
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

SUBSPACE COMMUNICATION DRIVEN SEARCH
FOR HIGH DIMENSIONAL OPTIMIZATION

Logan Mathesen
Kaushik Keezhnagar Chandrasekar

Xinsheng Li
Giulia Pedrielli

K. Selçuk Candan

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University

699 S Mill Ave
Tempe, AZ 85283, USA

ABSTRACT

Global optimization techniques often suffer the curse of dimensionality. In an attempt to face this challenge,
high dimensional search techniques try to identify and leverage upon the effective, lower, dimensionality
of the problem either in the original or in a transformed space. As a result, algorithms search for and
exploit a projection or create a random embedding. Our approach avoids modeling of high dimensional
spaces, and the assumption of low effective dimensionality. We argue that effectively high dimensional
functions can be recursively optimized over sets of complementary lower dimensional subspaces. In this
light, we propose the novel Subspace COmmunication for OPtimization (SCOOP) algorithm, which enables
intelligent information sharing among subspaces such that each subspace guides the other towards improved
locations. The experiments show that the accuracy of SCOOP rivals the state-of-the-art global optimization
techniques, while being several orders of magnitude faster and having better scalability against the problem
dimensionality.

1 Introduction

Many applications require optimization within high-dimensional problem spaces. A possible approach is to
treat the high-dimensional problem as the optimization of a non-convex black-box function, which involves
solving x∗ ∈ argminx∈X f (x), where X ⊂ Rd is a high-dimensional solution space and f : X → R is a
non-linear non-convex function. Bayesian Optimization has witnessed an incredible growth. Nevertheless,
the optimization of high-dimensional, highly non-linear, functions is still considered a hard problem (Rolland
et al. 2018; Hoang et al. 2017). A common approach to improve the search efficiency is to note that
for certain problem classes, most dimensions do not have a significant impact on the objective function
(Figure 1), (Djolonga et al. 2013; Wang et al. 2016; Bergstra and Bengio 2012). This is commonly referred
to as the assumption of low effective dimensionality. Many methods exploit this assumption to reduce the
problem dimension for subsequent lower dimensional surrogate modeling and search (Carpentier and Munos
2012; Chen et al. 2012): if one can assume there exist some combination of dimensions that produces an
effective subspace such that the objective does not change along any subspace which is orthogonal to it,
then search can be performed efficiently. For instance, algorithms such as SI-BO (Djolonga et al. 2013)
aim at learning and exploiting low effective dimensionality (Carpentier and Munos 2012; Chen et al. 2012).
A different perspective is to exploit lower effective dimensionality without knowing which dimensions are
important, in this second class of algorithms we find random search (RS) (Bergstra and Bengio 2012) and
Random Embedding Bayesian Optimization (REMBO) (Wang et al. 2016), that includes a warped kernel

3528978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

implementation (Binois et al. 2015) and a discussion on the choice of low-dimensional embedding domain
(Binois et al. 2017).

However, most of machine learning hyper-parameter optimization problems are inherently highly
dimensional (differently from physical problems). In these cases, dimensionality reduction may not return
the expected decrease in problem size. It is in light of these applications that we propose the novel Subspace
COmmunication for OPtimization (SCOOP) method for global optimization of non-linear functions. SCOOP
does not make any assumption on low or reduced effective dimensionality (Figure 2). In fact, by modeling
and optimizing over sequential sets of complementary subspaces, SCOOP enables intelligent information
sharing among these such that each subspace randomly guides the others towards improved locations. We
present three methods of information sharing, each of which makes a different use of the subspace related
and shared information. Experiments on several function categories, with different characteristics, show
that the accuracy of SCOOP rivals the state-of-the-art in existing high-dimensional global optimization
techniques.

Figure 1: Function examples, from (Wang et al.
2016) and (Djolonga et al. 2013), with low effec-
tive dimensionality, a common assumption in high
dimensional optimization.

Figure 2: Function examples with high effective di-
mensionality – this is the environment that we aim
to optimize over.

2 Background & Related Work

2.1 Problem Formulation

In this work, we will assume that the nonlinear optimization problem is defined over a compact solution
set X . The considered objective function f : x ∈X ⊂Rd → f (x) ∈R is deterministic in nature, and can
only be evaluated by running simulation at the desired location. The objective is to develop an efficient
search algorithm that finds the global minimum of f : X → R, namely:

P : min f (x)
s.t. x ∈X

2.2 Relevant Literature

Bayesian Optimization (BO) is a highly recognized framework for optimizing expensive, possibly noisy,
black-box functions. It offers a clean, concise, and formal approach to explicitly capturing uncertainty
about the objective function behavior through the use of prior and posterior model updates via sequential
data observations (Močkus 1975; Brochu et al. 2010; Shahriari et al. 2016). BO based samplers try
to achieve balancing of exploitation and exploration at each sample in the search, outperforming other
algorithms on many challenging benchmark functions (Jones 2001), and gaining a strong foothold in the
machine learning community (Snoek et al. 2012; Marchant and Ramos 2012). A common model (or prior
distribution) for BO–especially for continuous functions–is the Gaussian process (GP) due to its flexibility
and closed form expressions. While in this work we make use of the BO framework with GP prior, other
notable past proposed optimization methods include: grid and random search (Bergstra and Bengio 2012;

3529

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

Zabinsky et al. 1993), randomly restarted direct searches (Molvalioglu et al. 2010), as well as random
forests (Hutter et al. 2011) and bandit based Gaussian process modeling methods (Srinivas et al. 2009).

