗
2 , . . . ,X

∗
r .

4. Deliver the returned set Π∗m(X0(r)) = {X∗1 ,X∗2 , . . . ,X∗r } to the user.

2.1 Notation and Terminology

The following notation is used throughout the paper: (i) the generic initial guess for any random restart
is denoted by the random variable X0; (ii) X1

0 ,X
2
0 , . . . ,X

r
0 are r iid copies of the random variable X0, and

X0(r) = (X1
0 ,X

2
0 , . . . ,X

r
0); (iii) Xn

p→X means that the sequence of random variables {Xn} converges to
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the random variable X in probability; (iv) Xn → X wp1 means that the sequence of random variables
{Xn} converges to the random variable X with probability one; (v) for two sets A,B, the difference set
∆(A,B) = (A∩Bc)∪(B∩Ac); (vi) the ε-ball around x∈Dwill be denoted as V (x,ε) = {y∈D : ‖y−x‖≤ ε};
(vii) for a set A, the diameter diam(A) = supx,y∈A{‖x−y‖}; (viii) the Lebesgue measure of a measurable set A
is denotedL(A); (ix) the distance of the set A⊂ IRq from the set B⊂ IRq is dist(A,B)= supx∈A{infy∈B ‖x−y‖};
(x) the Hausdorff distance H(A,B) between the sets A and B is H(A,B) = max(dist(A,B),dist(B,A)); (xi)
throughout the paper we interchangeably write µX0(A) and Pr{X0 ∈ A} to refer to the probability assigned
by the sampling measure µX0(·) to the set A⊂D.

We will write π∗(x) and Π∗m(x) to denote the solution that will be attained by the root-finding algorithm
when executed (hypothetically) on the functions g and Gm respectively, with the initial guess x ∈ D.
Accordingly, the functions g and Gm, along with the root-finding algorithm in use, partition the space D
into attraction regions. Specifically, suppose the true set π∗ = {x∗1,x∗2, . . . ,x∗k}. Then the attraction regions
B1,B2, . . . ,Bk corresponding to the function g are Bi = {x ∈D : π∗(x) = x∗i }. We assume that the algorithm
is such that the attraction regions partition D, i.e., Bi⋂B j = /0 for i 6= j, and

⋃k
i=1 Bi =D. The attraction

regions B1
m,B

2
m, . . . , corresponding to Gm are defined in similar fashion.

For regularity, we assume that the attraction regions corresponding to the functions g and Gm contain
their respective roots in their interior. Formally, for each x∗i ∈ π∗, there exists λ > 0 such that V (x∗i ,λ )⊂ Bi.
A similar condition is assumed to hold for each X∗m ∈ Π∗m. Accordingly, we define the the minimal-size
(denoted msize(·)) of an attraction region as the radius of the “largest ball” that can be fitted around the
root, while remaining within the attraction region. So, the minimal-size of the attraction region Bi is

msize(Bi) = sup{λ : V (x∗i ,λ )⊂ Bi}.

We will frequently talk about the convergence of double sequences, particularly with respect to the
number of random restarts r and the sample size m. In such contexts, whenever we write limm,r→∞ a(m,r),
we are referring to the double limit of the sequence {a(m,r)}, as opposed to its iterative limits. (We have
found little reason to investigate the latter limits in the current context.) For more on double and iterative
limits, and their connection, see Royden (1988).

Finally, we re-emphasize that the true set π∗ is the set of solutions to the vector equation g(x) = 0, the
sample-path set Π∗m is the set of solutions to the vector equation Gm(x) = 0, and the returned set Π∗m(X0(r))
is the set of solutions that will be returned to the user upon execution of MRR with sample-size m and
restarts X0(r) = (X1

0 ,X
2
0 , . . . ,X

r
0).

2.2 Convergence

We begin by clarifying the conditions under which the returned set Π∗m(X0(r)) in MRR converges to the
true set π∗.
Proposition 1 Consider the following conditions.

A1. The set of zeros Π∗m of the function Gm is non-empty for m large enough, wp1.
A2. Gm(x)→ g(x) uniformly (in x) as m→ ∞ wp1.
A3. Constants t1, t2 > 0 are such that ‖g(x)‖ ≥ t1H({x},π∗), and ‖Gm(x)‖ ≥ t2H({x},Π∗m) wp1, for all

x ∈D.
A4. The minimal-size (see Section 2.1) of the attraction regions B1

m,B
2
m, . . . corresponding to the function

Gm are such that liminfm→∞ inf j{msize(B j
m)}> 0 wp1.

