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ABSTRACT

We introduce the R-MGSPLINE (Retrospective Multi-Gradient Search with Piecewise Linear Interpolation
and Neighborhood Enumeration) algorithm for finding a local efficient point when solving a multi-objective
simulation optimization problem on an integer lattice. In this nonlinear optimization problem, each objective
can only be observed with stochastic error and the decision variables are integer-valued. R-MGSPLINE
uses a retrospective approximation (RA) framework to repeatedly call the MGSPLINE sample-path solver
at a sequence of increasing sample sizes, using the solution from the previous RA iteration as a warm start
for the current RA iteration. The MGSPLINE algorithm performs a line search along a common descent
direction constructed from pseudo-gradients of each objective, followed by a neighborhood enumeration
for certification. Numerical experiments demonstrate R-MGSPLINE’s empirical convergence to a local
weakly efficient point.

1 INTRODUCTION

A simulation optimization (SO) problem is an optimization problem in which the objective functions are
expectations whose values can only be observed with stochastic error (Fu 2015). Much of the research
in this area over the past thirty years has focused on single-objective SO problems in various types of
decision spaces including categorical, integer-ordered, and continuous (Pasupathy and Henderson 2011;
Pasupathy and Henderson 2006). Recently, there has been increased interest in algorithms that can be used
for multi-objective simulation optimization (MOSO) problems (Fu et al. 2014). In MOSO problems, the
multiple simultaneous objectives are often conflicting such that no single feasible point simultaneously
minimizes all objectives. Rather, multiple feasible points may be efficient, that is, no other feasible point
maps to an objective vector that is at least as small on all objectives, and strictly smaller on at least one
objective. The collection of all efficient points is called the efficient set, which is a solution to the MOSO
problem. MOSO problems arise in a variety of areas including spare parts allocation in aviation (Li et al.
2015), facility design and patient flow in healthcare (Wang et al. 2015), and flood control operations
(Prakash et al. 2015). Hunter et al. (2019) provide an introduction to the MOSO problem and survey
existing methods to solve the MOSO problem in various contexts.

We consider the d-objective MOSO problem in the context of a q-dimensional integer-ordered feasible
space:

Problem M : minx∈X {g(x) = (g1(x),g2(x), . . . ,gd(x)) := (E[G1(x,ξ )], . . . ,E[Gd(x,ξ )])}

where g : X→Rd is an unknown vector-valued function, the nonempty feasible set X⊆Zq is a subset of
an integer lattice, and ξ is a random variable. Like Pasupathy and Henderson (2011) and Pasupathy and
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Henderson (2006), we refer to this type of feasible set as integer-ordered. We define any deterministic
constraints in Problem M through the feasible set X and note that constraints may be hidden (Digabel and
Wild 2015).

We develop a search algorithm called R-MGSPLINE that, given an initial feasible point, finds a
local weakly efficient point (defined in Section 1.2). The acronym R-MGSPLINE stands for Retrospective
Multi-Gradient SPLINE, where as in Wang et al. (2013), SPLINE stands for Search with Piecewise
Linear Interpolation (SPLI) and Neighborhood Enumeration (NE). The algorithm treats the objectives
simultaneously, without scalarization, and seeks a local efficient point by performing line searches along
common descent directions. We provide an overview of each piece of the algorithm below.

The R in R-MGSPLINE refers to retrospective approximation (RA). RA is a version of the Sample
Average Approximation (SAA) framework (see, e.g., Pasupathy and Ghosh 2013) that replaces the unknown
functions g(·) in Problem M with their estimators, resulting in the sample-path problem

Problem Mn : minx∈X {ḠGGn(x) = (Ḡ1,n(x), . . . , Ḡd,n(x)) := (1
n ∑

n
i=1 G1(x,ξi), . . . ,

1
n ∑

n
i=1 Gd(x,ξi))}

where ḠGGn(x) is an estimator of g(x), and at each feasible point visited by the algorithm, x ∈ X ⊆ Zq,
the oracle generates n copies of the random objective vector GGG(x,ξi) := (G1(x,ξi), . . . ,Gd(x,ξi)) for all
i = 1, . . . ,n. The RA framework involves solving a sequence of sample-path problems with an increasing
sample size sequence {mν , ν = 1,2, . . .}, where ν is the RA iteration number. The sample-path local
efficient point found in RA iteration ν−1 is used as a warm start for RA iteration ν . As the sample size
increases, the warm-starts are likely to improve, which ensures that large sample sizes are not wasted on
suboptimal points.

