
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

RATE ANALYSIS FOR OFFLINE SIMULATION ONLINE APPLICATION

Siyang Gao

Systems Engineering and Engineering Management
and School of Data Science

City University of Hong Kong
Kowloon, Hong Kong

Cheng Li

Statistics and Applied Probability
National University of Singapore

Singapore

Jianzhong Du

Department of Systems Engineering and Engineering Management
City University of Hong Kong

Kowloon, Hong Kong

ABSTRACT

We consider a recently proposed simulation-based decision-making framework, called offline-simulation-
online-application (OSOA). In this framework, simulation experiments are not performed after the target
problem is set up with all the input parameters; instead, they are performed before that with all the possible
parameters that might come up in the target problem. Then, these computational results are directly used
in real time for system evaluation or system optimization when the input parameters of the target problem
are known. In this paper, we follow this framework and use stochastic kriging (SK) to model the system
performance from the covariate space. Two measures, namely IMSE and IPFS, are proposed to evaluate the
prediction errors for system evaluation and system optimization respectively. We establish the convergence
rates of these two measures. They quantify the magnitude of prediction errors for the online application
after a certain period of time is spent for the offline simulation.

1 INTRODUCTION

Large-scale complex systems broadly arise in engineering applications, e.g., in queueing systems,
electric power grids, air and land traffic control systems, communication networks, manufacturing plants,
supply chains, etc. These systems and problems usually do not satisfy the assumptions of analytical models,
and the practitioners have to rely on the tool of stochastic simulation to evaluate the performance of them.
In the meantime, since the evaluation of the system performance is accomplished by running simulation
models rather than experimenting with the real systems, it provides the opportunity for practitioners to try
different parameter settings (designs) for the systems and choose the best one in order to optimize their
performance. In this paper, we will call these two purposes of simulation as system evaluation (SE) and
system optimization (SO).

A major issue when using simulation is the computational efficiency. It is well known that simulation
experiments can take a long time to produce accurate estimates and decisions for the problems under
consideration (Law 2015; Ho et al. 2007). In contrast, a lot of practical problems are online, which require
the decisions to be made in real time after the input parameters are revealed. For example, when there is a
change in the arrival rate of patients to the hospital, the hospital manager wants to know the corresponding
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optimal medical staff configuration immediately without spending much time running simulation models
and comparing different configuration designs. The doctor wants to decide the best medical treatment for
a new patient without simulating different treatment methods.

To extend the applicability of simulation to online problems, Shen, Hong, and Zhang (2017) recently
proposed a new framework for conducting simulation experiments. This framework is based on the
observation that the possible values of the input parameters to the simulation model are typically known
in advance through historical data or experience. Then, instead of starting the simulation after the input
parameters are known, we can run simulation experiments in advance on the possible values of the input
parameters and build predictive models that relate the system performance and the input parameters. Then,
when the values of the parameters are revealed for online problems, the predictive models can be utilized
to make real time decisions, eliminating the need to run simulation at this stage.

This framework is called offline-simulation-online-application (OSOA). The input parameters in OSOA
have been known as the covariates, side information or auxiliary information in the literature (Perchet and
Rigollet 2013; Bastani and Bayati 2016; Qiang and Bayati 2017; Farias and Li 2019). Note that the general
idea of OSOA is, to some degree, similar to the concept of green simulation recently proposed, which also
tries to improve the efficiency of evaluating the system performance at a new input by using historical
simulation samples (Feng and Staum 2017). The main tool for the green simulation to achieve this goal
is by change of probability measures.

Although OSOA is highly effective in reducing the decision time for online problems through simulation,
the literature along this direction is sparse, rendering a lot of key questions under this framework largely
unexplored. Shen et al. (2017) considered ranking and selection (R&S) in the presence of covariates. They
used linear regression to characterize the relationship between the system performance of a certain design
and the covariate values, and applied the indifference-zone method (Kim and Nelson 2001) to determine a
budget allocation strategy on a set of covariate values and all the designs in order to provide a guarantee
on the expected probability of correct selection (PCS) or the minimal PCS on the covariate space. Li et al.
(2018) extended the result in Shen et al. (2017) to high-dimensional covariates and general dependence
between the mean performance of a design and the covariates. Pearce and Branke (2017) and Pearce and
Branke (2018) looked at estimating a function of covariates and decision variables, in order to provide an
optimal decision in response to a set of covariate values that might come in the future, under the settings
of R&S and continuous Bayesian optimization, respectively.