Despite the success of BO with GP (Jones et al. 1998; Hoffman et al. 2011), the general approach is
limited to a moderate dimensions of about 10 (Wang et al. 2016). This limitation is due to three intertwined
reasons: (a) the GP learning effort grows cubically with the number of observations as an inversion of a
dense covariance matrix is required; (b) as the dimensionality increases, the number of observations needed
to provide good coverage of the solution space increases exponentially; and (b) the computational challenge
of maximizing acquisition functions generally scales exponentially with the number of dimensions. In fact,
the cubic scaling in (a) and the required sequential sampling derived from (c) renders parallelism generally
ineffective. For these reasons, scaling of BO to high dimensional spaces is still an open research question.

Recently, additive Gaussian process (add-GP) modeling was proposed to extend BO into high dimensional
spaces while avoiding the assumption of low effective dimensionality (Kandasamy et al. 2015). The key
structural assumption underlying this approach is that f decomposes as:

f (x) =
M

∑
i=1

f (i)(x(i)) (1)

where x(i) ∈ X (i), and X (i) are lower dimensional subspaces such that the several f (i)(x(i)) can be
independently modeled as GP’s and added together to recover the full dimensional model, addressing
issue (a) above. An additive kernel based acquisition function can then be assessed over X and can
subsequently be optimized by maximizing over each subspace to recover sampling in X , thus addressing
issue (c). A great deal of work has been conducted in determining the appropriate decompositions, X (i),
to use in additive GP optimization, including: structured kernel learning (Wang et al. 2017), factor graph
methods for disjoint subspaces (Hoang et al. 2017), MCMC methods (Gardner et al. 2017), overlapping
groups with Gibbs sampling based graph learning for efficient acquisition function optimization (Rolland
et al. 2018), overlapping groups with Fourier Features approximation for efficient acquisition function
optimization (Mutny and Krause 2018).

Note, for the additive approach to be effective, a tractable likelihood function is needed to enable
estimation of a high dimensional global model. Additive-GP models require strict assumptions about the
separable nature and structure of the function. Our approach we avoids estimation of a high dimensional
global model, and thus make no assumptions on the additive nature of the objective function. Two recent
approaches that do not use additive modeling assumptions include, LineBO (Kirschner et al. 2019) restricts
the problem to sequentially solving one dimensional subproblems, converging when the problem is strongly
convex, and BOCK (Oh et al. 2018) which addresses the boundary issue in high dimensional optimization
(Swersky 2017) by transforming the search space ball geometry with a cylindrical transform.

2.3 Contribution

In contrast to additive Gaussian process modeling and random embedding techniques, in this paper, we
propose SCOOP which leverages multiple lower dimensional subspaces and executes local BO directly
over these lower dimensional spaces – the outcomes are then iteratively stitched through information
sharing to obtain the overall solution. This partition-stitch approach has been used succesfully in other
problem domains, such as high-dimensional tensor analysis (Li et al. 2018), but its use in the domain
of optimization requires a novel framework of information sharing and learning between complementary
subspaces. Sequentially optimizing over complementary lower dimensional subspaces, and communicating
information between them, we adaptively project onto the original space avoiding all high dimensional
modeling and the assumption of low effective dimensionality. This unique subspace decomposition enables
the sharing of information amongst subspaces such that complementary subspaces can guide one another
towards improved locations.

Our representation contrast the overlapping additive Gaussian process modeling used in (Rolland
et al. 2018), that models several subcomponents of the domain and adds them together as in (1), e.g.,

3530

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

f (x) = f (1)(x1)+ f (2)(x2,x3)+ f (3)(x3). Whereas we condition certain variables and optimize directly over
the resulting subspace, e.g., over {x ∈X : x3 = a}, and avoids modeling and assumptions of f (x). We
differ from the works (Binois et al. 2017; Binois et al. 2015; Wang et al. 2016) as we experiment over test
functions of full dimension, testing problems where all dimensions contribute to the objective function.

Intuitively, SCOOP adds significant degrees of freedom to the additive approach by only modeling
subspaces, and avoiding estimation of a high dimensional global model altogether, essentially decoupling
the modeling and partitioning problem. By no longer modeling the high dimensional space, there is no
longer a need for additive or effective lower dimension assumptions to reduce the complexity of the problem.
Thus SCOOP is afforded a great deal of flexibility in the range of problems it can address, and we note that
while not explored in this contribution, decomposition methods from (Wang et al. 2017; Hoang et al. 2017;
Rolland et al. 2018) can still fit within the overall SCOOP optimization framework to identify optimal
subspace partitions and communication patterns.

3 Subspace COmmunication for OPtimization (SCOOP)

Figure 3: SCOOP Approach

Figure 3 outlines the proposed Subspace COmmunication
for OPtimization (SCOOP) algorithm. Starting from the
original space, a “slicing operation” is performed to de-
compose the space into nsub subspaces (SSi, i = 1, . . . ,nsub,
with nsub = k in Figure 3) each with a collection of non-
shared dimensions Issi and shared dimensions xi, such that
∩k

i=1Issi = /0 and ∪k
i=1Issi ∪ xi = X . In each of the sub-

spaces, the “hidden” dimensions are set to a value that is
produced by the information sharing algorithm. In fact,
optimization is performed locally, i.e., in each subspace,
and the identified solution is passed intelligently to other
complementary subspaces that will consider whether to
move towards directions recommended by the communi-
cating subspace optimizations, by changing the value of
their hidden dimensions.