Within an RA iteration ν , the Multi-Gradient SPLINE (MGSPLINE) algorithm obtains a sample-path
local efficient point for Problem Mmν

. The algorithm first determines a common descent direction from
individual objective pseudo-gradients. Then, a line search is performed along the descent direction with a
series of increasing step sizes to find a better feasible point. A neighborhood enumeration checks whether
the resulting feasible point is a sample-path local efficient point. If so, the MGSPLINE algorithm terminates
and the current RA iteration ends. If not, the algorithm returns to the multi-gradient line search step. We
conjecture that the sample-path local efficient point returned by R-MGSPLINE will converge into the set
of local weakly efficient points (see Section 1.2) as the number of RA iterations goes to infinity, under
regularity conditions similar to those required by Cooper et al. (2019).

We remark here that any particular local efficient point may or may not belong to a local efficient set
(Cooper et al. 2019). However, an algorithm that finds local efficient points can be embedded in another
algorithm that locates many local efficient points to construct a local efficient set, or used within some
global search routine to locate a member of the global efficient set. Therefore we view our algorithm as
something of a building-block procedure which is likely to be useful within the context of another algorithm.

1.1 Related Work

In this section, we briefly discuss prior work that is related to our development of R-MGSPLINE. We
follow categorization concepts from Hunter et al. (2019) and limit our scope to non-scalarization methods
in which the decision-maker does not provide any preference or interactive input when X is integer-
ordered. In particular, we mention work from both the SO literature and the deterministic multi-objective
optimization (MOO) literature that pertains to gradient-based line searches, neighborhood enumerations,
and integer-ordered decision spaces.

Our algorithm is primarily based on the prior work of Wang et al. (2013) and Fliege and Svaiter (2000).
In Wang et al. (2013), the authors develop an RA algorithm called R-SPLINE that uses pseudo-gradients,
line search, and neighborhood enumeration to solve an integer-ordered single-objective SO problem. Fliege
and Svaiter (2000) examine how to construct a common descent direction from multiple gradients in a
continuous MOO setting. By incorporating a common descent direction into the framework of R-SPLINE,
our algorithm can be considered a multi-objective version of R-SPLINE that is able to search through a
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decision space to find one local efficient point. We know of no other MOSO algorithms that accomplish
this same goal.

We note that Mercier et al. (2018) develop a MOSO multi-gradient line search technique called SMGDA
for finding an efficient point in a continuous decision space. They determine a common descent direction
based on their earlier work (Désidéri 2012) that mirrors Fliege and Svaiter (2000). SMGDA requires that
analytic expressions for the gradient are available.

Finally, there are MOSO algorithms whose goal is to find an entire local or global efficient set in
integer-ordered decision spaces. R-PERLE and R-MinRLE (Cooper et al. 2019) are RA algorithms for
finding a local efficient set; R-PERLE is based on the ε-constraint method (see, e.g., Miettinen 1999) and
R-MinRLE is a benchmark algorithm. MO-COMPASS (Li et al. 2015) is a multi-objective version of the
popular single-objective algorithm COMPASS (Hong and Nelson 2006; Xu et al. 2010) for finding a local
efficient set. MO-COMPASS iteratively updates a Most Promising Area by using a Simulation Allocation
Rule to efficiently allocate simulation effort. MOPBnB (Huang and Zabinsky 2014) is a multi-objective
probabilistic branch and bound algorithm that finds the global efficient set. Similarly, multi-objective
ranking and selection (MORS) algorithms such as MOCBA (Lee et al. 2010), MO-SCORE (Feldman and
Hunter 2018; Applegate et al. 2019), and M-MOBA (Branke and Zhang 2015; Branke et al. 2016) find a
global efficient set when the feasible space is finite and the decision variables may be categorical.