In this paper, we summarize recent results by Li et al. (2019) and aim to quantify the relationship
between the offline simulation efforts and online prediction accuracy for both SE and SO. This is a
fundamental problem in OSOA. Particularly, we consider continuous covariate space and a finite number
of designs. We assume a fixed sampling distribution over the covariate space and build a stochastic kriging
(SK) predictive model for the system performance of each design. The prediction error of SE is evaluated
by the maximal integrated mean squared error (IMSE), where the maximum is taken on the set of designs
and integration is over the covariate space. The maximal IMSE corresponds to the largest IMSE among
the designs and is therefore an appropriate measure for assessing the worst-case SE error. The prediction
error of SO is evaluated by the integrated probability of false selection (IPFS), where the integration is,
similarly, over the covariate space and the selection for the best design is based on the predictions of the
SK models. Note that PFS is equivalent to the probability of correct selection (PCS) commonly used in
simulation optimization. We will investigate the convergence rates of the maximal IMSE and IPFS with
the number of covariate points m ever collected in offline simulation, and our theoretical development
indicates that both the maximal IMSE and IPFS converge at least at the rate of log

1
κ m/m, where κ is a

parameter associated with the covariance kernels. With additional assumptions on the MSE, IPFS enjoys
an exponential convergence rate. It shows for practitioners the magnitude of prediction errors for online
application after a certain period of time is spent for offline simulation.

This paper is related to two streams of literature. The first is kriging for building metamodels (Stein
2012; Kleijnen 2009), which has proven to be an effective tool for global metamodeling. Later (see, for
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example, Opsomer et al. (1999), Kersting et al. (2007), Ankenman et al. (2010)), kriging was extended
to allow heteroscedastic stochastic observation noise, known as the stochastic kriging. Chen et al. (2013)
and Qu and Fu (2014) improved the SK model by incorporating the gradient information. The second
stream of literature is ranking and selection. It seeks to determine an allocation of the simulation budget
either to maximize the probability of correctly selecting the best design or guarantee this probability at
a high-enough level. Representative methods for R&S include the optimal computing budget allocation
(OCBA) (Chen et al. 2000; Fu et al. 2007; Gao and Chen 2016; Gao et al. 2017; Gao and Chen 2017),
indifference-zone (IZ) method (Dudewicz and Dalal 1975; Kim and Nelson 2001; Nelson et al. 2001) and
value of information procedure (VIP) (Frazier et al. 2008; Chick et al. 2010; Ryzhov 2016).

2 PROBLEM STATEMENT

Suppose we have a finite number of system designs and a continuous covariate space. We introduce
the following notation regarding the designs, covariates and simulation samples:

k: total number of designs;
d: dimension of the covariate space;
m: number of randomly-drawn covariate (design) points;
X = (X1, . . . ,Xd)

>: the vector of random covariates;
X ⊆ Rd : support of covariates;
yi(x): mean of design i under covariate x, i ∈ {1,2, ...,k} and x ∈X ;
Yil(x) = yi(x)+ εil(x): l-th simulation sample from design i under covariate x, where εil(x) is a
mean-zero stochastic error;
n j: number of simulation replications at covariate x j for each of the k designs, j ∈ {1,2, ...,m};
Y i(x j) = n−1

j ∑
n j
l=1Yil(x j): sample mean of design i under covariate x j, i ∈ {1,2, ...,k} and j ∈

{1,2, ...,m};
Px: sampling distribution for X.