A5. Let R⊂D be a bounded region. If A is a class of sets in R such that infA∈A{L(A)}> 0, then the
sampling measure µX0(·) is such that infA∈A{µX0(A)}> 0.

The following assertions are true.

(i) If Assumptions A1,A2,A3 hold, then H(Π∗m,π
∗)→ 0 wp1 as m→ ∞.
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(ii) If Assumptions A1,A2 . . . ,A5 hold, then limm,r→∞ E[Hq(Π∗m(X0(r)),π∗)] = 0 for q > 0.

Proof. Consider X∗m ∈ Π∗m (which exists for large enough m by Assumption A1), and denote d(X∗m) =
dist(X∗m,π

∗). Since π∗ is finite, we know that dist(X∗m,π
∗)= ‖X∗m−x∗‖ for some x∈ π∗. Applying Assumption

A3 we then have ‖g(X∗m)−g(x∗)‖= ‖g(X∗m)‖ ≥ t1d(X∗m). However, we also know by Assumption A2 that
for given ε > 0, ‖Gm(X∗m)−g(X∗m)‖ = ‖g(X∗m)‖ ≤ ε for large enough m wp1. We thus see that for given
ε > 0, d(X∗m)≤ ε/t1 for large enough m wp1. This implies that limm→∞ dist(Π∗m,π

∗) = 0 wp1. Likewise, by
analogously considering x∗i ∈ π∗ and using the slope condition on Gm, we have that limm→∞ dist(π∗,Π∗m) = 0
wp1. Since both dist(Π∗m,π

∗) and dist(π∗,Π∗m)→ 0 wp1, the first assertion of the proposition holds.
Towards helping prove the second assertion, we now note three facts.

(a) From assertion (i) and since π∗ is finite, the set Π∗m (and the random variables H(Π∗m,π
∗)

H(Π∗m(X0(r)),π∗))) are uniformly bounded for large enough m wp1.
(b) From (a) and Assumption A4, there exists l < ∞ such that for large enough m, the cardinality

card(Π∗m)< l wp1.
(c) Using Assumption A4, let ν > 0 be such that for large enough m, msize(Bi

m)> ν wp1 for any attraction
region Bi

m corresponding to Gm. Also, since Π∗m is uniformly bounded for large enough m, there
exists a bounded rectangular region R such that

⋃
x∈Π∗m

V (x,ν)⊂ R for large enough m wp1. Now
apply Assumption A5 by setting A= {A :L(A)≥ ν} to see that ρ = liminfm→∞ infi Pr{X0 ∈Bi

m}> 0.

Now we are ready to prove assertion (ii) of the proposition. We write

E[Hq(Π∗m(X0(r)),π∗)] = E[Hq(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) 6= Π
∗
m]Pr{Π∗m(X0(r)) 6= Π

∗
m}+

E[Hq(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π
∗
m]Pr{Π∗m(X0(r)) = Π

∗
m}. (1)

Consider the second term Pr{Π∗m(X0(r)) 6=Π∗m} on the right-hand side of (1). From Boole’s inequality (Ross
1998, pp. 66) and using (b), (c) in preceding paragraph, we have for large enough m,

Pr{Π∗m(X0(r)) 6= Π
∗
m} ≤∑

i
Pr{∩r

j=1X j
0 (r) /∈ Bi

m} ≤ l(1−ρ)r→ 0 wp1 as r→ ∞. (2)

Furthermore, since H(Π∗m(X0(r)),π∗) is uniformly bounded for large enough m wp1, (2) implies

lim
m,r→∞

E[Hq(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) 6= Π
∗
m]Pr{Π∗m(X0(r)) 6= Π

∗
m}= 0 wp1. (3)

Next consider the third term E[Hq(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) =Π∗m] = E[Hq(Π∗m,π
∗)] appearing on the

right-hand side of (1). SinceH(Π∗m,π
∗) is uniformly bounded for large enough m wp1, and sinceH(Π∗m,π

∗)→
0 wp1, Lebesgue’s dominated convergence theorem (Royden 1988, pp. 268) gives limm→∞ E[Hq(Π∗m,π

∗)] =
0. We thus have

lim
m,r→∞

E[Hq(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π
∗
m]Pr{Π∗m(X0(r)) = Π

∗
m}= 0 wp1. (4)

The statements in (3) and (4) imply that limm,r→∞ E[Hq(Π∗m,π
∗)] = 0 for q > 0.

