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ABSTRACT

We consider the problem of stochastic simulation optimization with common random numbers over a
numerical search domain. We propose the Knowledge Gradient for Common Random Numbers (KG-CRN)
sequential sampling algorithm, a simple elegant modification to the Knowledge Gradient that incorporates
the use of correlated noise in simulation outputs with Gaussian Process meta-models. We compare this
method against the standard Knowledge Gradient and a more recently proposed variation that allows
for pairwise sampling. Our method significantly outperforms both baselines under identical laboratory
conditions while greatly reducing computational cost compared to pairwise sampling.

1 INTRODUCTION

We consider the problem of finding the best input x from a finite set of real valued inputs X , where the
quality of an input can only be observed by stochastic simulation. The simulation model, θ(x,s), is a
function of both input x and random number stream s, and the best is defined as having highest expected
output θ̄(x) averaged over streams s,

max
x∈X

E[θ(x,s)] = max
x∈X

θ̄(x).

The argument s controls all the stochasticity in the simulation θ(x,s), a random number stream for example.
We allow for reuse of the random number streams s such that two or more inputs may be evaluated with
common random numbers introducing positive correlation in the observation noise

E[(θ(x,s)− θ̄(x))(θ(x′,s)− θ̄(x′))]> 0,

where expectation is over s. We aim to find the optimal x in as few simulation runs as possible. This
problem has many applications, particularly in simulators where random number streams are used for the
same purpose for any x. For example, queueing systems where two or more systems may be compared
using the same sequence of random arrival times.

We consider a Bayesian approach using Gaussian Process Regression, or Kriging, to find the optimal
x exploiting both similarity in expected outputs over x, θ̄(x), and exploiting correlation in simulation
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output noise when streams s are reused. We generalize the popular Knowledge Gradient algorithm by
allowing the reuse of random number streams giving the optimization algorithm the ability to compare two
or more different alternatives using the same random number stream. We provide a simple derivation of
this algorithm and empirically compare it on synthetic problems to standard Knowledge Gradient without
common random numbers (Frazier et al. 2009) and a more recently published variant of Knowledge Gradient
that allows for pairwise sampling with common random numbers (Xie et al. 2016). Our proposed method
performs comparably when there is little noise correlation, and significantly outperforms both baselines
when there is high correlation and therefore more exploitable benefit from using common random numbers.

In Section 2 we give a brief review of previous approaches considering similar problems, in Section 3
we introduce notation and formalise the problem we consider and in Section 4 we describe our proposed
method, the Knowledge Gradient with Common Random Numbers. We compare this method against
standard Knowledge Gradient and Knowledge Gradient with Pairwise Sampling in Section 5 and finally
conclude in Section 6.

2 BACKGROUND

Simulation optimization is typically treated as an expensive stochastic black box optimization problem. We
focus on two classes of this problem, model based methods where the search domain of the optimization
is typically numerical, i.e. finite discrete or continuous, and model free methods where the search domain
is categorical.

When the input to a simulator can be mapped to a numerical domain, such as a target stock levels or
features of a drug molecule, evaluating the simulator for a range of inputs X produces outputs Y that form
a data set to build a surrogate model (Sacks et al. 1989). In a Bayesian setting the X values may be used to
build a correlated prior over outputs which may then be conditioned on observations Y . Gaussian Processes
or Krigging models (Rasmussen 2004) provide predictions as well as uncertainty estimates of the output at
a new input and are therefore ideal for sequential information collection. The Efficient Global Optimisation
(EGO) algorithm (Jones et al. 1998) combined a Gaussian Process model with the Expected Improvement
(Mockus et al. 1978) of a new output over the current best output to sequentially query and optimize
an unknown black box function. Other acquisition functions, or infill criteria, include Upper Confidence
Bound (Srinivas et al. 2009), Probability of Improvement (Kushner 1964), Entropy Search (Hennig and
Schuler 2012) and Knowledge Gradient (Frazier et al. 2009). Note, if the simulator input itself is not
numerical, instead numerical properties or characteristics of the inputs may be used, for example using
graph features to predict coloring algorithm performance (Smith-Miles et al. 2014), or molecule properties
to predict vaccine binding rates (Krause and Ong 2011).

