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ABSTRACT

In Bayesian feasibility determination, a typical reward function is either the 0-1 or linear reward function.
We propose a new type of reward function for Bayesian feasibility determination. Our proposed reward
function emphasizes the importance of barely feasible/infeasible systems whose mean performance measures
are close to the threshold. There are two main reasons why the barely feasible/infeasible systems are more
important. First, the overall accuracy on solving a feasibility determination problem is heavily affected
by those difficult systems. Second, if the decision maker wants to further find the best feasible system,
it is likely that one of the barely feasible/infeasible systems is the best feasible. We derive a feasibility
determination procedure with the new reward function in a Bayesian framework. Our experiments show
that the Bayesian optimal procedure with the new reward function performs the best in making correct
decisions on difficult systems when compared to existing procedures.

1. INTRODUCTION

We consider a problem of feasibility determination, where a decision maker wants to find a set of feasible
systems among a finite number of simulated systems in the presence of a stochastic constraint. If a constraint
is imposed on a performance measure whose value can only be estimated by stochastic simulation, we call it
a stochastic constraint. In addition, we define a system as barely feasible/infeasible if its mean performance
measure is close to a threshold value of the given constraint, and clearly feasible/infeasible if the mean
performance measure is far from the threshold. Feasibility determination for a stochastic constraint occurs
in many management and industrial applications. Some real-world examples are as follows:

1. The emergency department of a health-care unit has several shift arrangements for the staff. The
decision maker wants to know which arrangements can keep patients’ mean waiting time no more
than 2 hours.

2. A manufacturing company has a few available production plans, and the decision maker wants to
identify which plans can satisfy the production amount requirement of 10,000 units per month.

3. A facility management team is considering a number of cooling options on hand and wants to find
out which options can keep the facility’s temperature lower than or equal to 85◦F.

Our problem is closely related to the study of constrained ranking-and-selection (R&S), where the goal
is either to find a set of feasible systems or to find a feasible system with the largest or smallest mean
performance measure in the presence of stochastic constraints. Three main approaches are usually used
for the constrained R&S problems: the indifference-zone (IZ) approach, the optimal computing budget
allocation (OCBA) approach, and the Bayesian approach. Among the IZ approach, Andradóttir and Kim
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(2010) consider a general form of a single stochastic constraint on a secondary performance measure
and provide procedures for both feasibility determination and selection of the best feasible system. They
introduce a parameter, namely error tolerance, that specifies how much a system’s mean performance
measure could be off from the threshold in the constraint but still acceptable to the decision maker. Batur
and Kim (2010) focus on feasibility determination and provide IZ procedures for identifying a set of feasible
systems in the presence of multiple stochastic constraints. Later, Healey et al. (2014) present IZ procedures
that are more aggressive for feasibility determination and combine them with procedures to select the best
feasible system. Among procedures with the OCBA approach, Lee et al. (2012) propose a budget allocation
rule to maximize the probability of correct selection of the best feasible system under multiple stochastic
constraints. Instead of selecting a single best feasible system, Gao and Chen (2017) develop an OCBA
procedure that returns a set of feasible systems in the presence of multiple stochastic constraints. For the
Bayesian approach, Xie and Frazier (2013) present sampling procedures that compare multiple systems to
a known standard on a single performance measure. This is essentially feasibility determination under a
single stochastic constraint because a system that has a mean performance measure better than the standard
is equivalent to a feasible system. There are additional procedures that use the large deviation principle.
While Hunter and Pasupathy (2013) and Pasupathy et al. (2014) focus on the selection of the best feasible
system, Szechtman and Yücesan (2008) and Szechtman and Yücesan (2016) provide procedures to find
a set of feasible systems. Gao and Chen (2017) also use the large deviation technique within the OCBA
framework.

As mentioned above, procedures for constrained R&S involve either feasibility determination or
feasibility determination and selection of the best. The main focus of this paper is on feasibility determination
only and especially on the correct feasibility decision of barely feasible/infeasible systems. Even though
the simulation is convenient for analyzing complex systems, it can be both time consuming and expensive.
Therefore, it is crucial that the decision maker can allocate simulation effort wisely. Unlike IZ and
OCBA procedures, Bayesian procedures incorporate the idea of value of information (VOI), which can be
understood as the expected gain of reward from taking an additional simulated observation. The choice
of a reward function is important as it determines when a Bayesian procedure stops taking observations
and consequently, affects the overall performance of the procedure. More description about the Bayesian
approach can be found in for example, Chick (2006), Chick and Gans (2009) and Chick and Frazier (2012).