In this research, we use SK to model yi(x):

yi(x) = fi(x)>β i +Mi(x), i = 1, . . . ,k,

where fi(x) = (fi1(x), . . . , fiq(x))> and β i = (βi1(x), . . . ,βiq(x))> are a q×1 vector of known functions of
x and a q× 1 vector of unknown parameters. Mi(x) is a realization of a mean zero stationary Gaussian
process. We further introduce the following notation regarding the SK model:

ΣM,i(x,x′) = Cov [Mi(x),Mi(x′)]: covariance between Mi(x) and Mi(x′) for any x,x′ ∈X ;
Xm = {x1, . . . ,xm}: m randomly drawn covariate points;
ε i(x j) = n−1

j ∑
n j
l=1 εil(x j): averaged simulation error, i ∈ {1,2, ...,k} and j ∈ {1,2, ...,m};

Yi j = (Yi1(x j), . . . ,Yin j(x j))
>: an n j×1 vector of simulation samples;

Yi =
(
Y i(x1), . . . ,Y i(xm)

)>: an m×1 vector of sample means;
Fi = (fi(x1)

>, . . . , fi(xm)
>)>: the q×m design matrix;

ΣM,i(Xm,Xm): the m×m covariance matrix across all covariate points x1, . . . ,xm, i.e. for s= 1, . . . ,m
and t = 1, . . . ,m, the (s, t) entry of ΣM,i(Xm,Xm) is [ΣM,i(Xm,Xm)]st = Cov [yi(xs),yi(xt)];
ΣM,i(Xm,x∗) = (Cov [yi(x∗),yi(x1)] , . . . ,Cov [yi(x∗),yi(xm)])

>: an m×1 vector of covariances;
Σε,i: the m×m covariance matrix of the averaged simulation errors, i.e. for s = 1, . . . ,m and
t = 1, . . . ,m, the (s, t) entry of Σε,i is (Σε,i)st = Cov [ε i(xs),ε i(xt)];
Σy,i = ΣM,i(Xm,Xm)+Σε,i.
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According to Stein (2012) and Ankenman et al. (2010), the MSE-optimal linear predictor of SK at a
new point x∗ ∈X is:

ŷi(x∗) = fi(x∗)>β̂ i +ΣM,i(Xm,x∗)>Σ
−1
y,i

(
Yi−Fiβ̂ i

)
, (1)

where β̂ i =
(

F>i Σ
−1
y,i Fi

)−1
F>i Σ

−1
y,i Yi. The optimal MSE from (1) at x∗ ∈X is

MSEi,opt(x∗) = ΣM,i(x∗,x∗)−Σ
>
M,i(Xm,x∗) [ΣM,i(Xm,Xm)+Σε,i]

−1
ΣM,i(Xm,x∗)

+ηi(x∗)>
[
F>i (ΣM,i(Xm,Xm)+Σε,i)

−1 Fi

]−1
ηi(x∗), (2)

where ηi(x∗) = fi(x∗)−F>i (ΣM,i(Xm,Xm)+Σε,i)
−1

ΣM,i(Xm,x∗).
For the sampling distribution Px over X and design i, we let

{
φ i

l (x) : l = 1,2, . . .
}

be an orthonormal
basis with respect to Px, with

∫
X (φ i

l )
2(x)dPx(x) = 1 and

∫
X φ i

l (x)φ
i
l′(x)dPx(x) = 0 for l 6= l′. According to

Mercer’s theorem, we can assume that the kernel ΣM,i has the series expansion ΣM,i(x,x′)=∑
∞
l=1 µ i

l φ
i
l (x)φ

i
l (x
′)

with respect to Px for any x,x′ ∈X , where µ i
1 ≥ µ i

2 ≥ . . . ≥ 0 are the eigenvalues of ΣM,i. The trace of
the kernel ΣM,i is defined as tr(ΣM,i) = ∑

∞
l=1 µ i

l . We let L2(Px) be the L2 space under Px. For any two
generic functions f1, f2 ∈ L2(Px), their L2-inner product is defined to be 〈 f1, f2〉L2(Px) = EPx [ f1(x) f2(x)].
Any function f i ∈ L2(Px) has the series expansion f i(x) = ∑

∞
l=1 θ i

l φ i
l (x), where θ i

l = 〈 f i,φ i
l 〉L2(Px). The L2

norm of f i is given by ‖ f i‖2
2 = ∑

∞
l=1(θ

i
l )

2. The reproducing kernel Hilbert space (RKHS) H attached to
ΣM,i is the space of all functions f i ∈ L2(Px) such that its H-norm ‖ f i‖2

H = ∑
∞
l=1(θ

i
l )

2/µ i
l < ∞.