Contrasting with numerical inputs (or features of inputs) are black box functions with inputs X for which
surrogate models cannot easily be used. We here refer to these as model-free methods, or optimization
over an uninformative finite categorical domain. For example, the input to a job shop simulator is one of a
given set of scheduling heuristics. Efficient ranking and selection of alternative solutions has been widely
studied with frequentist methods (Kim and Nelson 2006; Branke et al. 2007) and in the Bayesian setting
with independent priors over outputs that either aim to maximize the probability of correctly selecting the
best alternative (Gupta and Miescke 1996; Chick and Inoue 2001), or maximize the expected output of
the selected system (Frazier et al. 2008; Chen and Lee 2010). Racing algorithms evaluate all alternatives
sequentially eliminating lesser alternatives until only one is left (Birattari et al. 2002; Birattari et al. 2010).

In either model-based or model-free settings, the use of common random numbers (CRN) in multiple
calls to a simulator can induce positive correlation in the output noise for different inputs thereby reducing
variance in the difference between outputs. Combining CRN with ranking and selection has been considered
with 2-stage algorithms (Chick and Inoue 2001), the popular Optimal Computing Budget Allocation (Fu
et al. 2004), and probability of correct selection with an indifference zone (Nelson and Matejcik 1995;
Görder and Kolonko 2019). In the Gaussian process regression model based setting, the effects of correlated
observations due to common random numbers can degrade inference (Chen et al. 2012) and augmenting
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the Knowledge Gradient with Pairwise Sampling (Xie et al. 2016) to account for correlation in output
noise was shown to significantly speed up optimization.

In this work we build upon the standard sequential Knowledge Gradient method that collects data to
maximize the expected peak of a surrogate model thereby learning the true function optimizer. When the
surrogate model is a Gaussian Process and there is a finite number of inputs X this may be computed
exactly. We generalize both the regression model for inference as well as the one-step value of information
procedure to allow use of common random numbers, all in closed form. This has been considered before
in a special case which assumes that random number streams from the history of past evaluations cannot
be reused. Instead, one may determine a pair of inputs and a new common random number stream and
observe a pair of outputs that have CRN (Xie et al. 2016).

3 PROBLEM DEFINITION

We assume that we have an expensive to run simulator, θ : X ×S→ R, that takes as input a decision
variable from a finite set x ∈ X , such as integer vectors in a hyper-rectangle, and a random number stream
s ∈ S. For a given stream, the simulator is a deterministic function of x. The aim of the user is to optimize
the expectation of the simulator over random number streams

max
x

θ̄(x) = max
x

E[θ(x, ·)].

We assume we have a limited budget of N simulation runs and for each run one must choose a stream s
and a decision variable x then observe θ(x,s). If we add the constraint that every call to the simulator uses
a unique stream, the problem reduces to a standard stochastic simulation optimization and the user only
needs to determine x values for each evaluation of θ(x,s). This framework is therefore a more general
setting that allows the reuse of random number streams and therefore we make the argument s explicit.

The benefit from the use of common random numbers is likely to depend on the particular problem. For
example, those in which the stream models simulated environment randomness unaffected by the decision
variables x are likely to benefit. Examples include

• a periodic time controlled traffic light at a 4-way road intersection. Vehicles arrive at random times
given by a stream s and the timing of red and green phases for the different traffic streams are
decision variables x. A designer aims to minimize delays to driver journeys in a simulated day,
θ(x,s), averaged over all possible realisations of vehicle arrivals s.

• a shop where inventory storage is expensive and restocking is delayed. Customers arrive randomly
according to stream s, a shop manager aims to find the optimal target inventory level x that
maximizes sales of available inventory minus storage cost in a simulated week, θ(x,s), averaged
over all possible customer streams s.