In this paper, we propose a new form of a reward function that is more reasonable than the current
popular linear and 0-1 reward functions for feasibility determination. Our motivation comes from the
fact that, in many management or operation problems, barely feasible/infeasible systems are often more
important in a sense that they are likely to be candidates for best feasible systems. For example, for
the health-care unit example above, the decision maker may want to find the most cost-effective shift
arrangement while keeping the patients’ mean waiting time no more than 2 hours. Since adding more staff
members would increase the cost of the shift arrangement while decreasing patients’ mean waiting time,
these two mean performance measures move in the opposite directions and the best arrangement is likely
one of those that have the mean waiting time close to 2 hours. Thus, correct feasibility decisions on barely
feasible/infeasible systems are more important than on clearly feasible/infeasible systems and it makes
sense to assign a higher reward value to correct decision on these difficult systems. Unlike this intuition,
the linear reward function gives a higher reward value to those located far from the threshold value. The
0-1 reward function assigns the same reward to all systems. Our proposed reward function puts a higher
reward value to a system whose mean performance measure is closer to the threshold value of a constraint.

There are many functional shapes which assign higher reward values to systems whose means are
close to the threshold such as a triangular, exponential, normal shape and so on. Under the assumption
of normally distributed observations, we find that a reward function whose form is similar to the normal
probability density function makes computation more tractable in deriving the expected reward. Thus, we
propose a normal-shape reward function and derive a Bayesian optimal feasibility determination procedure
with the reward function based on the method due to Xie and Frazier (2013).
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The rest of the paper is organized as follows. Section 2 provides our notation and assumptions and
defines the feasibility determination problem. In Section 3, we present our new reward function and a
Bayesian optimal policy. Section 4 presents results from illustrative experiments to show the advantages
of our proposed procedure compare to other existing procedures, followed by a conclusion in Section 5.

2. BACKGROUND

In this section, we introduce notation and necessary assumptions on simulation processes and define the
feasibility determination problem.

2.1 Notation and Assumptions

For a simulation process, let µi = E[Yi j] ∈ R and γi = 1/Var[Yi j] ∈ (0,∞), where Yi j represents the jth
simulation observation from system design i, for i = 1,2, . . . ,k and j = 1,2, . . .. We make the following
assumptions on the simulation process:
Assumption 1 For any two systems i, i′ ∈ {1,2, . . . ,k} such that i , i′ and j = 1,2, . . . and j′ = 1,2, . . ., Yi j
and Yi′ j′ are independent.

Assumption 1 means that common random numbers are not used in the simulation process and
observations from different systems are mutually independent.

Assumption 2 For each system i = 1,2, . . .k, Yi j
iid
∼ N(µi,1/γi), j = 1,2, . . ..

Assumption 2 is plausible if Yi1,Yi2, . . . are within-replication averages across independent replications
of system i, or if they are batch means from a large batch size within a single replication of a steady-state
simulation after accounting for initialization effects. For more details, see Law and Kelton (2003).

The sampling precisions γi’s are assumed to be known in this paper (and as in many other Bayesian
R&S works). However, we consider µi’s as the unknown mean performance measures of interest, for
i = 1,2, . . . ,k. Using the Bayesian approach, we place a prior distribution on each µi. We suppose that
these prior distributions come from the same distribution family ζ with parameter space Ω. To facilitate
computation, we adopt independent conjugate priors. Specifically, we have the following assumption:
Assumption 3 For i = 1,2, . . . ,k, µi’s are mutually independent and µi ∼ N(ηi,1/λi), where ηi = E[µi] ∈ R
and λi = 1/Var[µi] ∈ (0,∞).

The assumption of known sampling precision γi is rarely true. The frequentist’s approach, such as IZ
approach, tends to deal with unknown γi’s directly. However, the OCBA and Bayesian approaches often
work on versions for known precisions. They then address the unknown variances by running a first-stage
experiment that simulates a small number n0 of replications and estimates γi by using its maximum likelihood
estimator. In this paper, we consider known sampling precisions only.