In the following, we define the main components of SCOOP, detailing the initialization (Section 3.1),
the subspace optimizer (Section 3.2), and the information sharing strategies (Section 3.3). The SCOOP
pseudo code is reported in Algorithm 1.

3.1 Algorithm Inputs and Initialization

Given a d-dimensional non linear non-convex objective function to minimize, we assume there exist standard
upper and lower bound (box) constraints on each dimension or decision variable, i.e., xi ∈ [LBi,UBi] ∀i =
1, ...,d. The remaining user inputs include:

• total function sampling budget, B, total objective function evaluations allowed during the search;
• number of subspaces, nsub, is the number of (complementary) subspaces SCOOP considers. In this

manuscript, we project by setting a subset of hidden dimensions to constant values (extensions to sub-
space creation based upon more complex projection schemes could be considered);

• number of “hidden” dimensions, nhid , to be held constant to obtain each subspace, nhid then implies the
number of active dimension per subspace as SSdim = d−nhid ;

• initial sampling budget, binit , to initialize the subspace search at each new subspace projection;
• search budget, bopt , available number of evaluations for each optimization iteration in the same sub-

space.

3531

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

Algorithm 1 Subspace COmmunication based OPtimization
Input: f (x), a(x), B, nsub, nhid , binit , bopt , information sharing strategy
Output: x̂∗, f (x̂∗): the best sampled full dimensional location

1: Initialize: Randomly assign all hidden dimension values for each of subspaces, there will be a total of (nhid×nsub) hidden dimensions assigned.
2: while B > 0 do

Execute Subspace Optimizations
3: for i = 1, ...,nsub do
4: Create initial space filling design with binit points over active/free dimensions of subspace i: X0i ∈ R(binit×d−nhid)

5: Create X f ull
0i by augmenting each design point in X0i with current subspace hidden dimension values: X f ull

0i ∈ R(binit×d)

6: Sample objective function at each of these points: f (X f ull
0i) ∈ R(binit×1). Update B← B−binit , break if B≤ 0

7: Fit a subspace GP to X0i, f (X f ull
0i)

8: for j = 1, ...,bopt do
9: Discover xnext = argmaxx∈X a(x): xnext ∈ R(1×d−nhid)

10: Augment xnext with hidden dimension values: x f ull
next ∈ R(1×d)

11: Update X ji← X(j−1)i ∪xnext and X f ull
ji ← X f ull

(j−1)i ∪x f ull
next

12: Sample f (x f ull
next). Update B← B−1, break if B = 0

13: Fit updated subspace GP to X ji, f (X f ull
ji)

14: end for
15: end for

Execute Subspace Information Sharing: Update Hidden Dimension Values
16: for i = 1, ...,nsub do
17: for j = 1, ...,nhid do
18: For hidden dimension j of subspace i, determine the complementary subspace with a shared active parameter and free dimension

corresponding to subspace i’s jth hidden dimension
19: Update value of subspace i’s hidden dimension j by sharing information with the identified complementary subspace
20: end for
21: end for
22: end while

Finally, SCOOP takes as input an information sharing strategy, which describes how the optimization out-
come in one subspace informs the search in complementary subspaces. In Section 3.3, we give three alter-
nate strategies, which differ for the level of trust in the subspace optimization.

3.2 Subspace Bayesian Optimization

In SCOOP, each subspace optimization is carried out through iterative Bayesian Optimization (BO). Hence,
sampling decisions (i.e., parameter instances for which the function f is evaluated) are determined by op-
timizing a surrogate objective function. The surrogate is estimated from all { f (xi)}k

i=1 evaluations up to
iteration k (Močkus 1975), effectively considering all previously learned input-target black-box pairs. This
requires two main components: (1) a prior surrogate form to model the function over the subspaces, and (2)
an acquisition function to drive subsequent sampling decisions.

Prior BO forms employed range from radial basis functions to complex neural networks (Snoek et al.
2015); amongst the most common forms are Gaussian processes (GP’s), which are used in this research.
Bayesian optimization in this set-up has a rich body of literature which we refer the interested reader to
(Wang et al. 2016; Snoek et al. 2012; Rasmussen 2004; ?; Brochu et al. 2010).

3.3 Information Sharing Strategies

Note that, while each subspace is modeled with a low dimensional GP and acquisition functions, sample
locations are defined in the original full dimension space to enable function evaluation. Given any current
subspace projection (i.e., a set of hidden dimension values), we recover the full dimensional samples from
the low dimensional subspace by augmenting samples in active subspace dimensions with current subspace
hidden dimension values. Starting with a random initialization of the hidden dimensions, SCOOP learns
globally optimal subspace hidden dimension values by implementing a communication scheme between

3532

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

subspaces. In fact, communicating information between the subspaces to update hidden dimension values
creates new subspace projections allowing the entire full dimensional space to be explored and optimized
while only explicitly modeling and optimizing over low dimensional subspaces. With this in mind, infor-
mation communication and sharing between complementary subspaces becomes the crux of the proposed
SCOOP algorithm, as it how the low dimensional subspace projections search the full high-dimensional
space. We present three strategies for information sharing among subspaces.