4 METHOD

4.1 The Probabilistic Model

We propose to use Gaussian Process Regression as a surrogate model for the simulator θ(x,s). Without
loss of generality, we may define a random number stream by the positive integer seed used in the random
number generator within the simulator and therefore s ∈N+ = {1,2,3, · · ·}. To define a Gaussian Process
we require a prior mean function µ0 : X×N+→R which is typically set to 0 and a positive semi-definite
kernel k0 : X×N+×X×N+→R that defines abstract properties of the surrogate model such as smoothness
or periodicity. This is chosen by the user to incorporate prior knowledge of the true function θ(x,s), we
discuss further details below. Intuitively, a Gaussian Process model assumes that a finite set of n observations
of the function θ(x,s) for n different xi,si inputs are a single sample from an n dimensional multivariate
normal distribution whose mean vector and covariance matrix are given by evaluating the prior mean and
kernel functions at the inputs. If we augment this set of n inputs with the points θ(x j,s j) and θ(xk,sk),
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and consider the n+ 2 dimensional multivariate normal where the first n dimensions are fixed to their
observed values, this yields a bivariate posterior distribution for the function at unobserved inputs θ(x j,s j)
and θ(xk,sk). Mathematically, we define the sequence of input pairs X̃n = {(xi,si)}n

i=1 and Y n ∈ Rn as
the vector of observed simulation outputs [Y n]i = yi = θ(xi,si). Given a dataset of n input-output triplets
Dn = {(x1,s1,y1), ...,(xn,sn,yn)} the posterior distribution over the function values for new input pairs
θ(x,s) and θ(x′,s′), the surrogate model, is given by

E[θ(x,s)|Dn] = µn(x,s) = µ
0(x,s)+ k0(x,s, X̃n)K−1(Y n−µ

0(X̃n)) (1)
Cov[θ(x,s),θ(x′,s′)|Dn] = kn(x,s,x′,s′) = k0(x,s,x′s′)− k0(x,s, X̃n)K−1k0(X̃n,x′s′) (2)

where k0(x,s, X̃n) ∈R1×n is the matrix of the kernel evaluated at the input (x,s) and the set of n observed
inputs. Similarly for k0(X̃n,x′s′), K−1 =

(
k0(X̃n, X̃n)

)−1 ∈ Rn×n is the inverse of the prior covariance
matrix that was assumed to have generated the observed output vector Y n with prior mean µ0(X̃n). Further
information can be found in (Rasmussen 2004).

We assume a prior mean µ0(x,s) = 0 and we next discuss choice of kernel. In this case, we note that
the seed with index s is a categorical variable, the magnitude of the integer value of s is not informative
about output therefore must not be used in the kernel. Following previous work (Xie et al. 2016), we use
the following kernel

k0(x,s,x′,s′) = kθ̄ (x,x
′)+δss′(η

2 +σ
2
δxx′).

where kθ̄ (x,x
′) models the underlying latent function θ̄(x), δi j is the Kronecker delta function or the white

noise kernel, η2 and σ2 are two parameters that dictate the noise model. Note that any kernel over X×X
may be used within the parenthesis of the second term, in this case it is a sum of the constant kernel η2

and white noise kernel σ2δxx′ . In general, the kernel defines a generative model for θ(x,s), firstly θ̄(x) is
a realisation of a Gaussian Process with kernel kθ̄ (x,x

′), typically the squared exponential or Matern 5/2
kernel (Rasmussen 2004). Secondly, δss′η

2 implies the effect of each seed s is to modify the underlying
function θ̄(x) by adding a constant offset c(s) and thirdly, δss′δxx′σ

2 assumes the simulator output for each
each input pair x,s is modelled as a further unique offset g(x,s). c(s) and g(x,s) are therefore realisations of
white noise processes with variances η2 and σ2 respectively. In summary, we are assuming the simulator
is a function of the form

θ(x,s) = θ̄(x)+ c(s)+g(x,s),

where c(s) ∼ N(0,η2) are independent and identically distributed offsets constant for each seed and
g(x,s) ∼ N(0,σ2) are further independent and identically distributed offsets unique for each input pair
(x,s). The total noise in observations is given by η2 +σ2 and the correlation coefficient in noise for a
fixed s is given by the ratio

ρ =
η2

η2 +σ2 .