We remark here that the literature on deterministic MOO is vast (Ehrgott 2006; Ehrgott and Gandibleux
2000). Custódio et al. (2012) provide a brief survey on direct search and evolutionary methods for
multi-objective derivative-free deterministic continuous optimization. In particular, they discuss the direct
search method called Direct Multi-Search (DMS) developed in Custódio et al. (2011). DMS involves an
optional “search” step followed by a “poll” step which is similar to our neighborhood enumeration. We
also recognize that Peitz and Dellnitz (2018) examine multi-objective optimization with inexact gradients
as part of a subdivision algorithm similar to MOPBnB. However, the assumptions they make about error
bounds on function and gradient values do not align with our problem context.

1.2 Notation and Terminology

With few exceptions, constants are denoted by lower-case letters (a), random variables by capital letters
(X), sets by script capital letters (A), vectors by bold (x), random vectors by capital bold (XXX), and operators
by blackboard bold (E[X ]). We work in a decision space of q-dimensional integer-valued vectors Zq ⊂Rq

and the image space of all d-dimensional extended real-valued vectors Rd . The d-dimensional vector
(0,0, . . . ,0) is denoted 000d , the d-dimensional vector (1,1, . . . ,1) is denoted as 111d , and the d-dimensional
vector (∞,∞, . . . ,∞) is denoted as ∞∞∞d . If x = (x1,x2, . . . ,xq) is a 1× q vector, then the L2 norm of x is
defined by ‖x‖ = (x2

1 + x2
2 + · · ·+ x2

q)
1/2. The q-dimensional vector with its ith component equal to 1 is

denoted by ei = (0, . . . ,1, . . . ,0). If D is a set, then |D| is the cardinality of D.

1.3 Optimality Concepts

In this section, we adopt concepts of domination and optimality from Hunter et al. (2019) and Cooper
et al. (2019). We illustrate optimality concepts in Figure 1.

To define concepts of optimality in Problem M, first, we define the concept of dominance in the
objective function space.
Definition 1 Let x1,x2 ∈ X and d ≥ 2. For vectors g(x1) and g(x2), we say that

1. g(x1) weakly dominates g(x2), written as g(x1)5 g(x2), if gk(x1)≤ gk(x2) for all k = 1, . . . ,d.
2. g(x1) dominates g(x2), written as g(x1)≤ g(x2), if g(x1)5 g(x2) and g(x1) 6= g(x2).
3. g(x1) strictly dominates g(x2), written as g(x1)< g(x2), if gk(x1)< gk(x2) for all k = 1, . . . ,d.
Because we are working in X⊆ Zq, a neighborhood structure can be defined for the feasible points.

As in Wang et al. (2013), we define a flexible neighborhood structure based on Euclidean distance for use
in the definitions of local optimality.
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Figure 1: The left panel shows example feasible points in a decision space, and the right panel shows the
corresponding images in the objective space. The points {x1,x2,x4,x5} are local efficient points that make
up the global efficient set. The point x6 is a local weakly efficient point and a global weakly efficient point.
The points g(x3) and g(x7) are dominated. This figure was adapted from Cooper et al. (2019).

Definition 2 For a≥ 0, the Na-neighborhood of the point x ∈X⊆ Zq is Na(x) := {x′ ∈ Zq : ||x−x′|| ≤ a}.
In this paper, we focus on the 1-unit neighborhood of x, denoted N1(x), which is comprised of the

2q+1 integer points that lie within one unit of x. Henceforth for readability, we drop the subscript. Given
this neighborhood defined in the decision space, we now define local optimality concepts.
Definition 3 Let x∗ ∈ X. We say x∗ is

1. a local efficient point on N if there does not exist x ∈N(x∗)∩X such that g(x)≤ g(x∗).
2. a local weakly efficient point on N if there does not exist x ∈N(x∗)∩X such that g(x)< g(x∗).
Local Pareto points and local weakly Pareto points are the images of local efficient points and local

weakly efficient points, respectively. In Section 5 we refer to the global efficient set, which is the set of
all local efficient points when the neighborhood radius is infinity. We denote the set of all local weakly
efficient points as Xw, which, by definition, is a superset of the global efficient set. In Section 5 we also
refer to a local weakly efficient set, W, which is a collection of local weakly efficient points such that no
points in the set have images that strictly dominate the images of other points in the set, and the image of
each neighborhood point not in the set is dominated by the image of a point in the set.