Best Observed Sample Sharing (SCOOP-B) According to this strategy, referred to as SCOOP-B
in the following, each subspace optimizer exhausts its subspace optimization budget bopt and returns the
location within the subspace with best observed function value. The “local” best solution is shared to all
other subspaces, who accept the relevant values and appropriately update their own hidden dimension values.

Due to the purely exploitative greedy nature of this sharing strategy. We conjecture that this direct
sharing strategy will be particularly helpful with problems that exhibit pronounced optimum behavior in
low dimensional projections.

Marginalized Expected Improvement (SCOOP-E) The second information sharing mechanism was
designed to improve the robustness with respect to the dimension(s) shared among subspaces. This robust-
ness is achieved by selecting the value(s) of the hidden subspace dimension(s) as the maximizer of the
posterior expected improvement function marginalized with respect to shared active dimension(s). The
marginalized expected improvement for subspace j, with shared dimension(s) i is:

EIM(x,xi) =
∫

SS j

EI(x)dxi

where xi represents the potential values of shared dimension i. Integrating, with respect to all shared di-
mensions i, over the expected improvement EI(x) (Jones et al. 1998) yields a marginalized score for all
locations of the non-shared active dimension of SS j, and the maximizer can then be shared to all other
subspaces. Using a shared dimension x1 results in: a = {x3 : x = argmaxx∈SS2

∫
SS2

a(x)dx1} and b = {x2 :
x = argmaxx∈SS1

∫
SS1

a(x)dx1}, as the respective updates to the hidden dimension values of subspace-1 and
subspace-2. We conjecture that this sharing strategy will be especially suited to problems with complex
high dimensional interactions as it enables a balanced, explorative and exploitive, search through hidden
dimensions, which is tempered against shared active dimension information.

Subspace Link Failure (SCOOP-•L) The previous methods always trust the information shared
from other subspaces. To control this aspect, we interpret subspaces as communicating agents and use com-
munication failure between subspaces to mimic the theory of hyper-jumps (Wang and Elia 2012). Specifi-
cally, prior to every communication and information sharing event, a random number is uniformly drawn. If
this random number exceeds a user defined probability of link failure, α , then communication and sharing
is completed as intended, otherwise we instead draw a random subspace hidden dimension value. If a “link
failure” occurs, then the jth hidden dimension value is drawn from a beta distribution that reflects the den-
sity of previous values for hidden dimension j. The hidden dimension value is drawn from: beta(γ,ξ), with
γ = max(|H jl |

|H ju| ,1), ξ = max(|H ju|
|H jl | ,1), where H jl is the set of all previous values of the jth hidden dimension

in the lower half of the jth dimension support; similarly, H ju are those in the upper half. Thus, we proba-
bilistically bias the next subspace projection to be located in a less explored region. Intuitively asymptotic
convergence is yielded as a result of link failure since, as the number of evaluations approaches infinity, each
subspace projection is revisited infinitely often; thus the entire solution space has probability strictly greater
than zero of being sampled.

We note that subspace link failure can be implemented alongside/in addition to the first two strategies,
yielding SCOOP-BL and SCOOP-EL, and is especially suited to problems with trapping local minima as it
allows search focus to randomly enter unexplored regions.

3533

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

4 Experimental Evaluation

Experiment Settings

Figure 4: Rosenbrock in R2;
smooth gradients with global
minimum hidden by flat valley.

Figure 5: Ackley in R2; pro-
nounced global optimum and
thousands of local minima.

(a) We first test how information
sharing strategies impact algorithm
convergence and finite time perfor-
mance over functions with different
unique characteristics; then we study
the affects of the amount of link fail-
ure, and size (and number) of sub-
spaces in higher dimensional prob-
lems. (b) Next we present scalability
results against state-of-the-art com-
petitors in problems with effective
dimension of 20, 50, and 100, (c) and
conclude with a application searching for optimal neural net configurations.
Test Functions We test over three test functions with unique characteristics. The Rosenbrock function, Fig-
ure 4, with support xi ∈ [−2,2] ∀i, has global minimum at (1, . . . ,1), and local minimum at (0, . . . ,0) when
d > 4. The Ackley function, Figure 5, has thousands of local minima across its domain xi ∈ [−32.7,32.7] ∀i,
with global minimum at (0, . . . ,0). at (15,15,15) and (−12,−12,−12).

4.1 SCOOP Performance under different Sharing Strategies, function classes and problem dimensions

Effectiveness of SCOOP Information Sharing Strategies for Different Classes of Functions To study
the influence of information sharing strategy we test four SCOOP instantiations in 3 dimensions.In all four
cases we use nsub = 2, nhid = 1 with dimension x1 as the shared active dimension, We set binit = 10 and
bopt = 15, as only 2 dimensions are modeled in each subspace, and allow B = 40,000 so convergence
behavior can be observed. We study the behavior over the 3 dimensional Ackley and Rosenbrock functions.
of SCOOP with best observed sample sharing (“SCOOP-B”), SCOOP with best sharing and link failure
(“SCOOP-BL”), and SCOOP with marginalized expected improvement sharing with and without link faliure
(“SCOOP-E” and “SCOOP-EL” respectively). Results are presented in Figure 6(a)-6(d), where we inlay
a plot of the first 250 evaluations to highlight the initial phase of the search, while showing asymptotic
behavior.