This sum of white noise process realisations is known as the compound spheric noise assumption (Chen
et al. 2012). In Figure 1, we provide example realisations from the assumed generative model with high and
low noise correlation. This kernel has the advantage that, when compared with a standard noisy Gaussian
Process, the differences between observations and ground truth Y i− θ̄(xi) are modelled as structured noise
specified by only two parameters η2 and σ2. If s is not informative at all about noise correlation then setting
(or learning) η2 = 0 or ρ = 0 recovers a standard noise model with variance σ2. However the disadvantage
is that the numerical value of the inputs X are not used to inform noise correlation, the correlation predictor
is effectively “model-free”. Likewise it cannot naively be applied to a continuous input domain, X . δxx′

is not continuous at x = x′, such a white noise generative model assumes that infinitesimally close x and
x′ may still have arbitrarily different θ(x,s) and θ(x′,s) which may be rather unrealistic in practice and
somewhat contrary to the deterministic output assumption.
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Figure 1: Realization from the assumed generative model with ρ = 0.1 (Left) and ρ = 0.9 (Right) whilst
holding constant η2 +σ2 = 102. With higher correlation, more of the noise is in the constant offset c(s)
and less of the noise is g(x,s).

Note that for seeds that have not been evaluated, it is easily shown that the model makes the same
predictions, if s,s′,s′′ /∈ {s1, ...,sn} then the posterior mean and kernel satisfy

µ
n(x,s) = µn(x,s′) = µ

n(x,s′′),
kn(x,s,x′s′) = kn(x,s′,x′,s′′) = kn(x,s,x,s′′)

reflecting the prior belief that all seeds are treated the same, i.e. assumptions like “odd seeds are always
better” or “seed 20 is always lower” are not accidentally incorporated. We next describe some special cases
of the above model. If all evaluations are assumed to be on unique seeds, then each observation will be
the result of the ground truth and a unique realisation of the offsets, therefore yi ∼N(θ̄(xi),η2 +σ2). The
covariance matrix of past evaluations is of the form

K(X̃n, X̃n) = kθ (Xn,Xn)+ I(η2 +σ
2)

where Xn is the set of observed input x values only and I is the n×n identity matrix. This is the standard
covariance matrix that assumes observation vector Y n is from an underlying function θ̄(Xn)with independent
and identically distributed noise added on top given by the second diagonal noise matrix.

If all observations are on a single seed s = 1, the covariance matrix of the observation vector Y n is

K(X̃n, X̃n) = kθ (Xn,Xn)+η
21n×n + Iσ

2

where 1n×n is a matrix of ones and the total noise matrix η21n×n+ Iσ2 now contains off-diagonal elements.
A multivariate sample from such a matrix may be viewed as an underlying function θ̄(Xn) plus a constant
c(1) and smaller, σ2, independent and identically distributed noise given by the final diagonal matrix.

4.2 Sampling Method

We next derive the Knowledge Gradient for Common Random Numbers, KGCRN(x,s), that assigns a value
to executing the simulator with input pair x,s and observing its output. This value, or acquisition function,
can then be cheaply optimized to find the most informative input for the simulator. It is easy to see
that by using the kernel specified above, the model provides an estimate for the ground truth θ̄(x) if we
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simply evaluate the posterior mean at an unobserved seed s /∈ {s1, ..,sn}. Therefore, we may dictate that
the unobservable seed s = 0 is the ground truth estimate

E[θ̄(x)|Dn] = µ
n(x,0).