To estimate the SK model, we need the covariance kernels ΣM,i(x,x′) to have more structures, and in this
paper, we focus on the exponentially decaying kernels (Rasmussen and Williams 2006), a broadly-used class
of kernels for kriging modeling. Exponentially decaying kernels satisfy µ i

l � exp(−ci
1lκ i

) for some constants
ci

1 > 0 and κ i > 0, where al � bl means that for some c3 > 0, liml→∞ al/bl = c3. A representative example of
exponentially decaying kernels is the squared exponential kernel ΣM,i(x,x′) = exp

{
−ϕ i(x− x′)2

}
for some

ϕ i > 0 and X =R. If the sampling distribution for X isPx =N (0,τ2), then it has been shown in Rasmussen
and Williams (2006) that for l = 1,2, . . . , the eigenvalues µ i

l =
√

2ai/Ai(Bi)l =
√

2ai/Ai exp{−l log(1/Bi)},
where ai = 1/(4(τ i)2), bi = ϕ i, ci =

√
(ai)2 +2aibi, Ai = ai +bi + ci and Bi = bi/Ai ∈ (0,1). To make the

theoretical analysis more tractable, in this paper, we fix n1 = . . . = nm = n, i.e., each pair of design and
covariate value will receive the same number of n replications.

For the purpose of SE, we will study the following measure

M = max
i∈{1,2,...,k}

Ex∗
[
MSEi,opt(x∗)

]
,

which corresponds to the largest IMSE of all the designs. x∗ ∈X is a random test point.
For the purpose of SO, we first define the best design and its mean performance, and the estimated

best design below:

i◦(x) ∈ arg min
i∈{1,2,...,k}

yi(x),

y◦(x) = min
i∈{1,2,...,k}

yi(x),

î◦(x) ∈ arg min
i∈{1,2,...,k}

ŷi(x).

Note that for a continuous covariate space, the optimal design might not be unique. To define a false
selection, we adopt the formulation of IZ and introduce the IZ parameter ∆0 > 0. A false selection happens

3471



Gao, Li, and Du

when the mean of the estimated best design yî◦(x∗) is no better than y◦(x∗)+∆0 for the test point x∗ ∈X .
This definition allows some flexibility for determining the best design when the means of the top two designs
are very close or exactly the same under some covariate value. Then the probability of false selection is
given by

PFS(x∗) = Pε

(
yî◦(x∗)(x

∗)− y◦(x∗)≥ ∆0

)
.

This definition for the probability of false/correct selection has also been called probability of bad/good
selection in some literature (Eckman and Henderson 2018). In this research, we will study the measure of
IPFS

P = Ex∗EM [PFS(x∗)] ,

where EM arises from the randomness of the joint Gaussian measure on Mi, i = 1,2, ...,k.
Particularly, we will investigate the convergence rates of M and P with respect to the number of

covariate points m ever sampled, which provides a general characterization about the level of accuracy for
SE and SO-related online predictions after a certain period of offline simulation is conducted. To do so,
we introduce the rate functions

RIMSE
i (m,n) = max

 log
1
κi (mn)
mn

,
log

r(κi+1)
κi (mn)
m

r
2

 ;

RIMSE
(m,n) = max

i∈{1,2,...,k}
RIMSE

i (m,n),

which play a key role in characterizing the convergence rates of M and P . κ i is a kernel parameter and
r will be explained in Assumption 2 below.

To enable the theoretical analysis, we make the following technical assumptions in this paper:
Assumption 1 Stochastic noise εil(x j)’s are distributed with mean 0 and variance σ2

i (x j). They are
independent across different i, j, and l, as well as independent of the Gaussian process Mi(x) for all i, j,
l and x ∈X . In addition, there exist upper and lower bounds σ

2
0 and σ2

0 of σ2
i (x j) for all i and x ∈X .