2.2 Problem Formulation

In general, the goal of a feasibility determination problem is to find a set of systems among a finite number
of simulated systems. We consider k available systems. Without loss of generality, we define that a system
is feasible if and only if its mean performance measure of interest is less than or equal to the corresponding
threshold. For simplicity, we consider situations where there is only one constraint with a threshold d.
Therefore, a system i is feasible if and only if µi ≤ d. We define F = {i : µi ≤ d, i ∈ {1,2, . . . ,k}}, which is
the true set of feasible systems.

We formulate the feasibility determination as a dynamic program following Xie and Frazier (2013). The
stage is indexed by n = 0,1,2, . . .. At each stage n, we choose exactly one system in ∈ {1,2, . . . ,k} to sample,
and let S n,i be the parameters of the posterior distribution for µi for i = 1,2, . . . ,k. By convention, we denote
S 0,i as the parameters of prior distribution for µi. Since we choose conjugate priors to sampling distributions,
the sampling process results in a sequence of posterior distributions, each of which resides in the same
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distribution family ζ parameterized by the same space Ω. Therefore, we have that S n,i = (ηn,i,λn,i) ∈ Ω,
where Ω = R× (0,∞), for all n = 0,1,2, . . . and i = 1,2, . . . ,k.

The reward function r is chosen by the decision maker. Specifically, the reward function r is defined
as a two-piece function:

r(F;µ,d) =
∑
i∈F

r0(µi,d) +
∑
i<F

r1(µi,d),

where r0 and r1 are known real-valued functions, F is any subset of {1,2, . . . ,k}, and µ = {µ1, . . . ,µk}. At each
stage n, the set Fn ⊂ {1, . . . ,k} is chosen to maximize the expected reward function, given the information
of n observations. Specifically, for all n ≥ 0,

Fn = argmax
F⊂{1,2,...,k}

En
[
r(F;µ,d)

]
= argmax

F⊂{1,2,...,k}

∑
i∈F

En
[
r0(µi,d)

]
+

∑
i<F

En
[
r1(µi,d)

] ,
where En [·] denotes the conditional expectation given the information of observations at stage n. A policy
π is composed of a decision rule for choosing the sequence of systems to be sampled

(
i.e., (in)n≥1

)
and

a termination rule for choosing a stopping stage τ so that no more observations are taken after stage τ.
Eventually, the estimate of F returned by the procedure is Fτ. Although our problem formulation can
adopt different unit costs for different systems, we assume a fixed unit cost c associated with simulating
an observation for all systems. Our goal is to find a policy π that maximizes the expected total reward.
That is, we want to solve the problem

sup
π

Eπ
[
r(Fτ;µ,d)− cτ

]
. (1)

where Eπ [·] denotes the unconditional expectation under policy π.
The decision maker needs to specify a reward function in order to find an optimal policy. Two common

choices are 0-1 and linear reward functions:

• 0-1 reward function: r0(µi,d) = I(µi ≤ d), r1(µi,d) = I(µi > d), where I(·) is the indicator function;
• linear reward function: r0(µi,d) = d−µi, r1(µi,d) = µi−d.

When a correct decision is made, the 0-1 reward function gives the same amount of reward to any system
while the linear reward function gives a higher reward to a clearly feasible/infeasible system. Next we
present a reward function that gives a higher reward to a barely feasible/infeasible system when a correct
decision is made. Table 1 summarizes notation used throughout this paper.

3. NEW REWARD FUNCTION

In this section, we propose a new reward function, so called the normal reward function where the name
comes from the fact that its functional form is similar to the normal probability density function. We
provide a Bayesian optimal policy constructed with the new normal reward function using the framework
of Xie and Frazier (2013).