Since we work with the sample-path Problem Mn, we define sample-path versions of the above optimality
concepts by replacing the objective function values g(x) and gk(x) with ḠGGn(x) and Ḡk,n(x), respectively,
k ∈ {1, . . . ,d}. A local solution to Problem Mn is a sample-path local weakly efficient point, denoted XXX∗.

1.4 Problem Statement

We consider the following problem statement: Given a simulation oracle capable of producing estimators
ḠGGn(x) of g(x) such that ḠGGn(x)→ g(x) w.p.1 as the sampling effort n→ ∞ for each x ∈ X ⊆ Zq, find a
local efficient point for Problem M. We note that the simulation oracle defines both the function g and the
feasible region X. Thus, if x /∈ X, we assume the oracle will return an infeasible indicator.

2 DETERMINING A COMMON DESCENT DIRECTION

We now discuss details surrounding finding a common descent direction in MGSPLINE. For discussion,
in this section only, suppose g :Rq→Rd is a vector-valued objective function where gk is continuously
differentiable for each k ∈ {1, . . . ,d}. We further suppose that there are no constraints, so that X = Rq.
Let ∇gk(x) denote the gradient of the kth objective at x for each k ∈ {1, . . . ,d} and each x ∈Rq. Then let
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∇g(x) denote the transpose of the Jacobian matrix at x; that is,

∇g(x) =
(
∇g1(x) . . . ∇gd(x))

)
=


∂g1
∂x1

(x) . . . ∂gd
∂x1

(x)
...

...
∂g1
∂xq

(x) . . . ∂gd
∂xq

(x)

 .

Then if our goal is to move from the current point x in a direction that simultaneously improve all objectives,
we wish to find a direction γγγ = (γ1, . . . ,γq) ∈Rq such that ∇gk(x)ᵀγγγ < 0 for each k ∈ {1, . . . ,d}, assuming
such a direction exists; in matrix notation, this implies ∇g(x)ᵀγγγ < 000d .

We follow Fliege and Svaiter (2000), who compute a common descent direction as follows. First,
notice that a common descent direction can be found by finding the solution to

Problem C : minimize
γγγ∈Rq

(
max{∇gk(x)ᵀγγγ : k ∈ {1, . . . ,d}}

)
+

1
2
‖γγγ‖2 .

In the case of d = 1 objective, solving this problem yields the direction of steepest descent, γγγ =−∇g(x).
To remove the max operator, we write this problem as a convex quadratic program with linear constraints,

Problem D : minimize α +
1
2
‖γγγ‖2

s.t. ∇gk(x)ᵀγγγ ≤ α for all k = 1, . . . ,d; α ∈R, γγγ ∈Rq.

If a descent direction exists, the optimal value of Problem D is less than zero. We note that solving
Problem D is only one way to find a common descent direction, if one exists. We consider finding other
common descent directions and evaluating their effects on the resulting algorithm as future research.

To implement these ideas in R-MGSPLINE, we form pseudo-gradients, ∇̂Gk(x) for each k ∈ {1, . . . ,d},
collect them into a Jacobian matrix, and take its transpose to form ∇̂GGG(x). As in Fliege and Svaiter (2000),
for implementation, we solve the dual formulation of an estimated version of Problem D,

Problem D̂ : maximize − 1
2

∥∥∇̂GGG(x)λλλ
∥∥2

s.t. λλλ
T 111d = 1; λi ≥ 0 for all k = 1, . . . ,d,

and return γ̂γγ =−∇̂GGG(x)λλλ ∗ as the common descent direction, where λλλ
∗ is the solution to Problem D̂.

3 ALGORITHM OVERVIEW

Algorithm 1 provides an overview of R-MGSPLINE. In the ν th RA iteration, mν is the sample size at
each visited point in the MGSPLINE function, where common random numbers (CRN) can be used across
visited points. The output from MGSPLINE is then used as the starting point for the next iteration. The
sample sizes, mν , and oracle call limits, bν , are increased for each retrospective iteration. We believe that
showing R-MGSPLINE converges to a local weakly efficient point as ν increases to infinity requires a
straightforward modification of the proofs contained in Cooper et al. (2019).