Assumptions A1,A2 are fairly standard in the context of proving convergence in solution space (Pflug
2004; Shapiro et al. 2009). Condition A3 stipulates minimum slopes on the function g and its estimator
Gm, and is meant to ensure that “nearness” in the function space translates to “nearness” in the domain.
Assumptions A4 is imposed to ensure that roots with vanishing attraction regions do not persist. This is
arguably reasonable since no algorithm without specific prior information will be able to systematically
locate such roots. Assumption A5 is very mild and relates the Lebesgue measure of sets in D to the
sampling measure that is in use within the algorithm. Most widely known continuous measures satisfy this
assumption.
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Since the assertion (ii) of Proposition 1 implies convergence in mean square, H(Π∗m(X0(r)),π∗)
p→0

(in probability) is also guaranteed. Nothing can be said, however, about the almost sure convergence of
H(Π∗m(X0(r)),π∗) to π∗ without further assumptions on the nature of the realizations of the random variable
X0.

3 CONVERGENCE RATES AND OPTIMAL PARAMETER CHOICE

In Section 2.2, we demonstrated that under certain conditions, the moments of the Hausdorff distance
between the returned set Π∗m(X0(r)) and the true set π∗ tends to zero. In this section, we delve a little
further to establish the rate at which such convergence happens. These results on the rate of convergence
will then set the stage for inference on the optimal choices of the number of random restarts r, and sample
size m.

For separating the effects of sample size and the number of restarts, we write

E[H(Π∗m(X0(r)),π∗)] = E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π
∗
m]Pr{Π∗m(X0(r)) = Π

∗
m}+

E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) 6= Π
∗
m]Pr{Π∗m(X0(r)) 6= Π

∗
m}. (5)

For ease of exposition, we will individually analyze the terms appearing in (5). We first show that under
certain conditions, the first multiplier of the first term in (5) simply inherits the convergence rate of the
simulation estimator Gm. Specifically, Proposition 2 asserts that, if Gm converges to g according to the rate
function β−1(m), then E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π∗m] converges to zero according to β−1(m) as
well. Since E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π∗m] = E[H(Π∗m,π

∗)], we have chosen to state Proposition
2 without reference to the number of random restarts r.
Proposition 2 Let conditions A1,A2 of Proposition 1 hold. In addition, assume the following.

A′3. Constants t1, t ′1, t2, t
′
2 > 0 satisfy t1H({x},π∗)≤‖g(x)‖≤ t ′1H({x},π∗), and t2H({x},Π∗m)≤‖Gm(x)‖≤

t ′2H({x},Π∗m) wp1, for all x ∈D.
A6. The random variable liminfm→∞ β (m)supz∈π∗ ‖Gm(z)− g(z)‖ does not degenerate to zero, i.e.,

Pr{liminfm→∞ β (m)supz∈π∗ ‖Gm(z)−g(z)‖> s}> 0 for some s > 0.
A7. ε(c) : [0,∞)→ (0,1] is a non-increasing function such that the tail probability function Pr{β (m)supx∈D ‖Gm(x)−

g(x)‖ ≥ c} ≤ ε(c) for large-enough m, and
∫

∞

0 ε(c1/2)dc < ∞.

Then for all α ∈ [0,2],

0 < liminf
m→∞

E[β α(m)Hα(Π∗m,π
∗)]≤ limsup

m→∞

E[β α(m)Hα(Π∗m,π
∗)]< ∞. (6)

Proof. We prove the assertion of the proposition in two parts, corresponding to the first and last inequalities
in (6). (The second inequality in (6) holds trivially.) Write

Am = sup
z∈Π∗m

{‖Gm(z)−g(z)‖}= sup
z∈Π∗m

{‖g(z)‖} ≤ sup
z∈Π∗m

{t ′1 dist({z},π∗)}= t ′1Bm;

Cm = sup
z∈π∗
{‖Gm(z)−g(z)‖}= sup

z∈π∗
{‖Gm(z)‖} ≤ sup

z∈π∗
{t ′2 dist({z},Π∗m)}= t ′2Dm;

and hence
Max(t ′1, t

′
2)E[Max(Bm,Dm)]≥ E[Max(Am,Cm)]. (7)