(a) Ackley | f (x)− f ∗| error by
function evaluations.

(b) Rosenbrock | f (x)− f ∗| er-
ror by function evaluations.

(c) Ackley ||x− x∗|| error by
function evaluations.

(d) Rosenbrock ||x− x∗|| error
by function evaluations.

Figure 6: Comparison of information sharing strategies over Ackley and Rosenbrock for the 3-d case.

As we observe from the results, SCOOP-B and SCOOP-E show different performance over different
data sets. On the Ackley function, with a pronounced global minimum, SCOOP-B outperforms SCOOP-

3534

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

E (Figure 6(a),6(c)) due to the effectiveness of the greedy move over such a function with a pronounced
minimum. However, for the Rosenbrock function, where the optimum is buried deep within a valley, we
loose the advantage of the greedy search and the two approaches become comparable (Figure 6(b),6(d)).
For both functions, we see that link sharing has strong impact in converging to the optimum asymptotically.
While link sharing does not provide any benefits during the initial phase of the search.

Impact of SCOOP Parameterization We next test over a 50 dimensional Ackley function (Fig-
ure 5). Observing the strong performance of SCOOP with best observed sample sharing from the previous
experiments we run a designed experiment over SCOOP-BL to study (1) the ratio of subspace initialization
to optimization sampling budget per iteration, binit : bopt , (2) the number of active dimension dimensions per
subspace, SSdim, and (3) link failure percentage. For each of these three parameters we select two levels to
execute a 23, 8-run, factorial design with 50 replications for each run.

For subspace active dimensions SSdim = 2 or SSdim = 50, such that nhid = 48 with 25 subspaces or
nhid = 45 with 10 subspaces. The ratio binit : bopt is set to 1 : 1 or 1 : 5, and binit = 10×SSdim such that bopt

takes values of 20 and 100 when SSdim = 2, and 50 or 250 when SSdim = 5. Link failure percentage is set
to either 0% or 10%. We report the average error per dimension with the intuition of spreading the gathered
Euclidean error uniformly across each dimension, a fair measure for the symmetric Ackley function. As
such in Figure 7, the dependent axis reports ‖x̂−x∗‖/50.

Average results from the 8 runs are presented in Figure 7. Figure 7(a) plots the four experiments where
SSdim = 2, where there are 25 subspaces with 2 active and 48 hidden dimensions. Intuitively, binit : bopt = 1 : 5
shows better convergence behavior despite needing more samples prior to making substantial improvements,
since more samples are spent optimizing each subspace before information sharing occurs. Similarly when
SSdim = 5, in Figure 7(b), the 1 : 5 ratio outperforms 1 : 1 in the long run, but not as drastically as the 2
dimensional subspace case. Figure 7(c) illustrates the benefit of having a many subspaces, a large nsub, with
many hidden dimensions, a large nhid . SSdim = 2 outperforms SSdim = 5, as it is much simpler to optimize
in 2 dimensions than in 5. Indicating that, when using the greedy best observed sample sharing, the quality
of the subspace-generated candidate solution is critical to the overall performance of SCOOP.

(a) Average Euclidean error per di-
mension for SCOOP formulations with
SSdim = 2, over the 50 replications.

(b) Average Euclidean error per di-
mension for SCOOP formulations with
SSdim = 5, over the 50 replications.

(c) Average error (50 replications) of best
SSdim = 2 and SSdim = 5 SCOOP formu-
lations, and uniform random sampling.

Figure 7: Average results of alternative SCOOP formulations tested on 50 dimensional Ackley function with
a normalized to domain, i.e., [0,1]50. All results presented are over 50 replications.

4.2 Performance Comparison against State of the Art High Dimensional Bayesian Optimizers

We compare SCOOP with two state-of-the-art, publicly available and well-maintained, repositories. We test
REMBO (Wang et al. 2016), with code at https://github.com/ziyuw/rembo , and the Additive-GP (Add-GP)

3535

https://github.com/ziyuw/rembo

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

algorithm with structured kernel learning presented in (Wang et al. 2017) with code at https://github.com/zi-w/
Structural-Kernel-Learning-for-HDBBO. We test over the Rosenbrock function in 20, 50, and 100 dimensions,
executing 20 replications of each algorithm in each dimension. To compare finite-time performance a wall-
clock limit is enforced, allowing 2, 10, and 24 hours for the 20, 50, and 100 dimensional settings. SCOOP
uses 2 dimensional subspaces for each case, resulting in 10, 25, and 50 for the three cases.

We note that all of these problems have full effective dimensionality, such that there exist no known low
dimensional embedding. We take extra care in the treatment of REMBO and test over a suite of embedding
dimensions (de) for all the experiments. Figure 8 plots the log of the average best observed function value
gap against the different embeddings of REMBO. For comparison we include a bar across each plot of
the average performance of SCOOP. Error bars for each REMBO experiment and the SCOOP comparison
represent 2 standard errors of the mean over the 20 replications. Clearly, the impact of the embedding
dimension is dramatic on REMBO’s performance. Though REMBO performs best at the lowest dimensions
in this problem this is not true in general, see Table 1 of (Wang et al. 2016). SCOOP avoids the assumption
of low effective dimensionality and the need to specify an embedding dimension, a benefit which scales
from Figure 8(a)-8(c) as problem dimension increases.