Algorithm 1: R-MGSPLINE
Input: initial point x0 ∈ X; sequence of sample sizes {mν}; sequence of limits on oracle calls {bν}

1 Initialize XXX∗0 = x0
2 for ν = 1,2, . . . with CRN do
3 [XXX∗ν , ḠGGmν

(XXX∗ν)] = MGSPLINE(XXX∗ν−1,mν ,bν )
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4 MULTI-GRADIENT SPLINE (MGSPLINE)

MGSPLINE is a search routine that begins at an input point, XXXold, and returns a point, XXXnew, such that
ḠGGmν

(XXXnew) ≤ ḠGGmν
(XXXold), or possibly ḠGGmν

(XXXnew) = ḠGGmν
(XXXold). Algorithm 2 displays pseudocode for the

MGSPLINE function. MGSPLINE is composed of two subroutines: Multi-Gradient Search with Piecewise
Linear Interpolation (MGSPLI) and Neighborhood Enumeration (NE). The MGSPLI function performs
a line search along a descent direction formed from individual objective pseudo-gradients near the input
point and returns a point whose image is sample-path non-dominated among points encountered during
the search, XXXSPLI. The NE subroutine then searches the neighborhood of XXXSPLI to determine if the images
of its neighbors sample-path dominate XXXSPLI. If a neighbor’s image sample-path dominates XXXSPLI, the
neighbor is set to XXXNE and another line search is performed. This process repeats until no neighbors have
images that sample-path dominate XXXSPLI, or a limit on oracle calls is exceeded.

Algorithm 2: [XXXnew, ḠGGm(XXXnew)] = MGSPLINE(XXXold,m,b)
Input: initial point XXXold ∈ X; sample size m; limit on oracle calls b
Output: sample-path local efficient point XXXnew ∈ X and estimated objective vector ḠGGm(XXXnew)

1 Set n = 0, XXXNE← XXXold
2 repeat
3 [n′,XXXSPLI, ḠGGm(XXXSPLI)] = MGSPLI(XXXNE,m,b) /descent direction and line search

4 if ḠGGm(XXXNE)≤ ḠGGm(XXXSPLI) then XXXSPLI← XXXNE /ensure not dominated by input point

5 [n′′,XXXNE, ḠGGm(XXXNE)] = NE(XXXSPLI,m) /neighborhood enumeration
6 Set n = n+n′+n′′

7 until ḠGGm(XXXSPLI) = ḠGGm(XXXNE) or n > b

4.1 Multi-Gradient Search with Piecewise Linear Interpolation (MGSPLI)

Algorithm 3 displays the MGSPLI function that determines a common descent direction using subroutine
Piecewise Linear Interpolation (PLI) (Algorithm 4) and then performs a line search along the common
descent direction. We now explain MGSPLI in detail.

Given an input point XXX in ∈ X, MGSPLI first adds a small random perturbation (smaller than 1 w.p.1)
independently to each dimension of XXX in using the PERTURB function and passes the resulting non-integer-
valued point, XXXP, to PLI. The PLI subroutine first forms a simplex around the perturbed point (Algorithm 4,
Lines 1-5) and estimates objective values at each feasible simplex point, keeping track of which simplex
point’s image is sample-path non-dominated (Algorithm 4, Lines 5-10). If at least one of the simplex points
is infeasible, PLI checks to see whether it can locate a naive common descent direction; if not, it sets the
descent direction to undefined. Otherwise, the objective values of the simplex points are used to determine
pseudo-gradients for each objective (Algorithm 4, line 14), and these pseudo-gradients are assembled into
the transposed Jacobian matrix ∇̂GGG(x). Problem D̂ is solved to determine a common descent direction, γ̂γγ .
PLI returns the best simplex point and the descent direction to MGSPLI.

Back in MGSPLI (Algorithm 3, Line 6), ḠGGm(XXX simp) is compared to the current value of ḠGGm(XXXbest), and
XXXbest may be updated. If PLI did not return a valid descent direction or the oracle call limit has been met,
no line search is done and XXXbest is returned to MGSPLINE as input to NE. Barring no early exit criteria,
MGSPLI begins a line search by taking a step from XXX0 = XXXbest along descent direction γ̂γγ which results
in a point XXX1. It is highly likely that XXX1 will not be an integer-valued point. Thus, XXX1 is shifted to the
nearest integer solution, currently implemented by using the floor function on each of its components. If
XXX1 is feasible and its image sample-path dominates the image of XXXbest, then XXXbest is updated and a longer
line search step is taken from XXX0. This process continues until ḠGGm(XXX1) does not dominate ḠGGm(XXXbest),
or XXX1 is infeasible, or a simulation limit is met. At this point, MGSPLI returns to the perturbation step
(Algorithm 3, Line 3) and starts the descent direction and line search process again. Note, however, that
if a line search stops “early,” within 2 steps, MGSPLI returns XXXbest to MGSPLINE as input to NE.
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Algorithm 3: [n′,XXXbest, ḠGGm(XXXbest)] = MGSPLI(XXX in,m,b)
Input: solution XXX in ∈ X; sample size m, oracle call limit b
Output: number of oracle calls used n′, best feasible point XXXbest ∈ X and ḠGGm(XXXbest)