However, we see that

liminf
m→∞

E[β α(m)(Max(Am,Cm))
α ]≥ liminf

m→∞
E[β α(m)Cα

m ]≥ E[liminf
m→∞

β
α(m)Cα

m ]> 0, (8)
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where the second inequality in (8) follows from Fatou’s lemma (Serfling 1980, pp. 92) and the third inequality
in (8) is by assumption A6. From (7) and (8), and noticing that E[Hα(Π∗m,π

∗)] = E[(Max(Bm,Dm))
α ], we

see that the first inequality in (6) has to hold. Next write

Am = sup
z∈Π∗m

{‖Gm(z)−g(z)‖}= sup
z∈Π∗m

{‖g(z)‖} ≥ sup
z∈Π∗m

{t1 dist({z},π∗)}= t1Bm

Cm = sup
z∈π∗
{‖Gm(z)−g(z)‖}= sup

z∈π∗
{‖Gm(z)‖} ≥ sup

z∈π∗
{t2 dist({z},Π∗m)}= t2Dm;

and hence
E[Max(Am,Cm)]≥Min(t1, t2)E[Max(Bm,Dm)]. (9)

From Assumption A7, particularly the stipulation on the tail ε(c), we have for large enough m,

E[(β (m)Max(Am,Cm))
α ] =

∫
∞

0
Pr{(β (m) sup

x∈D
‖Gm(x)−g(x)‖)α > c}dc≤

∫
ε(c1/α)dc < ∞. (10)

Now use (9) and (10) to conclude that last inequality in (6) holds as well.

The assertion of Proposition 2 — the distance between the sample-path set Π∗m and the true set π∗

converges to zero at the same rate as the estimator Gm converges to the limit function g — should not
come as a surprise. The main ingredient driving this assertion is Assumption A′3. By assuming that Gm
and g are neither “too flat” nor “too steep,” A3 guarantees that nearness in function values translates into
nearness in the domain. (Assumption A′3 replaces the milder assumption Assumption A3 of Proposition 1
where we only needed the condition that Gm and g are not too flat.) Assumption A6 identifies β−1(m) as
the exact rate at which Gm tends to g, as opposed to just saying Gm = Op(β (m)). If the function Gm is a
sample mean (as is often the case), under very mild conditions (Serfling 1980) the function β (m) =

√
m.

This gives the canonical case where the squared distance between the sample-path set and the true set is
of the order of the reciprocal of the sample size. Finally, Assumption A7 stipulates that the tails of the
random variables β (m)supx∈D ‖Gm(x)−g(x)‖ fall to zero fast enough. This is a standard assumption used
to justify the exchange of limits and integrals.

We now turn our attention back to the expression in (5). We have just shown through Proposition 2 that
the first term appearing in the right-hand side of (5) converges to zero at the same rate as Gm converges
to g, i.e., according to the function β−1(m). We now establish, through Proposition 3, the behavior of the
other three terms appearing in (5). Specifically, assertion (i) in Proposition 3 demonstrates that the third
term appearing on the right-hand side of (5) remains bounded away from 0 and ∞ as m,r→ ∞. Similarly,
assertion (ii) in Proposition 3 demonstrates that the fourth term appearing on the right-hand side of (5)
tends to zero exponentially in the number of random restarts r. Propositions 2 and 3 thus collectively (and
completely) describe the convergence rate behavior of the moments of H(Π∗m(X0(r)),π∗).
Proposition 3 Consider the following assumptions.

A8. There exists a labeling B1
m,B

2
m, . . . , of the attraction regions corresponding to the function Gm such

that they satisfy L(∆(Bi
m,B

i))→ 0 wp1 as m→ ∞, for i = 1,2, . . . ,k.
A9. The sampling measure µX0(·) is continuous in the Lebesgue measure, i.e., if A⊂D and {Ai} is a

sequence of sets in D satisfying L(∆(Ai,A))→ 0, then µX0(Ai)→ µX0(A).

Let Assumptions A1,A2, . . . ,A9 hold, with the more stringent A′3 (Proposition 2) substituted for A3. Then
the following assertions are true.

(i) Denoting C(r,m) =H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) 6= Π∗m,

0 < liminf
m,r→∞

E[C(r,m)]≤ limsup
m,r→∞

E[C(r,m)]< ∞.
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(ii) Denote the “smallest attainment probability” ρ∗ = minx∈π∗ Pr{π∗(X0) = x}, we have for all δ > 0
(assuming δ < 1−ρ∗),

liminf
m,r→∞

Pr{Π∗m(X0(r)) 6= Π∗m}
(1− (ρ∗+δ ))r = ∞; limsup

m,r→∞

Pr{Π∗m(X0(r)) 6= Π∗m}
(1− (ρ∗−δ ))r = 0.