Assumption 2 There exist positive constants ρ i and r > 2, such that EPx{(φ i
l )

2r(x)} ≤ (ρ i)2r for every
l = 1,2, . . . ,∞.
Assumption 3 fis ∈H for each i = 1,2, . . . ,k and s = 1, . . . ,q and λmin

(
Ex[fi(x)fi(x)>]

)
> 0 if x follows

the distribution Px, where H is the reproducing kernel Hilbert space (RKHS) and λmin(A) is the smallest
eigenvalue of positive definite matrix A.
Assumption 4 The trace of ΣM,i is finite, i.e., tr(ΣM,i)< ∞.
Assumption 5 εil(x) is normally distributed with N(0,σ2

i (x)) for all i, l and x.
Assumption 6 For any given ξ ∈ (0,0.5), there exist constants d1,d2 > 0 and m0 ≥ 1 dependent on ξ ,
such that when m≥ m0, for any t > 0,

PXm

{
Px∗

(
maxi∈{1,...,k}MSEi,opt(x∗)

RIMSE
(m,n)

≥ t

)
≤ d1 exp(−d2t)

}
≥ 1−ξ .

Assumption 7 For any given ξ ∈ (0,0.5), there exist constants d3 > 0 and m0 ≥ 1 dependent on ξ , such
that when m≥ m0, for any t > 0,

PXm

{
maxi∈{1,...,k} supx∗∈X MSEi,opt(x∗)

RIMSE
(m,n)

≤ d3

}
≥ 1−ξ .
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3 MAIN RESULTS

Our main results about the convergence rates of M and P can be established through a set of lemmas
and theorems. We observe that MSEi,opt(x∗) in (2) can be decomposed into two parts

MSEi,opt(x∗) = MSE(M)
i,opt(x

∗)+MSE(β )
i,opt(x

∗),

where

MSE(M)
i,opt(x

∗) = ΣM,i(x∗,x∗)−Σ
>
M,i(Xm,x∗) [ΣM,i(Xm,Xm)+Σε,i]

−1
ΣM,i(Xm,x∗),

MSE(β )
i,opt(x

∗) = ηi(x∗)>
[
F>i (ΣM,i(Xm,Xm)+Σε,i)

−1 Fi

]−1
ηi(x∗),

which arise from estimating Mi(x) and β i respectively.

The following lemma bounds Ex∗
[
MSE(M)

i,opt(x
∗)
]

and Ex∗
[
MSE(β )

i,opt(x
∗)
]

for the SK model associated
with a fixed design i. It serves as the foundation for our further development on M and P .
Lemma 1 (Li et al. 2019) Suppose all the k designs have the sampling distribution Px for Xm and x∗.
Under Assumptions 1-4, for any δ1,δ2,δ3 ∈ (0,0.5), the following inequalities hold

EXmEx∗
[
MSE(M)

i,opt(x
∗)
]
≤1+δ2

1−δ1

σ
2
0

mn
γi

(
σ

2
0

mn

)

+ inf
d∈N

{ mn
σ

2
0δ2

tr(ΣM,i)+1
}

tr
(

Σ
(d)
M,i

)
+ tr(ΣM,i)

{
88(ρ i)2

δ1
b(m,d,r)γi(

σ
2
0

mn)√
m

}r ,
Ex∗
[
MSE(β )

i,opt(x
∗)
]
.PXm

8q tr(ΣM,i)

λmin (Ex[fi(x)fi(x)>])

{
2C2

f,i

(1−δ3)2
σ

2
0

mn

+ inf
d∈N

[
2C2

f,i

(1−δ3)2
mnσ

2
0

σ4
0

(ρ i)4 tr(ΣM,i) tr
(

Σ
(d)
M,i

)
+C2

f,i tr
(

Σ
(d)
M,i

)

+C2
f,i tr(ΣM,i)

{
88(ρ i)2

δ3
b(m,d,r)γi(

σ
2
0

mn)√
m

}r]}
,

where

b(m,d,r) = max
(√

max(r, logd),
max(r, logd)

m1/2−1/r

)
,

γi(a) =
∞

∑
l=1

µ i
l

µ i
l +a

for any a > 0, tr
(

Σ
(d)
M,i

)
=

∞

∑
l=d+1

µ
i
l ,

Cf,i = max
1≤s≤q

‖fis‖H,

and for random variables Um and Vm, Um .PXm
Vm means |Um/Vm| is bounded in PXm− probability.