3.1 Normal Reward Function

As discussed in section 1, barely feasible/infeasible systems are often more important in the feasibility deter-
mination problem. However, neither 0-1 nor linear can capture such importance of barely feasible/infeasible
systems. Therefore, we propose the normal reward function as follows:

r(F;µ,d) =
∑
i∈F

r0(µi,d) +
∑
i<F

r1(µi,d), (2)
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Table 1: Summary of notation used in the paper.

notation meaning
k total number of available systems
d control requirement for each system i, i = 1, . . . ,k
c cost per simulation for each system i, i = 1, . . . ,k
n stage counter, n = 0,1,2, . . .
µi mean performance for system i, i = 1, . . . ,k
µ vector of means (µ1,µ2, . . . ,µk)
γi sampling precision for system i, i = 1, . . . ,k
Ω parameter space of the prior and posterior distributions
ζ distribution family of the prior and posterior distributions with parameter space Ω

η0,i mean of prior distribution on µi, i = 1, . . . ,k
ηn,i mean of posterior distribution on µi at stage n = 1,2, . . ., i = 1, . . . ,k
λ0,i precision of prior distribution on µi, i = 1, . . . ,k
λn,i precision of posterior distribution on µi at stage n = 1,2, . . ., i = 1, . . . ,k
S n,i state of parameters of distribution on µi; S n,i = (ηn,i,λn,i)
Sn vector of states (S n,1,S n,2, . . . ,S n,k)
π policy that governs the rules of sampling and termination
τ stopping stage determined by the policy
F true set of feasible systems, F ⊂ {1,2, . . . ,k}
Fn estimate of F at stage n = 0,1,2, . . .
Fτ final estimate of F returned by the procedure

where r0 and r1 are

r0(µi,d) =

a · exp
{
−1

2 (d−µi)2 ·b
}
, if µi ≤ d;

0, otherwise;

r1(µi,d) =

0, if µi ≤ d;
a · exp

{
− 1

2 (d−µi)2 ·b
}
, otherwise.

For each system, the normal reward function assigns reward values that follow the shape of a half-normal
distribution, with its maximum at the threshold. As a result, barely feasible/infeasible systems tend to have
larger rewards than clearly feasible/infeasible ones. There are two parameters the decision maker needs to
choose before implementation. Generally speaking, the parameter a determines the maximum magnitude
of the reward, and b determines the spread-out of the reward. Section 3.5 explains how to choose these
parameters.

3.2 Conditions on Reward Functions

The framework for deriving a Bayesian optimal policy due to Xie and Frazier (2013) requires a reward
function to satisfy some conditions. To state these conditions, we need some additional notation. For any
generic s ∈Ω, define
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h0i(s) = E
[
r0(µi,d)|µi ∼ ζ(s)

]
;

h1i(s) = E
[
r1(µi,d)|µi ∼ ζ(s)

]
;

hi(s) = max {h0i(s),h1i(s)} ;

Ri(s) = E[hi(S 1,i)|S 0,i = s, i1 = i]−hi(s)− c; and

Vi(s) = sup
τi

Eτi

 τi∑
n=1

Ri(S n−1,i)

∣∣∣∣∣∣∣S 0,i = s, i1 = . . . = iτi = i

 . (3)

Note that we use τi to represent the policy in which only system i can be sampled and it is sampled
for τi times.

The function hi(s) can be interpreted as the expected reward to be obtained with respect to a distribution
of the unknown mean performance measure, and Ri(s) as the expected increment of expected reward given
one more sample.

The required conditions from Xie and Frazier (2013) are then as follows:
Condition 1 For each system i, there exists a deterministic nonnegative function Hi(s) on Ω such that for
any s ∈Ω,

E
[
hi(S n,i)|S 0,i = s, i1 = i2 = . . . = in = i

]
−hi(s) ≤ Hi(s).

Condition 2 For each system i, there exists a deterministic nonnegative function H̃i(s) on Ω such that for
any s ∈Ω,

E
[
hi(S 1,i)|S 0,i = s, i1 = i

]
−hi(s) ≤ H̃i(s) and lim

n→∞

 sup
s∈PS (i;n)

H̃i(s)
 = 0,

where PS (i;n)B {s ∈Ω : ∃s′ ∈Ω s.t Pr
{
S n,i = s|S 0,i = s′, i1 = i2 = . . . = in = i} > 0

}
.

Condition 3 For any system i and precision λ, there exists an interval
[
ηi(λ),ηi(λ)

]
such that η <

[
ηi(λ),ηi(λ)

]
implies Vi(η,λ) = 0.

Proofs that the normal reward function satisfies the above conditions are in He (2019).