Proof. To prove the last inequality in assertion (i), recall that π∗ is finite, and the set Π∗m is uniformly
bounded for large enough m. Hence, there exists κ1 < ∞ such that for large-enough m and all r, we can write
C(m,r)≤ diam(π∗∪Π∗m)≤ diam(π∗)+diam(Π∗m)< κ1. It thus follows that limsupm,r→∞ E[C(r,m)]< ∞.

For proving the first inequality in assertion (i), we see from Proposition 1 and Assumption A4 that
there have to be exactly k attraction regions (and k elements in Π∗m) corresponding to Gm for large enough
m wp1. Therefore, for given small-enough ε > 0 and large-enough m, there exists κ2 > 0 such that
C(m,r)≥ infx∈Π∗m dist(π∗,Π∗m\{x})≥ infi 6= j{‖x∗i − x∗j‖− ε}> κ2, after recalling that π∗ = {x∗1,x∗2, . . . ,x∗k}.
Apply Fatou’s lemma (Royden 1988, pp. 86) to get liminfm,r→∞ E[C(r,m)]≥ E[liminfm,r→∞C(r,m)]> 0.

For proving assertion (ii), denote Pr{X0 ∈ Bi
m|Gm}= ρi,m. Then, we note that

Pr{Π∗m(X0(r)) 6= Π
∗
m|Gm}

= ∑
i1

ρ
r
i1,m + ∑

i1 6=i2

(ρi1,m +ρi2,m)
r + · · ·+ ∑

i1 6=i2 6=···6=ik−1

(ρi1,m +ρi2,m + · · ·+ρik−1,m)
r, (11)

where each index i j satisfies i j ∈ {1,2, . . . ,k} if m is large enough. Due to Assumption A8 and Assumption
A9, we see that ρ∗m = Min{ρi,m : i = 1,2, . . . ,k}< ρ∗+δ (and hence 1−ρ∗m > 1−ρ∗−δ ) for large enough
m wp1, and for any fixed δ > 0. Since the largest summand in the last term appearing in (11) can be
expressed as simply (1−ρ∗m)

r, we see that

Pr{Π∗m(X0(r)) 6= Πm|Gm}
(1− (ρ∗+δ ))r >

(1−ρ∗m)
r

(1− (ρ∗+δ ))r → ∞ as m,r→ ∞,wp1.

Now noting that Pr{Π∗m(X0(r)) 6=Πm}=
∫

Pr{Π∗m(X0(r)) 6=Πm|Gm}ν(dGm) and using Fatou’s lemma (Roy-
den 1988, pp. 86), we conclude that the first statement in assertion (ii) should hold.

The second statement in assertion (ii) follows in similar fashion. Note that 1−ρ∗m < 1− (ρ∗− δ )
for large enough m wp1, implying that limm,r→∞(1−ρ∗m)

r/(1− (ρ∗− δ ))r = 0. Since (1−ρ∗m)
r is the

largest summand in (11), we have limm,r→∞ sr/(1− (ρ∗−δ ))r = 0 for any summand sr in (11). Moreover,
since there are

(k
1

)
+
(k

2

)
+ · · ·+

( k
k−1

)
= 2k− 2 < ∞ summands in (11) for large enough m, we see that

limsupm,r→∞(1− (ρ∗− δ ))−rPr{Π∗m(X0(r)) 6= Π∗m|Gm} = 0. Finally note that Pr{Π∗m(X0(r)) 6= Πm} =∫
Pr{Π∗m(X0(r)) 6= Πm|Gm}ν(dGm) and use Lebesgue’s dominated convergence theorem (Royden 1988,

pp. 268) to conclude that the second statement in (ii) holds as well.

We see assumption A8 as a certain type of continuity condition on the algorithm. It stipulates that as
Gm tends to its limit g, the behavior of the root-finding algorithm on Gm should tend to its (hypothetical)
behavior on g. Assumption A9 is a weak continuity assumption on the choice of the sampling measure
µX0(·). This assumption is again satisfied by virtually all well-known continuous measures.