Table 1 presents the results for average optimality gap with respect to both function value and distance
to the global minimum, SCOOP, ADD-GP, and a selection of the best performing embedding dimension
for REMBO are presented for the 20, 50, and 100 dimensional cases. SCOOP statistically outperforms all
algorithms in all cases with respect to distance to x∗, as it is the only algorithm to converge towards the true
global optimum at (1, . . . ,1), rather than identifying the local optimum at (0, . . . ,0).

20 19 16 6 5 4 3 2 1
10

1

10
2

10
3

10
4

(a) 20 dimensional Rosenbrock experi-
mentation, 2 hours allowed per run.

50 49 40 10 8 6 4 3 2 1

10
2

10
4

10
6

10
8

(b) 50 dimensional Rosenbrock experi-
mentation, 10 hours allowed per run.

100 99 80 20 16 12 10 8 6 2 1
10

2

10
4

10
6

10
8

10
10

(c) 100 dimensional Rosenbrock exper-
imentation, 24 hours allowed per run.

Figure 8: Performance comparison of alternative REMBO embeddings (bars) with SCOOP (band). The log
of average best observed function value (±2 standard errors) over 20 replications reported.

Table 1: Average performance (± two standard errors) of SCOOP, ADD-GP, and REMBO with alternative
embedding dimension over 20 replications. 20, 50, and 100 dimensional Rosenbrock test cases.

20 dim 50 dim 100 dim

Algorithm f (x∗)− f ∗ ||x∗−x∗|| Algorithm f (x∗)− f ∗ ||x∗−x∗|| Algorithm f (x∗)− f ∗ ||x∗−x∗||
SCOOP 238.60±27.54 3.12±0.14 SCOOP 434.10±51.17 6.26±0.12 SCOOP 1.08×103±169.40 8.85±0.25

ADD-GP 770.05±23.47 3.96±0.11 ADD-GP 5.84×103±241.81 7.17±0.11 ADD-GP 2.52×104±805.54 12.35±0.22

de = 6 478.31±82.36 4.71±0.08 de = 8 2.42×103±442.14 7.80±0.12 de = 12 5.33×104±6.93×103 14.44±0.33
de = 5 488.22±70.80 4.73±0.06 de = 6 952.38±131.93 7.39±0.075 de = 10 2.54×104±4.92×103 12.87±0.32
de = 4 185.95±21.40 4.56±0.06 de = 4 313.32±40.79 7.30±0.06 de = 8 8.80×103±1.54×103 11.66±0.23
de = 3 19.50±0.23 4.46±0.004 de = 3 52.38±0.97 7.07±0.004 de = 6 2.12×103±368.50 10.49±0.07
de = 2 18.98±0.003 4.47±0.001 de = 2 48.98±0.003 7.07±0.001 de = 2 98.99±0.003 9.99±0.001
de = 1 18.99±0.003 4.47±0.001 de = 1 48.99±0.003 7.07±0.001 de = 1 98.99±0.001 9.99±0.001

3536

https://github.com/zi-w/Structural-Kernel-Learning-for-HDBBO
https://github.com/zi-w/Structural-Kernel-Learning-for-HDBBO

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

4.3 Application of SCOOP in Neural Network Hyper-Parameter Search

Figure 9: Mean best trained neural net per-
formance, given wall clock of 600,1800,
and 3600 seconds in 6,9 and 15 dimension
search.

Instead of theoretical functions, we look in the problem of
training neural nets to classify cancer data. The application
description is found in (Wang et al. 2017) and the cancer
data in their git repository. As competitors, SCOOP, EGO,
and Add-GP were tested for varying dimensional versions
of the neural net search problem, with decision variables
being the number of nodes in each layer and the number
of decision variables (dimensions) corresponding to the
number of layers. A wall clock time constraint was im-
plemented for each problem dimensionality, encompassing
both neural net training and algorithm search times. Fig-
ure 9 shows the average best accuracy achieved by each
algorithm across 20 replications. The results show that
SCOOP significantly outperforms both EGO and Add-GP
in terms of solution accuracy, as the number of problem

dimensions increases. Note that Add-GP shows non-monotonic performance behavior in the number of di-
mensions (layers in the neural net). This is due to the exponential increase in the time Add-GP requires in
structured kernel learning, which consumes significantly more time for learning the hyper-parameters of the
neural than for training of the classifier.

5 Discussions and Conclusions

In this paper, we presented the Subspace COmmunication OPtimization (SCOOP) algorithm for global
optimization over high dimensional problems. SCOOP explicitly models and optimizes over multiple com-
plementary low dimensional subspaces and leverages information communication among these relatively
easy subspace optimizations to navigate the hard to search full dimensional space. Consequently, SCOOP
is specifically suited for problems such as inherently high dimensional machine learning hyper-parameter
optimization, that do not have low effective dimensionality, and do not easily fit additive assumptions.

Experiment results with several problems with different characteristics have shown that SCOOP outper-
forms state-of-the-art Bayesian Optimization in quality of observed function values/solution locations, and
wall clock time. Further, in a practical hyper-parameter search problem, SCOOP consistently found the best
solutions. In general, SCOOP seems to be more scalable with less parameterization.