At time n, if we were to stop collecting data, the optimal risk neutral decision would be to recommend the
peak of the ground truth estimate xn

r = argmaxxµn(x,0) and the expected performance would be

max
x

µ
n(x,0).

If we were to choose the next input (x,s)n+1 to simulate and observe yn+1 = θ(xn+1,sn+1), the performance
would be updated maxx µn+1(x,0). At time n, before observing yn+1, the incremental improvement in
expected predicted performance is given by

Eyn+1 [max
x′

µ
n+1(x′,0)|Dn,(x,s)n+1]−max

x′
µ

n(x,0).

The predictive distribution of yn+1 given (x,s)n+1 and the Gaussian process model with the data so far Dn

is given by
P[yn+1|Dn,(x,s)n+1] = N(yn+1|µn(xn+1,sn+1),kn(xn+1,sn+1,xn+1,sn+1)).

The mean function after one time step is easily derived from Equation (1) with a change of indices from
0 and n to n and n+1, an instance of Bayesian updating,

µ
n+1(x,0) = µ

n(x,0)+
kn(x,0,xn+1,sn+1)(yn+1−µn(xn+1,sn+1))

kn(xn+1,sn+1,xn+1,sn+1)
.

The above expression may be factorised into deterministic and stochastic factors,

= µ
n(x,0)+

kn(x,0,xn+1,sn+1)√
kn(xn+1,sn+1,xn+1,sn+1)

(yn+1−µn(xn+1,sn+1))√
kn(xn+1,sn+1,xn+1,sn+1)

= µ
n(x,0)+ σ̃

n(x,0;(x,s)n+1)Z

where Z is the z-score of yn+1 on its predictive distribution which is a standard univariate normally distributed
random variable. σ̃n(x,0;(x,s)n+1) is a deterministic additive update to the posterior mean of the ground
truth estimate, it is a function of x parameterized by (x,s)n+1 and the scale of the added update is given by
the random Z. Finally, we define the expected improvement in predicted performance as the Knowledge
Gradient for Common Random Numbers,

KGCRN(x,s) = E
[

max
x′∈X

µ
n(x′,0)+ σ̃

n(x′,0;x,s)Z
]
−max

x′
µ(x′,0) (3)

where the expectation is over Z ∼ N(0,1) and µn(x,0) and σ̃n(x,0;(x,s)n+1) only depend on the known
data collected up to time n. The input to the next simulation (x,s)n+1 is determined by optimizing the
above acquisition function (x,s)n+1 = argmaxx,s KGCRN(x,s) where x is optimized over X for each seed
in the set of past evaluated seeds and one new seed s ∈ {1, ..,maxsi,maxsi +1}. This way the sampling
procedure is free to “recycle” old seeds/random number streams as well as query new random number
streams. As the number of seeds grows, so too does the acquisition search space, which always contains
one new seed. This allows the algorithm to dynamically decide how many seeds to query or whether to
stay on old seeds. In Section 5 we show that old seeds are sampled more for small budgets and new seeds
are sampled more for larger budgets.
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The above derivation is exactly that of the one step Bayes optimal Knowledge Gradient family of
algorithms and the evaluation of the required expectation can only be computed analytically if the set X is
finite using the Knowledge Gradient for correlated priors (Frazier et al. 2009). If the set X is continuous
(or very large finite) there are two alternative approaches. Either the maxx′∈X may be approximated
with a maximization over smaller finite subset maxx′∈X̄ . Or the continuous integral over Z may be
approximated with a sum over a smaller finite subset of Monte-Carlo samples Zi ∼ N(0,1). For each
sample, maxx′∈X µn(x′)+ σ̃n(x′,0′x,s)Zi is continuously optimized over the full X with an off-the-shelf
non-linear optimizer and the average of optimizer outputs is used as an estimate of KGCRN(x,s) (Wu et al.
2017; Wu and Frazier 2016).