Propositions 2 and 3 are crucial in that they give clues into how the number of restarts r should relate to
the sample size m, if E[H(Π∗m(X0(r)),π∗)] is to converge to zero rapidly. For example, from the convergence
rates β−1(m) and (1− (ρ∗±δ ))r that appear within Propositions 2 and 3, it seems that the slower of the
two sequences β−1(m) and (1−ρ∗)

r will determine the speed at which E[H(Π∗m(X0(r)),π∗)] tends to zero,
where ρ∗ measures the lowest “attainment probability” amongst all solutions. Loosely speaking, it thus
makes intuitive sense to choose the number of restarts r such that β−1(m) and (1−ρ∗)

r converge to zero
at the same rate. In what follows, Proposition 5 clarifies this intuitive notion. We first state a simple result
(without proof) that will be helpful in proving Proposition 5.
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Proposition 4 Let {a(m)} and {b(m)} be positive valued sequences satisfying a(m)→ ∞,b(m)→ ∞ as
m→∞, and let the limit limm→∞ a(m)/b(m) exist (allowing for ∞). Let q be a constant satisfying 0 < q < 1.
Then the following hold.

(i) If limm→∞ a(m)/b(m)< 1, then liminfm→∞ qa(m)/qb(m) = ∞.

(ii) If limm→∞ a(m)/b(m)> 1, then limsupm→∞ qa(m)/qb(m) = 0.

We are now ready for Proposition 5. We use the notation r(m) instead of r in the statement of Proposition
5 to make explicit the dependence of the number of restarts r on the sample size m.
Proposition 5 Let the assumptions A1, . . . ,A9 introduced in Propositions 1 through 3 hold, with A′3
substituted for A3. Assume the limit limm→∞ r(m)/ logβ (m) = l exists, after allowing l = ∞. Then the
following assertions hold for any δ > 0 (assuming δ < 1−ρ∗).

(i) If l ∈ [0,−1/ log(1− (ρ∗+δ ))], then liminfm→∞ β (m)E[H(Π∗m(X0(r)),π∗)] = ∞.
(ii) If l ∈ [−1/ log(1− (ρ∗−δ )),∞], then

0 < liminf
m→∞

β (m)E[H(Π∗m(X0(r)),π∗)]≤ limsup
m→∞

β (m)E[H(Π∗m(X0(r)),π∗)]< ∞.

Proof. By dividing (5) through by β−1(m) we have

E[H(Π∗m(X0(r)),π∗)]
β−1(m)

=
E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π∗m]

β−1(m)
Pr{Π∗m(X0(r)) = Π

∗
m}+

E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) 6= Π
∗
m]

Pr{Π∗m(X0(r)) 6= Π∗m}
β−1(m)

. (12)

We will now individually analyze the behavior of the four terms on the right-hand side of (12) to deduce the
assertions of the proposition. The first term t1(m) = β (m)E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) = Π∗m] appearing
on the right-hand side of (12) is independent of r and satisfies

0 < liminf
m→∞

t1(m)≤ limsup
m→∞

t1(m)< ∞, (13)

by Proposition 2. From (2) in proof of Proposition 1, the second term t2(m,r) = Pr{Π∗m(X0(r)) = Π∗m}
appearing on the right-hand side of (12) satisfies

lim
m,r→∞

t2(m,r) = 1. (14)

The third term t3(m,r) = E[H(Π∗m(X0(r)),π∗)|Π∗m(X0(r)) 6= Π∗m] appearing on the right-hand side of (12)
satisfies

0 < liminf
m,r→∞

t3(m,r)≤ limsup
m,r→∞

t3(m,r)< ∞, (15)

by assertion (i) of Proposition 3.
To understand the behavior of the last term t4(m,r) = β (m)Pr{Π∗m(X0(r)) 6= Π∗m}, first apply assertion

(i) of Proposition 4 with a(m) = r, b(m) = logβ (m)/ log1/q, and q = 1− (ρ∗+δ ). We get liminfm→∞(1−
(ρ∗+δ ))r/β−1(m) = ∞. This in combination with assertion (ii) of Proposition 3 implies that the last term
t4(m,r) appearing on the right-hand side of (12) satisfies

liminf
m,r→∞

t4(m,r) = liminf
m,r→∞

(1− (ρ∗+δ ))r

β−1(m)

Pr{Π∗m(X0(r)) 6= Π∗m}
(1− (ρ∗+δ ))r = ∞. (16)