3.3 Bayesian Optimal Sampling Policy

Problem (1) can be solved using dynamic programming techniques. Let Ωk be the state space of Sn for all
n ≥ 0. For each s = (s1, . . . , sk) ∈ Ωk, we define V(s) as the optimal expected total reward attainable when
the initial state is s. Specifically,

V(s) = sup
π

Eπ
[
r(Fτ;µ,d)−τc|S0 = s

]
. (4)

Xie and Frazier (2013) prove that (4) is equivalent to

V(s) = sup
π

Eπ
 τ∑

n=1

Rin(S n−1,in)

∣∣∣∣∣∣∣S0 = s
 . (5)

Instead of solving (5) directly, consider the subproblem where only system i can be sampled. Specifically,
the subproblem is (3).
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Results from the dynamic programming literature (see, for example, Dynkin and Yushkevich (1979))
show that Vi(s) satisfies Bellman’s recursion:

Vi(s) = max[0,Li(s,Vi)] , (6)

where Li(s,Vi) = Ri(s) + E
[
Vi(S 1,i)|S 0,i = s, i1 = i

]
.

Problem (6) is a standard optimal stopping problem that can be solved by specifying the so-called
continuation set Ci (see, for example, Bertsekas (2007)). That is, we need to find Ci = {s ∈Ω : Vi(s) > 0}.
Then, an optimal solution to (6) is the stopping time τ∗i given by τ∗i = inf

{
n ≥ 0,S n,i < Ci

}
. In general, τ∗i

can go to ∞. However, under Condition 2 we can provide a deterministic upper bound on τ∗i , denoted as
Ni, using the result from Xie and Frazier (2013):

Ni = min
n :

 sup
s∈PS (i;n′)

H̃i(s)
 ≤ c,∀n′ ≥ n

 . (7)

We can now go back to the original problem (5). Let π∗ be the Bayesian optimal policy with stopping
stage τ∗ such that Eπ

∗ [
r(Fτ∗ ;µ,d)−τ∗c|S0 = s

]
= V(s). Given that all systems are mutually independent, it

is straightforward that V(s) =
∑k

i=1 Vi(si). Since the value of information from each stage only depends on
the system being sampled and the states of other systems remain unchanged, the order of the sequence of
sampling decisions does not affect the total value of information. In fact, Xie and Frazier (2013) prove
that the policy π∗ with sampling decisions (i∗1, i

∗
2, . . . , i

∗
n) and stopping stage τ∗ is any policy that satisfies:

i∗n+1 ∈ {i,S n,i ∈ Ci},∀i ≥ 0;

τ∗ = inf{n ≥ 0 : S n,i < Ci,∀i}.

Therefore, we can solve each subproblem (6) separately, and the final optimal policy π∗ is the one that
samples system i for τ∗i stages sequentially for i = 1, . . . ,k, and has a stopping stage τ∗ =

∑k
i=1 τ

∗
i .

Chick and Gans (2009) and Chick and Frazier (2012) use a similar strategy of sampling only from
system i before stopping. However, they consider the problem of selection of the best rather than feasibility
decision, and their proposed procedures are not Bayesian optimal while the procedure presented here
is Bayesian optimal. The Bayesian optimal feasibility determination procedure BFD is then stated in
Algorithm 1.

Algorithm 1 Procedure BFD
1: Setup: Let F = ∅. Specify number of systems k, threshold d and unit cost c. Start with system i = 1.
2: Initialization: Specify prior distribution N(η0,i,1/λ0,i) for the mean performance µi and sampling

precision γi. Compute continuation region Ci. Set ni = 0.
3: Update: Let ni = ni + 1. Simulate one observation yi from system i. Compute

ηni,i =
λni−1,iηni−1,i +γiyi

λni−1,i +γi
,

λni,i = λni−1,i +γi.

4: Stopping Rule: If (ηni,i,λni,i) < Ci, then stop sampling from system i and go to Feasibility Check.
Otherwise, go back to Update.

5: Feasibility Check: If ηni,i ≤ d, then add i in F.
6: Termination Rule: Set i = i+1. If i ≤ k, go to Initialization. Otherwise, return F as the set of feasible

systems.