1 Initialize: initial step size s0← 2.0 and multiplier c← 2.0; XXXbest← XXX in and n′← 0
2 repeat
3 XXXP← PERTURB(XXXbest) /shift to non-integer point

4 [npli,XXX simp, ḠGGm(XXX simp), γ̂γγ] = PLI(XXXP,XXXbest, ḠGGm(XXXbest),m) /determine descent direction
5 n′← n′+npli /update oracle calls

6 if ḠGGm(XXX simp)≤ ḠGGm(XXXbest) then XXXbest← XXX simp /update XXXbest from simplex points

7 if
∥∥γ̂γγ
∥∥ is undefined or n′ > b then

8 i← 0 /exit if no direction or too many oracle calls
9 else

10 Initialize: i← 0, XXX0← XXXbest
11 repeat
12 i← i+1, s← ci−1× s0, and XXX1← XXX0 + s× γ̂γγ/

∥∥γ̂γγ
∥∥ /take a step

13 Shift XXX1 to its nearest integer solution
14 if XXX1 is feasible then
15 Simulate at XXX1 to observe ḠGGm(XXX1)
16 n′← n′+m /update oracle calls

17 if ḠGGm(XXX1)≤ ḠGGm(XXXbest) then XXXbest← XXX1 /update XXXbest or stop line search

18 until XXX1 6= XXXbest or n′ > b

19 until i≤ 2 /exit if line search stops quickly

20 return n′,XXXbest, ḠGGm(XXXbest)

Algorithm 4: [npli,XXX simp, ḠGGm(XXX simp), γ̂γγ] = PLI(XXXP,XXXbest, ḠGGm(XXXbest),m)

Input: point XXXP = (X1,X2, . . . ,Xq) ∈Rq \ Zq; sample size m
Output: number of oracle calls used npli, best simplex point XXX simp and ḠGGm(XXX simp), descent direction γ̂γγ

1 Set SSS0 = bXXXPc /element-wise floor, find initial simplex point
2 Set ZZZ = XXXP−SSS0 /element-wise fractional differences to initial simplex point
3 Sort ZZZ = (Z1,Z2, . . . ,Zq) to get 1 = Zp(0) > Zp(1) ≥ ·· · ≥ Zp(q) ≥ Zp(q+1) = 0
4 Set SSSi = SSSi−1 + ep(i), for i = 1,2, . . . ,q /find other simplex points

5 Set npli = 0, q̃ = 0, XXX simp = 000q, and ḠGGm(XXX simp) = ∞∞∞d
6 for i = 0,1, . . . ,q do
7 if SSSi is feasible then
8 Obtain m simulation replications at SSSi and update npli← npli +m
9 Set q̃← q̃+1 /update number of feasible simplex points

10 if ḠGGm(SSSi)≤ ḠGGm(XXX simp) then XXX simp← SSSi, ḠGGm(XXX simp)← ḠGGm(SSSi) /update best point

11 if q̃ < q+1 then
12 if ḠGGm(XXX simp)≤ ḠGGm(XXXbest) then
13 γ̂γγ ← XXX simp−XXXbest
14 else
15 γ̂γγ ← unde f ined

16 else
17 Form matrix ∇̂GGG(XXXP) with p(i)th row ∇̂GGGp(i)(XXXP) = ḠGGmk(SSSi)− ḠGGmk(SSSi−1) for i = 1,2, . . . ,q
18 Solve Problem D̂ to find γ̂γγ /determine common descent direction

19 return npli,XXX simp, ḠGGm(XXX simp), γ̂γγ
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4.2 Neighborhood Enumeration (NE)

Neighborhood enumeration is performed to certify that the current best point is a sample-path local efficient
point. Recall from Section 1.3 that N(XXX) consists of the 2q+1 neighbors that are within Euclidean distance
1 from the point XXX . NE determines the set of neighbors in N(XXXSPLI), retrieves mν samples from each
neighbor, and determines whether the estimated objective values of each neighbor dominate the estimated
objective values of XXXSPLI. If a neighbor’s image sample-path dominates XXXSPLI, the neighbor is returned as
XXXNE. Otherwise, XXXSPLI is returned as a sample-path local efficient point.