Apply (13), (14), (15), (16) to (12), and conclude that the first assertion of the proposition holds.
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To prove the second assertion, we adopt a similar approach to deduce the behavior of t4(m,r).
Apply (ii) of Proposition 4 with a(m) = r, b(m) = logβ (m)/ log1/q, and q = 1− (ρ∗− δ ). We get
limsupm→∞(1− (ρ∗−δ ))r/β−1(m) = 0. This in combination with assertion (ii) of Proposition 3 implies
that t4(m,r) satisfies

limsup
m,r→∞

t4(m,r) = limsup
m,r→∞

(1− (ρ∗−δ ))r

β−1(m)

Pr{Π∗m(X0(r)) 6= Π∗m}
(1− (ρ∗−δ ))r = 0. (17)

Apply (13), (14), (15), (17) to (12), and conclude that the second assertion of the proposition holds.

Three implications are apparent from the assertions in Proposition 5. First, assertion (i) implies that
selecting the number of restarts to increase at a rate slower than the rate at which logβ (m) tends to
infinity causes the expected Hausdorff distance (between the returned set Π∗m(X0(r)) and the true set π∗)
to converge to zero at a rate slower than β−1(m) — the rate at which Gm converges to g. Second, the
maximal achievable convergence rate of the expected Hausdorff distance E[H(Π∗m(X0(r)),π∗)] is β−1(m).
This rate is achieved, for instance, if logβ (m) = o(r), i.e., the number of restarts is chosen to tend to infinity
faster than logβ (m). In fact, any choice of restarts such as r = logβ−1(m)/ log(1−u), where u < ρ∗, will
achieve the maximal convergence rate. The implicit assertion here is that it is most efficient to choose
r to be as close as possible but above logβ−1(m)/ log(1−ρ∗), since no additional benefit is incurred in
the form of an increased convergence rate due to increasing the number of restarts any further. Third,
it is apparent from the result that efficiency is critically dependent on the probability of sampling from
within the “smallest attraction region.” Specifically, it seems that efficiency gains are likely by maximizing
ρ∗ = Minx∈π∗{π∗(X0) = x} through our sampling strategy. In the extreme case, it is most efficient if µX0

is such that the probability of the algorithm evolving to any of the k zeros of g, when (hypothetically)
executed on g directly, are equal.

4 SUMMARY AND CONCLUDING REMARKS

MRR is a simple adaptation of sample average approximation targeted at the question of identifying all
solutions to a system of stochastic nonlinear equations, and with immediate relevance to global simulation
optimization. The method involves generating an approximate deterministic problem with a fixed sample
size, executing a convergent root-finding algorithm with several random restarts on the generated problem,
and then gathering the obtained solutions to form the estimator of the set of true solutions to the system.

In this note, we argue with rigorous theoretical support that in order to guarantee maximal efficiency in
MRR, the chosen number of random restarts should satisfy a certain simple logarithmic relationship with
the chosen sample size. In addition to being maximally efficient, maintaining this relationship guarantees
that efficiencies implicit in the simulation estimator are preserved, i.e., there is no loss in efficiency due to
algorithmic choice. Since the recommended relationship between restarts and sample size is canonical, we
intend its use as a broad guiding principle when devising specific implementations within simulation-based
root finding and optimization contexts.

Three other remarks relating to future research are in order.

(i) The “optimal” relationship between restarts and sample size established in this paper, while useful as
a guiding principle, still leaves constants unchosen. This is evident, for instance, from the fact that
the recommended relationship is (seemingly) independent of dimension! Efficient implementation
will crucially hinge on how these problem-specific constants are determined — an important area
that is worthy of further investigation.

(ii) For convenience, we have assumed throughout the paper that the solution obtained by the root-finding
algorithm during each random restart has “negligible error.” While we believe this assumption is
reasonable for the purposes of obtaining the broad relationship between restarts and sample size,
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how much to solve each random execution of the root-finding algorithm is an important question.
This problem has been addressed to a substantial extent for the context of finding any solution
to a system of stochastic nonlinear equations (Pasupathy and Kim 2011; Pasupathy 2010) and we
believe similar results will hold for the current context.

(iii) The quality of the estimator as obtained through MRR was shown to be inversely related to ρ∗
— the attraction region having the smallest measure under the chosen sampling plan. It is thus
true that convergence can be accelerated by making ρ∗ as large as possible. In other words, our
sampling measure µX0 should be tilted such that the likelihood of the algorithm evolving to any of
the k zeros of g (during a hypothetical execution on g) should be equalized.
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