Contrasting with many previous algorithms for common random numbers, this algorithm does not
exploit the correlation in noise by simulating pairs of inputs and only using the difference. Instead, note
that the compound spheric noise assumption is equivalent to assuming there exists a global offset, c(s),
added to all outputs for a single seed and each output has a further unique random deviation g(x,s). In such
a scenario, if ρ is large, then allocating simulation budget to learn the optimizer of a single seed may be
more informative than allocating the same budget to all unique seeds. The surrogate model may learn the
offset c(s) reducing the noise to only g(x,s) and exploiting that argmaxx θ(x,s)≈ argmaxx θ̄(x). However
due to the presence of the uninformative noise, g(x,s), deterministic outputs, and the limited number of
alternatives X , evaluating a single seed cannot provide full information about the true optimizer of θ̄(x).
The KGCRN(x,s) function measures the value of an observation from an old seed and a new seed in a
single function. Over the course of sampling, the procedure can automatically trade off between evaluating
multiple x on individual seeds and evaluating x on new seeds, always with the goal of learning the most
about the true optimum maxx θ̄(x).

4.3 Comparison with Pairwise Sampling

Extending Knowledge Gradient to be able to exploit correlated noise due to common random numbers
was previously considered in the Knowledge Gradient with Pairwise Sampling algorithm (Xie et al. 2016).
The proposed Gaussian process (and compound spheric noise assumption) is the model we consider here.
However, the proposed data acquisition method additionally assumes that each new call to the simulator
cannot recall past random number streams sn+1 /∈ {s1, ...,sn}. Instead, the proposed method exploits
noise correlation by allowing the algorithm to either collect a single observation on a new unique stream,
sn+1 = n+1, or, at twice the cost, the algorithm may simultaneously collect two observations on a new unique
steam, sn+1 = sn+2 = n+1 . However the expected value of information for two correlated observations,
yn+1,yn+2, cannot be computed in closed form even for finite X . It must either be computed by Monte-Carlo
(Wu and Frazier 2016) (Ginsbourger et al. 2010) or, alternatively, an analytically tractable lower bound
of the two step ahead improvement may be derived by considering only the univariate difference between
outputs yn+1−yn+2. This latter method is used in the Knowledge Gradient with Pairwise Sampling, adding
to the standard Knowledge Gradient for a single sample with a second acquisition function to be separately
optimized over pairs of inputs,

KGPW(xi,x j) =
1
2

(
E
[

max
x′∈X

µ
n(x′,0)+ ˜̃σn(x′,0;xi,x j)Z

]
−max

x′
µ

n(x′,0)
)

(4)

˜̃σn(x,0;xi,x j) =
kn(x,0,xi,sn+1)− kn(x,0,x j,sn+1)√

kn(xi,sn+1,xi,sn+1)+ kn(x j,sn+1,x j,sn+1)−2kn(xi,sn+1,x j,sn+1).

where sn+1 = n+1 and the factor of 1/2 in Equation (4) is required because the improvement consumes
twice the units of simulation budget. KGPW(xi,x j) is optimized over (xi,x j) ∈ X ×X which is expensive
if naively optimized by exhaustive evaluation as is required for categorical domains. However in (finite or
infinite) numerical domains with a surrogate model, this may be continuously optimized and the candidate
in X×X nearest the optimizer output may be used. The proposed Gaussian Process model is the same as
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we use here and therefore the model does infer past offsets c(s1), ...,c(sn). However, specifically due to the
constraint that old random number streams cannot be reused, such information is automatically excluded
from being used in the acquisition of future observations.