We implement NE by evaluating the neighbors one at a time and stopping the procedure as soon
as the estimated objective values of a neighboring point dominate ḠGGmν

(XXXSPLI). There are other ways of
performing neighborhood enumeration, including evaluating all neighbors and choosing one to pass back to
MGSPLINE. However, evaluating all neighbors may become inefficient in problems with a high-dimensional
decision space.

5 NUMERICAL EXPERIMENTS

In this section, we provide preliminary results on the performance of R-MGSPLINE on three test problems.
Since we know of no other algorithms that directly address our problem statement of finding local efficient
points in the integer-ordered MOSO context, we focus on evaluating our algorithm. We evaluate our
algorithm in terms of the distance between the true image of the estimated local efficient point, g(XXX∗(t)),
and the set of true global or local weakly Pareto points, E or Xw, respectively, as the amount of simulation
effort, measured as the total number of simulation oracle calls t, increases. Mathematically, we write
d(x,B) = infx′∈B ‖x−x′‖ as the distance from the point x ∈Rq to the set B. We use two bi-objective test
problems from Cooper et al. (2019) that are available in the PyMOSO software (Cooper and Hunter 2019)
and a 3-objective problem adapted from a survey paper of deterministic test problems to which we add
randomness.

Our current implementation of R-MGSPLINE is through the Python software package of PyMOSO
(Cooper and Hunter 2019). By default, RA algorithms currently implemented in PyMOSO use a static
sample size increase of mν = dm0 ∗ 1.1νe and bν = db0 ∗ 1.2νe. We use the default PyMOSO sequences
with parameters m0 = 2 and b0 = 8(q−1). We perform 1,000 independent runs of our algorithm on each
test problem and compute our performance metrics at the end of each retrospective iteration within each
test run. We use CRN in each RA iteration and specify a total budget of 6,000 simulation oracle calls for
each test run.

Our first test problem, Problem TA in PyMOSO, is a modified version of a problem that appears in
Kim and Ryu (2011):

Problem TA: minimizex∈X

{
g1(x) = E[(x1/10−2ξ1)

2 +(x2/10−ξ2)
2]

g2(x) = E[x2
1/100+(x2/10−2ξ3)

2],

where X= X̃A1× X̃A2 and X̃A1 = X̃A2 = {0,1,2, . . . ,50}, |X|= 2601, and ξi are independent chi-squared
random variables with one degree of freedom so that E [ξi] = 1 and Var(ξi) = 2 for all i ∈ {1,2,3}.

In Problem TA, there are 231 local weakly efficient points that exist due the discretization of the problem,
of which 50 are in the global efficient set, which we denote as E. Figure 2 displays the decision space
and objective spaces of Problem TA in the left and middle panels. The performance of R-MGSPLINE on
Problem TA is shown in the right panel of Figure 2 in terms of the distance from the true objectives of the
current best point to the global Pareto set, g(E), as well as the distance to the set of local weakly Pareto
points, g(Xw). We note that while R-MGSPLINE appears to converge to a point in the global efficient set
eventually, the convergence to any of the local weakly efficient points seems faster.
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Figure 2: Test Problem A: The global efficient set (GES, black) and local weakly efficient points (LWEP,
dark gray) and their images are highlighted in the decision space and objective space in the left and middle
panels, respectively. The distances to the global Pareto set and to the set of local weakly Pareto points are
shown in the right panel, averaged across 1,000 independent sample paths.