Procedure BFD works for any reward function that satisfies conditions given in Section 3.2, but a
different reward function results in a different continuation set Ci. In the next subsection, we explain how
to find Ci.
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3.4 Continuation Set

To find a continuation set, one has to solve (6). Under Assumptions 1 and 2, it can be shown that

E
[
Vi(S 1,i)|S 0,i = s, i1 = i

]
= E

[
Vi(η+ σ̃i(λ) ·Z,λ+γi)

]
,

where s = (η,λ) ∈ R× (0,∞), σ̃i(λ) =
√

γi
λ(λ+γi)

and Z is a standard normal random variable. Therefore, (6)
becomes

Vi(η,λ) = max {0,Li(η,λ,Vi)} , (8)

where Li(η,λ,Vi) = Ri(η,λ) + E
[
Vi(η+ σ̃i(λ)Z,λ+γi)

]
.

To calculate Vi(η,λ) for all possible (η,λ) ∈Ω, the main idea is to use a backward algorithm:

1. First, we start by considering a large number of stages Ni such that Vi(η,λ0,i +nγi) = 0, for all n > Ni
and all η ∈ R. The number Ni can be found by using (7). For simplicity, we set Ni = N = 1000 for
our numerical experiments.

2. Starting from λ = λ0,i + Nγi, we compute
[
ηi(λ),ηi(λ)

]
as the boundary of η such that Vi(η,λ) = 0,

if η <
[
ηi(λ),ηi(λ)

]
. Under Condition 3, we know such

[
ηi(λ),ηi(λ)

]
exists.

3. Then, we discretize the range
[
ηi(λ),ηi(λ)

]
into points

{
ηi(λ) j

}
with an interval of δ (in our experiments,

we set δ = 0.01).
4. Using (8) and an approximation that

E
[
Vi (η+ σ̃i(λ)Z,λ+γi)

]
≈
∑

j

Vi
(
η

j
i (λ+γi),λ+γi

)
·

Φ
η j

i (λ+γi) +δ/2−η
σ̃(λ)

−Φ

η j
i (λ+γi)−δ/2−η

σ̃(λ)


 ,

where Φ(·) is the cumulative density function of a standard normal random variable, each Vi(η
j
i (λ),λ)

can be computed recursively for λ ∈
{
λ0,i + nγi : 0 ≤ n ≤ N

}
.

5. Finally, for any arbitrary (η,λ) ∈ R×
{
λ0,i + nγi : 0 ≤ n ≤ N

}
, we set

Vi(η,λ) =

0, if η <
[
ηi(λ),ηi(λ)

]
;

Vi
(
η

j∗

i (λ),λ
)
, otherwise

where j∗ = argmin
{
|η−η

j
i (λ)|

}
.

6. As a result, we find Ci =
{
[ηi(λ),ηi(λ)] : λ = λ0,i + nγi,0 ≤ n ≤ N

}
.

The remaining work to complete the policy is to specify hi(η,λ) and Ri(η,λ) functions, for each
i = 1,2, . . . ,k. We directly state the results here, and details of calculation can be found in He (2019).
Theorem 1 When the normal reward function in (2) is used for any η ∈ R and any λ ∈ (0,∞), the function
hi(η,λ) is

hi(η,λ) = max {h0i(η,λ),h1i(η,λ)} ,

where

h0i(η,λ) =
a
√

2π
√

b
G(d,η,b,λ) ·Φ

(
(d−

db +ηλ

b +λ
)
√

b +λ

)
,

h1i(η,λ) =
a
√

2π
√

b
G(d,η,b,λ) ·

[
1−Φ

(
(d−

db +ηλ

b +λ
)
√

b +λ

)]
, and
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G(η f ,ηg,λ f ,λg) =
1
√

2π

√
λ fλg

λ f +λg
exp

{
−

1
2

(η f −ηg)2 λ fλg

λ f +λg

}
.

Also, Ri(η,λ) is defined as

Ri(η,λ) = E
[
hi(η+ σ̃i(λ) ·Z,λ+γi)

]
−hi(η,λ)− c,

where

E
[
hi(η+ σ̃i(λ) ·Z,λ+γi)

]
=

a
√

2π
√

b

√
λ(λ+γi)

γi
G

(
d−η
σ̃i(λ)

,0,
bγi

λ(b +λ+γi)
,1

)
·Pr

{
Z1 ≤

d−η
σ̃i(λ)

,Z2 ≤ 0
}

+
a
√

2π
√

b

√
λ(λ+γi)

γi
G

(
d−η
σ̃i(λ)

,0,
bγi

λ(b +λ+γi)
,1

)
·Pr

{
Z1 ≥

d−η
σ̃i(λ)

,Z2 ≥ 0
}
.