5 NUMERICAL EXPERIMENTS

We compare our proposed method with standard Knowledge Gradient and Knowledge Gradient with Pairwise
sampling in laboratory conditions on synthetic functions. We generate random ground truth functions θ̄(X)
and offsets c(s) and g(x,s) from distributions described below. The parameters used to generate data are
known to the Gaussian processes for inference and therefore the only difference between methods is the
acquisition function. 800 synthetic ground truth functions and sets of offsets were generated and the three
methods described below were applied. One example output of both KGCRN and KGPW are shown in
Figure 2.
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Figure 2: An experiment with ρ = 0.8. Top row: Initial state. (L) data and inferred µ5(x,0) in black, true
function θ̄(x) in grey. (C) KGCRN(x,s) for observed seeds s∈ {1,2,3} and one new seed s = 4 which is also
used for the single sample in the pairwise algorithm. (R) the KGPW(x1,x2), is symmetric in its arguments
and the peak marked by the star. Bottom row: final state after 50 samples. (L) Knowledge Gradient for
Common Random Numbers after 50 samples and seed allocation, dark bars are initialization. All data has
been collected on the initial 3 seeds around peaks at x ∈ {40,85}. (R) Pairwise KG, pairs are shown by
triangles linked by dashed lines, again single vs pairs seed allocation is given, without initialization. Pairs
are frequently collected at the two possible peaks. However due to using new seeds there is much more
stochasticity.
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5.1 Test Functions

We set X = {1, ....,100}, we generate ground truth values from a multivariate normal

θ̄(x)∼ N(0,kθ̄ (X ,X))

where kθ̄ (i, j) = 1002 exp(−(i− j)2/2 ·52). For a given noise correlation, ρ ∈ {0.2,0.8}, each seed offset
is sampled from c(s)∼ N(0,ρ502) and the offsets for each (x,s) are given by g(x,s)∼ N(0,(1−ρ)502)
and all generated values are held constant throughout each experiment. We run experiments with low noise
correlation ρ = 0.2 and high noise correlation ρ = 0.8 holding the total noise constant η2 +σ2 = 502.
Because the total noise is held constant, the standard Knowledge Gradient will perform exactly the same
in both cases.

5.2 Algorithms and Performance

All algorithms are initialized with 5 observations distributed by Latin hypercube sampling, i.e., five equally
spaced intervals over {1, ..,100} each containing a randomly selected x. The initial seed allocation is
{1,1,2,2,3} which are randomly shuffled and paired with the initial X5 = {x1, ...,x5} from the Latin
hypercube. For inference, we make the true parameters known to the fitting Gaussian process regression
models. Given that the input set X is finite, the KGCRN(x,s) and KGPW(xi,x j) functions can be computed
exactly and note that KGPW(xi,x j) requires more computation. The following three methods are applied
to find the optimal θ̄(x) from noisy observations:

• Knowledge Gradient for Common Random Numbers. At each time step, the KGCRN(x,s)
function is exhaustively evaluated for all x ∈ X and for all seeds in the observation history and
one new seed s ∈ {1, ..,maxi si,maxi si +1}. The seed history grows when the algorithm decides to
sample a new seed and accordingly the search space for optimizing KGCRN(x,s) always includes
one new extra unobserved seed. Each seed requires |X | = 100 calls to KGCRN(x,s) and in these
experiments there are typically up to 5 seeds hence 500 calls.

• Knowledge Gradient. (Frazier, Powell, and Dayanik 2009) We make two modifications to the
Knowledge Gradient for common random numbers, firstly the associated seed values of the observed
inputs from initialization are overwritten to unique integers {s1, ...,s5} = {1, ..,5}. Secondly, by
exhaustive evaluation, we optimise the KGCRN(x,s) function for a new seed only, s = n+1, thereby
removing any benefit due to common random numbers in inference and in acquisition recovering
standard Knowledge Gradient. This requires |X |= 100 calls to KGCRN(x,s).