Our second test problem, Problem TC in PyMOSO, is a modified version of a test problem that appears
in Ryu and Kim (2014):

Problem TC: minimizex∈X

 g1(x) = E
[
∑

2
i=1−10ξiexp

{
−0.2

√
x2

i + x2
i+1

}]
g2(x) = E

[
∑

3
i=1 ξi(|xi|0.8 +5sin3(xi))

]
where X = X̃C1× X̃C2× X̃C3, X̃Ci = {−5,−4.5,−4.0,−3.5, . . . ,5} for all i ∈ {1,2,3}, |X| = 9,261, and
ξ1,ξ2, and ξ3 are independent chi-squared random variables with one degree of freedom so that E [ξi] = 1
and Var(ξi) = 2 for all i ∈ {1,2,3}. Problem TC has dependence between the random objective function
values returned by the simulation oracle.

Cooper et al. (2019) note that Problem TC has multiple local weakly efficient sets (see Section 1.3). In
their analysis, they find a collection of 516 unique local weakly efficient sets that contain just 73 points. We
denote the collection of these local weakly efficient sets as ∪516

i=1Wi. There are a total of 512 local weakly
efficient points; recall that not all local weakly efficient points belong to a local weakly efficient set (Cooper
et al. 2019). Figure 3 displays the decision space, objective space, and performance of R-MGSPLINE on
Problem TC. The test metrics consider the distance from the current best point to the set of 516 unique
weakly Pareto sets, g(∪516

i=1Wi), as well as the distance to the set of 512 local weakly Pareto points, g(Xw).
We note that some sample paths get “stuck” at a local weakly efficient point, which leads to the leveling-off
behavior in the distance to the local weakly efficient sets, whereas the convergence to a local weakly
efficient point occurs rather quickly.

Our third test problem, Problem TD, is a modified version of test problem ZLT1 that appears in Huband
et al. (2006).

Problem TD: minimizex∈X


g1(x) = E[(x1/5−ξ1)

2 +(x2/5)2 +(x3/5)2]

g2(x) = E[(x1/5)2 +(x2/5−ξ2)
2 +(x3/5)2]

g3(x) = E[(x1/5)2 +(x2/5)2 +(x3/5−ξ3)
2]

where X= X̃C1× X̃C2× X̃C3, X̃Ci = {−25,−24, . . . ,−1,0,1, . . . ,24,25} for all i∈ {1,2,3}, |X|= 132,651,
and ξ1,ξ2, and ξ3 are independent uniform random variables in the range [−1,3], so that E [ξi] = 1 and
Var(ξi) =

4
3 for all i ∈ {1,2,3}.

We note that Problem TD is similar to Problem TA except there are three objectives. There are a total
of 216 local weakly efficient points, 46 of which are in a local efficient set. Figure 4 displays the decision
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Figure 3: Test Problem C: The points in the 516 unique local weakly efficient sets (LWES points, black) and
all local weakly efficient points (LWEP, dark gray) and their images are highlighted in the decision space
and objective space in the left and middle panels, respectively. The distances to the union of 516 unique
local weakly Pareto sets and to the set of local weakly Pareto points are shown in the right panel, averaged
across 1,000 independent sample paths.
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Figure 4: Test Problem D: The global efficient set (GES, black) and local weakly efficient points (LWEP,
gray) and their images are highlighted in the decision space and objective space in the left and middle panels,
respectively. The distances to the global Pareto set and to the set of local weakly Pareto points are shown in
the right panel, averaged across 1,000 independent sample paths.

space and objective space of Problem TD in the left and middle panels, respectively. The performance of
R-MGSPLINE on Problem TD is shown in the right panel of Figure 4 in terms of distance from the true
objectives of the current best point to the global Pareto set, g(E), as well as the distance to the set of local
weakly Pareto points, g(Xw). As in Problem TA, while R-MGSPLINE seems to converge into the global
efficient set, the convergence to a local weakly efficient point seems faster.

6 CONCLUDING REMARKS

We develop the R-MGSPLINE algorithm with the goal of finding a local efficient point in the context of
solving a MOSO problem. Within each RA iteration, the MGSPLINE subroutine computes a common
descent direction from estimated pseudo-gradients of each objective and conducts a line search. The point
returned by MGSPLINE is certified to be sample-path non-dominated in its neighborhood by means of a
neighborhood enumeration. We have shown empirically that R-MGSPLINE converges into the set of local
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weakly efficient points on our test problems, and we believe that a convergence proof is a straightforward
extension of the convergence proofs found in related work (Cooper et al. 2019).
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