The vector of variables
[
Z1
Z2

]
follows a multivariate normal distribution MVN(m̃, Σ̃) with mean m̃ and

covariance matrix Σ̃, where

m̃ =

[
m1

−A + Bm1

]
,

Σ̃ =

[
1/p1 B/p1
B/p1 1 + B2/p1

]
,

with m1 =
d−η
σ̃i(λ) bγi

bγi+λ(b+λ+γi)
, p1 =

bγi
λ(b+λ+γi)

+ 1, A = −
(d−η)(λ+γi)√

b+λ+γi
and B =

σ̃i(λ)(λ+γi)√
b+λ+γi

.

�

By the above theorem, E
[
hi(η+ σ̃i(λ) ·Z,λ+γi)

]
can be calculated using the cumulative density function

of a multivariate normal distribution.

3.5 Choices of Parameters

To finish up the procedure, we discuss how to specify the parameters a and b in the normal reward function.
We define υ > 0 as the importance parameter for a constraint. This parameter defines an important range
where a correct feasibility decision is more desirable and the decision maker is willing to take more
observations if needed. For systems outside the important range, making a correct decision is easier and
a procedure still tries to make a correct feasibility decision due to positive rewards. We want to point out
that the importance parameter and the error tolerance in the IZ approach have different interpretations. The
error tolerance in the IZ approach defines a range around d where the decision maker does not care about
the correct decision, which has the opposite meaning of our importance parameter.

The main motivation of the normal reward function is to increase the chance of a correct difficult
systems whose means of performance are in [d−υ,d +υ] and this requires assigning more observations to
those systems than the 0-1 reward function. For a given unit cost c for simulating one observation, BFD
gives an additional observation only when the expected additional reward is higher than the unit cost c.
Thus, to make difficult systems receive more observations, we need to ensure that the range [d−υ,d +υ]
receives a higher reward than 1.

We set the reflection points of the normal reward function (points where the 2nd derivative of the
reward function are equal to 0) to be (d− υ,1) and (d + υ,1). By this way, the normal reward function

3488



He and Kim

would give a reward greater than 1 and aggressively increase the reward on systems within (d−υ,d +υ),
while decrease the reward on those outside the range, which is consistent with the interpretation of the
important range. Consequently, we choose to set a =

√
exp(1) and b = υ−2.

4. NUMERICAL EXPERIMENTS

In this section, we demonstrate the advantages of using the Bayesian approach with the normal reward
function using simple examples.

We define CDi as the event of making a correct feasibility decision for system i, and CD ≡ ∩k
i=1CDi

as the event of making correct decisions on feasibilities of all available systems. Furthermore, we define
PCDi ≡ Pr{CDi} and PCD ≡ Pr{CD}. In our experiments, we estimate each PCDi and PCD empirically
based on 10,000 replications. We also record the average number of observations spent on each system
per replication (OBSi), and find the average total number of observations per replication (OBS). Due to a
limited space, we only report PCD and OBS but PCDi and OBSi are reported in He (2019).

The first comparison is among the three different reward functions to show that the normal reward
function is more ideal for feasibility determination, especially on the barely feasible/infeasible systems. We
implement the BFD procedure with each of the reward functions, and each version is denoted as BFD
normal, BFD 0-1 and BFD linear, respectively.

The second comparison is among procedures from three different approaches for feasibility determination,
namely Bayesian, IZ and OCBA approaches. To compare against the performance of our proposed Bayesian
procedure, BFD normal, we choose the following procedures that best suit the problem of feasibility
determination:

• The BK procedure (Batur and Kim 2010) which falls in the category of IZ procedures.
• The GC procedure (Gao and Chen 2017) which uses the OCBA framework with the large deviation

principle.

More details about the BK and GC procedures can be found in He (2019).