• Knowledge Gradient with Pairwise Sampling. (Xie, Frazier, and Chick 2016) We make two
modifications to the Knowledge Gradient for common random numbers, firstly we optimise the
KGCRN(x,s) function for s= n+1 only, reproducing the single sample acquisition function. Secondly,
we also optimise the KGPW(x,x′) acquisition function over all X ×X by exhaustive evaluation of
all possible |X ||X |/2 = 5,000 unique input pairs . This is much more expensive however removes
any possible deficiencies due to optimizer implementation and is therefore a best case scenario. In
practice this takes only 3 to 4 seconds per iteration and may determine two new samples.

Observations are sequentially collected starting from 5 up to 50 and at each time step the recommended
x value is found by exhaustive evaluation over X and recorded,

xn
r = argmaxµ

n(x,0).

For evaluation, each experiment is repeated K = 800 times with different θ̄ k(x), ck(s) and gk(x,s) for
k ∈ {1, ...,800}. We measure the average opportunity cost, the difference between the recommended
ground truth value θ̄ k(xnk

r ) and best possible θ̄ k(x) (note that these measurements are not known to the
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algorithms),

Opportunity Cost at time n =
1
K

K

∑
k=1

[
max θ̄(x)− θ̄(xn

r )
]

k .

where [..]k denotes experiment k to avoid cluttering notation. For each of the CRN algorithms, we also
report the relative frequency of reusing an old seed at each time step n,

Frequency of reusing an old seed at time n =
1
K

K

∑
k=1

[
1{sn∈{s1,...,sn−1}}

]
k
.

Note that for Pairwise Sampling, even if a pair is sampled at every time step, the first seed of each pair will
not be in the history therefore this frequency is upper bounded by 0.5. The initial and final states of one
experiment with high correlation are shown in Figure 2 and Opportunity cost and seed reuse are reported
in Figure 3.
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Figure 3: Top row: ρ = 0.2, bottom: ρ = 0.8. (L) Average opportunity cost for increasing sampling
budget with 95% confidence intervals. (C-L) The average frequency of reusing a seed during sampling,
dashed line at 0.5, the upper bound for KG-PW. (C-R) The average final number of samples allocated
to each seed by the KG-CRN, the dark bars are the initialisation samples. (R) The average final number
of seeds queried once (singles) and twice (pairs) by the KG-PW excluding the initialization seeds. For
small ρ , there is little benefit from correlated noise. For large ρ , opportunity cost reduces faster for CRN
methods, more pairs are sampled by the Pairwise algorithm, likewise more budget is allocated to old seeds
by the Common Random Number algorithm which converges significantly faster.
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5.3 Results

The top row of Figure 3 shows results for the low correlation benchmarks. All algorithms have similar
opportunity cost, both CRN methods still utilise many old seeds yet this does not significantly affect
performance. For KG-CRN, the frequency of reusing an old seed decreases for larger budgets, the early
samples are allocated to old seeds for exploration, and new seeds are sampled later on in optimization for
exploitation to learn about the peak. However the KG-PW method does the opposite, initially sampling more
new seeds, filling space with singletons to explore and sampling pairs later in the optimisation to exploit
and compare peaks. For high correlation, see Figure 3 bottom row, the KG-CRN method significantly
outperforms both baselines. The KG-PW initially samples singletons and performs similarly to KG, and
soon hits the upper bound of seed reuse, 0.5. Then it begins to outperform KG. Whereas the KG-CRN
method is free to reuse old seeds and very rarely goes to a new seed even for larger budgets. In the high
correlation case, with this model free compound spheric noise assumption, optimizing a single seed is
much better than going to new seeds.

6 CONCLUSION

We proposed the Knowledge Gradient for Common Random Numbers, a simple generalization of the
standard Knowledge Gradient that allows the reuse of old random number streams dramatically improving
sample efficiency. This also avoids the need to consider pairs of inputs and optimization over an exponentially
larger search domain while simultaneously finding vastly better optima given the same sampling budget.
In further work, we intend to investigate noise models that are informed by the inputs X and the interaction
of learning extra hyper parameters of the Gaussian Process model. We also aim to apply the new method
to more realistic problems and derive theoretical properties.
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