In this paper, we have shown that SCOOP offers a novel perspective of intelligently decomposing diffi-
cult optimization problems into complementary subspace optimizations to overcome the curse of dimension-
ality and tackle this notoriously hard problem. We finally note that SCOOP can also benefit from modern
computational advances in the selection and in the optimization of the individual subspaces and these con-
stitute our future research directions, along with investigating alternative information sharing strategies.
Current research is being devoted to investigate alternative information theoretic approaches to address in-
formation sharing.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Graduate Research Fel-
lowship under Grant No. 026257-001. This research is also partially supported by NSF#1827757 “Data-
Driven Services for High Performance and Sustainable Buildings”, NSF#1610282 “DataStorm: A Data

3537

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

Enabled System for End-to-End Disaster Planning and Response”, NSF#1633381 “Discovering Context-
Sensitive Impact in Complex Systems”, NSF#1633381 “Discovering Context-Sensitive Impact in Complex
Systems”, NSF#1909555 “pCAR: Discovering and Leveraging Plausibly Causal (p-causal) Relationships to
Understand Complex Dynamic Systems” and “FourCmodeling”: EUH2020 Marie Sklodowska-Curie grant
agreement No 690817.

REFERENCES
Bergstra, J., and Y. Bengio. 2012. “Random Search for Hyper-Parameter Optimization”. Journal of Machine Learning Re-

search 13(2):281–305.
Binois, M., D. Ginsbourger, and O. Roustant. 2015. “A Warped Kernel Improving Robustness in Bayesian Optimization via Random

Embeddings”. In International Conference on Learning and Intelligent Optimization, 281–286. New York City, New York:
Springer.

Binois, M., D. Ginsbourger, and O. Roustant. 2017. “On the Choice of the Low-Dimensional Domain for Global Optimization via
Random Embeddings”. arXiv preprint arXiv:1704.05318.

Brochu, E., V. M. Cora, and N. De Freitas. 2010. “A Tutorial On Bayesian Optimization Of Expensive Cost Functions, With
Application To Active User Modeling And Hierarchical Reinforcement Learning”. arXiv preprint arXiv:1012.2599.

Carpentier, A., and R. Munos. 2012. “Bandit Theory Meets Compressed Sensing for High Dimensional Stochastic Linear Bandit”.
In Proceedings of the 15th International Conference on Artificial Intelligence and Statistics. April 21st – 23rd , La Palma,
Canary Islands, 190–198.

Chen, B., R. Castro, and A. Krause. 2012. “Joint Optimization and Variable Selection of High-Dimensional Gaussian Processes”.
arXiv preprint arXiv:1206.6396.

Djolonga, J., A. Krause, and V. Cevher. 2013. “High-Dimensional Gaussian Process Bandits”. In Advances in Neural Information
Processing Systems 26, 1025–1033. Lake Tahoe, Nevada: Curran Associates, Inc.

Gardner, J., C. Guo, K. Weinberger, R. Garnett, and R. Grosse. 2017. “Discovering and Exploiting Additive Structure for Bayesian
Optimization”. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. April 20th – 22nd ,
Fort Lauderdale, FL, 190–198.

Hoang, T. N., Q. M. Hoang, R. Ouyang, and K. H. Low. 2017. “Decentralized High-Dimensional Bayesian Optimization With
Factor Graphs”. ArXiv abs/1711.07033.

Hoffman, M., E. Brochu, and N. de Freitas. 2011. “Portfolio Allocation for Bayesian Optimization”. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, 327–336. Arlington, Virginia: Association for Uncertainty in
Aritficial Intelligence Press.

Hutter, F., H. H. Hoos, and K. Leyton-Brown. 2011. “Sequential Model-Based Optimization for General Algorithm Configuration”.
In Learning and Intelligent Optimization, 507–523. Berlin, Heidelberg: Springer.

Jones, D. R. 2001. “A Taxonomy of Global Optimization Methods Based on Response Surfaces”. Journal of Global Optimiza-
tion 21(4):345–383.

Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black-Box Functions”. Journal of
Global Optimization 13(4):455–492.

Kandasamy, K., J. Schneider, and B. Póczos. 2015. “High Dimensional Bayesian Optimisation and Bandits via Additive Models”.
In Proceedings of the 32nd International Conference on Machine Learning. July 6th – 11th, Lille, France, 295–304.

Kirschner, J., M. Mutnỳ, N. Hiller, R. Ischebeck, and A. Krause. 2019. “Adaptive and Safe Bayesian Optimization in High Dimen-
sions via One-Dimensional Subspaces”. arXiv preprint arXiv:1902.03229.

Li, X., K. Candan, and M. Sapino. 2018. “M2TD: Multi-Task Tensor Decomposition for Sparse Ensemble Simulations”. In 2018
IEEE 34th International Conference on Data Engineering. April 16th – 19th, Paris, France, 1156–1167.

Marchant, R., and F. Ramos. 2012. “Bayesian Optimisation for Intelligent Environmental Monitoring”. In 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2242–2249. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Močkus, J. 1975. “On Bayesian Methods for Seeking the Extremum”. In Optimization Techniques IFIP Technical Conference
Novosibirsk, 400–404. Berlin, Heidelberg: Springer.