4.1 Experimental Settings

We consider k = 50 systems. Without loss of generality, we set the threshold d = 0 for all systems. For
simplicity, the unit cost of simulation is c = 0.001 for all systems. For each µi, we place a conjugate prior
distribution µi ∼ N(η0,i,1/λ0,i) with η0,i = 0 and λ0,i = 0.01. For the normal reward function, we set the
importance parameter υ = 1. The true mean performances µi of systems are µi = −2.5 + 0.1 · (i− 1) for
i = 1,2, . . . ,25 and µi = 0.1 · (i−25) for i = 26,27, . . . ,50. The set F = {1,2, . . . ,25} is the true set of feasible
systems.

We consider three configurations for the systems’ true precisions γi, i = 1,2, . . . ,50: constant precisions
(CP), decreasing precisions (DP) and increasing precisions (IP). In CP, we set γi = 1 for all systems.
As the true mean performances move away from the standard, the systems’ true precisions decrease in
DP, while they increase in IP. In particular, γi = 1/[1 + (|i−25.5| −0.5) ·0.1]2 for i = 1,2, . . . ,50 in DP;
γi = [1 + (|i−25.5| −0.5) ·0.1]2 for i = 1,2, . . . ,50 in IP.

For the BK procedure, we use a simple grid search to explore different values for the confidence level
1−α and error tolerance ε to find appropriate settings such that the procedure produces approximately the
same average total number of observations as the BFD normal procedure. The reason for doing so is
that we can compare the two procedures by comparing their PCD, while keeping the total cost roughly the
same. Based on the grid search, the values of (1−α,ε) for BK are (0.90,0.25), (0.75,0.45) and (0.75,0.15)
for the CP, DP and IP configurations, respectively.

For the GC procedure, we set the total budget equal to the average total number of observations per
replication of the BFD normal procedure in each configuration. In addition, we set the incremental budget
at each stage ∆0 = 5.
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4.2 Results

Table 2 shows that BFD with the normal reward function results in significantly higher PCD than the
other two reward functions but spends more observations. By checking PCDi’s and OBSi’s (reported
in He (2019)), we see that the improvement on PCD is due to more correct decisions on the barely
feasible/infeasible systems (i.e., systems 16 to 35) and that the new procedure spends more observations
only on the barely feasible/infeasible systems.

Table 3 shows PCD and OBS for the BFD normal, BK and GC procedures. The BFD normal
procedure still performs the best among the three procedures in all three configurations in terms of PCD
when spending a similar number of OBS. We see that the BFD normal procedure assigns simulation efforts
more efficiently, in a sense that it spends less budget on the clearly feasible/infeasible systems, but more on
the barely feasible/infeasible ones, compared to the BK and GC procedures. The performance of the BK
procedure under the DP configuration is strange due to a large value of ε = 0.45. Since the indifference
zone parameter ε is large, the BK procedure tend to care less on many systems whose mean performance
measures are close to d. In addition, the sampling precisions (sampling variances) of these systems are
large (small) under the DP configuration, which causes the procedure to spend fewer observations on them.
Consequently, we see that more observations are spent on systems far from d in the BK procedure under
the DP configuration.

Table 2: Summary of PCD and average total number of observations (OBS) for BFD with the normal,
0-1 and linear reward functions under CP, DP and IP configurations.

PCD OBS
normal 0-1 linear normal 0-1 linear

CP 0.942 0.876 0.477 1135 888 394
DP 0.914 0.829 0.429 1597 1267 765
IP 0.946 0.894 0.508 925 735 260

Table 3: Summary of PCD and average total number of observations (OBS) for BFD normal, BK and
GC under CP, DP and IP configurations.

PCD OBS
BFD normal BK GC BFD normal BK GC

CP 0.942 0.763 0.881 1135 1215 1135
DP 0.914 0.368 0.856 1597 1674 1597
IP 0.946 0.913 0.909 925 998 925

5. CONCLUSION

We introduce a new reward function, namely the normal reward function, that assigns a higher reward
value on the barely feasible/infeasible systems than clearly feasible/infeasible ones. We demonstrate the
advantages of the normal reward function using a Bayesian optimal feasibility determination procedure over
popular 0-1 and linear reward functions. Then the Bayesian optimal feasibility determination procedure is
compared with the existing IZ and OCBA procedures. From our experiments, we see that compared to the
0-1 and linear reward functions, the normal reward function does better in feasibility decisions on barely
feasible/infeasible systems, while performing well on clearly feasible/infeasible systems.
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