Molvalioglu, O., Z. B. Zabinsky, and W. Kohn. 2010. “Meta-Control of an Interacting-Particle Algorithm for Global Optimization”.
Nonlinear Analysis: Hybrid Systems 4(4):659–671.

Mutny, M., and A. Krause. 2018. “Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier
Features”. In Advances in Neural Information Processing Systems 31, 9005–9016. Dutchess County, New York: Curran Asso-
ciates, Inc.

Oh, C., E. Gavves, and M. Welling. 2018. “BOCK: Bayesian Optimization with Cylindrical Kernels”. arXiv preprint
arXiv:1806.01619.

3538

Mathesen, Chandrasekar, Li, Pedrielli, and Candan

Rasmussen, C. E. 2004. “Gaussian Processes in Machine Learning”. In Advanced Lectures on Machine Learning, 63–71. Berlin,
Heidelberg: Springer.

Rolland, P., J. Scarlett, I. Bogunovic, and V. Cevher. 2018. “High-Dimensional Bayesian Optimization via Additive Models with
Overlapping Groups”. In Proceedings of the 21st International Conference on Artificial Intelligence and Statistics. April 9th –
11th, Playa Blanca, Canary Islands, 298–307.

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. 2016. “Taking the Human out of the Loop: A Review of
Bayesian Optimization”. Proceedings of the IEEE 104(1):148–175.

Snoek, J., H. Larochelle, and R. P. Adams. 2012. “Practical Bayesian Optimization of Machine Learning Algorithms”. In Advances
in Neural Information Processing Systems 25, 2951–2959. Dutchess County, New York: Curran Associates, Inc.

Snoek, J., O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A. Patwary, P. Prabhat, and R. P. Adams. 2015. “Scalable
Bayesian Optimization Using Deep Neural Networks”. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning. July 6th – 11th, Lille, France, 2171–2180.

Srinivas, N., A. Krause, S. M. Kakade, and M. Seeger. 2009. “Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design”. arXiv preprint arXiv:0912.3995.

Swersky, K. J. 2017. Improving Bayesian Optimization for Machine Learning using Expert Priors. Ph. D. thesis, University of
Toronto.

Wang, J., and N. Elia. 2012. “Distributed Averaging Under Constraints on Information Exchange: Emergence of Levy Flights”.
IEEE Transactions on Automatic Control 57(10):2435–2449.

Wang, Z., F. Hutter, M. Zoghi, D. Matheson, and N. de Feitas. 2016. “Bayesian Optimization in a Billion Dimensions via Random
Embeddings”. Journal of Artificial Intelligence Research 55:361–387.

Wang, Z., C. Li, S. Jegelka, and P. Kohli. 2017. “Batched High-dimensional Bayesian Optimization via Structural Kernel Learning”.
In Proceedings of the 34th International Conference on Machine Learning. August 6th – 11th, Sydney, Australia, 3656–3664.

Zabinsky, Z. B., R. L. Smith, J. F. McDonald, H. E. Romeijn, and D. E. Kaufman. 1993. “Improving Hit-and-Run for Global
Optimization”. Journal of Global Optimization 3(2):171–192.

AUTHOR BIOGRAPHIES
LOGAN MATHESEN is a PhD student in Industrial Engineering at Arizona State Univeristy. His research is in design and
analysis of black-box optimization methods, with applications in cyber-physical system testing and falsification. His email is: lo-
gan.mathesen@asu.edu.

KAUSHIK KEEZHNAGAR CHANDRASEKAR is an Industrial Engineering graduate student at Arizona State University, spe-
cializing in Operations Research. He currently works on projects in deterministic, stochastic, and simulation based optimization.
His email is: kkeezhna@asu.edu.

XINSHENG LI now works at Apple and graduate from Arizona State University. His research field is large scale data mining,
Personalized Recommender Systems, and data management. His research focuses on density and noise challenges of tensor based
analysis. His email address is: xinshing.li@apple.com

GIULIA PEDRIELLI is an Assistant Professor for the School of Computing, Informatics and Decision Sciences Engineering
at Arizona State University. Her research is in learning for simulation and simulation optimization. Her email address is: giu-
lia.pedrielli@asu.edu.

K. SELCUK CANDAN is a professor of computer science and engineering at Arizona State University and the director of ASUs
Center for Assured and Scalable Data Engineering (CASCADE). His primary research interest is in the area of management and
analysis of non-traditional, heterogeneous, and imprecise data. His email is: candan@asu.edu

3539

mailto://logan.mathesen@asu.edu
mailto://logan.mathesen@asu.edu
mailto://kkeezhna@asu.edu
mailto://xinshing.li@apple.com
mailto://giulia.pedrielli@asu.edu
mailto://giulia.pedrielli@asu.edu
mailto://candan@asu.edu

	Introduction
	Background & Related Work
	Problem Formulation
	Relevant Literature
	Contribution

	Subspace COmmunication for OPtimization (SCOOP)
	Algorithm Inputs and Initialization
	Subspace Bayesian Optimization
	Information Sharing Strategies

	Experimental Evaluation
	SCOOP Performance under different Sharing Strategies, function classes and problem dimensions
	Performance Comparison against State of the Art High Dimensional Bayesian Optimizers
	Application of SCOOP in Neural Network Hyper-Parameter Search

	Discussions and Conclusions