In Lemma 1, Ex∗
[
MSE(M)

i,opt(x
∗)
]

and Ex∗
[
MSE(β )

i,opt(x
∗)
]

are bounded in different ways. The upper

bound of Ex∗
[
MSE(β )

i,opt(x
∗)
]

is a bound in probability, which is weaker than that of Ex∗
[
MSE(M)

i,opt(x
∗)
]
, but

it is enough for analyzing the rate of M .
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Proposition 1 (Li et al. 2019) Under Assumptions 1-4, we have

Ex∗
[
MSEi,opt(x∗)

]
.PXm

RIMSE
i (m,n) = max

 log
1
κi (mn)
mn

,
log

r(κi+1)
κi (mn)
m

r
2

 .

Proposition 1 is built based on the bounds in Lemma 1 for a single SK model. It shows that the
convergence rate of the IMSE of an SK model is governed by the rate function RIMSE

i (m,n) defined in
Section 2. Since in our setup of the problem, r > 2 (according to Assumption 2) and n remains a constant
in the offline sampling, Proposition 1 suggests that Ex∗

[
MSEi,opt(x∗)

]
converges at the rate log

1
κi m/m in

PXm− probability.
Theorem 1 (Li et al. 2019) Suppose all the k designs have the sampling distribution Px for Xm and x∗.
Under Assumptions 1-4, the following result holds as m→ ∞,

M.PXm
RIMSE

(m,n).

Theorem 1 identifies the convergence rate ofM , which is the same as the slowest rate for Ex∗
[
MSEi,opt(x∗)

]
’s,

i = 1,2, ...,k. According to the definition of RIMSE
(m,n) and the discussion about RIMSE

i (m,n) above,
RIMSE

(m,n) takes the form log
1
κ m/m, where κ is a parameter associated with the covariance kernels. It is

not hard to see that Theorem 1 is a trivial extension of the result in Proposition 1.
Theorem 2 (Li et al. 2019) Suppose all the k designs have the sampling distribution Px for Xm and x∗.
(i) Under Assumptions 1-4, P.PXm

RIMSE
(m,n) as m→ ∞;

(ii) Under Assumptions 1-6,

P.PXm
exp
{
−1

2
d1/2

2 ∆0

[
RIMSE

(m,n)
]−1/2

}
as m→ ∞;
(iii) Under Assumptions 1-5 and 7,

P.PXm
exp
{
−1

4
d−1

3 ∆
2
0

[
RIMSE

(m,n)
]−1
}

as m→ ∞.
Theorem 2 identifies the convergence rate of P . Part (i) states that the rate of P is also governed by the

function RIMSE
(m,n), same as M . It can be obtained from Theorem 1 using the Markov’s inequality. Lemma

1, Proposition 1, Theorem 1 and part (i) of Theorem 2 are all presented in a relatively general condition,
which does not require the normal distribution assumption for the stochastic noise εil(x) in Assumption
5 and the nice property on the tails of maxi∈{1,...,k}MSEi,opt(x∗) and maxi∈{1,...,k} supx∗∈X MSEi,opt(x∗) in
Assumptions 6 and 7.

Part (ii) states that with additional Assumptions 5 and 6, the convergence rate of P can be exponential, in
the form of exp(−c

√
m log−

1
2κ m), where c= 1

2 d1/2
2 ∆0, and part (iii) states that with additional Assumptions 5

and 7, the convergence rate of P can be exponential in the form of exp(−cm log−
1
κ m), where c = d−1

3 ∆2
0/4.

However, they are distinguished from the well-established exponential convergence rate of the PFS in R&S
by comparing sample means of different designs (Dai 1996; Glynn and Juneja 2004), which takes the
form of exp(−νntotal), where ntotal is the total number of simulation samples and ν is related to some
large-deviations rate function. In practice, Assumptions 6 and 7 depend on the structure of yi(x) and the
distribution of the stochastic noise, and are more difficult to verify.
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4 NUMERICAL EXPERIMENTS

In this section, we numerically study the relationships between the maximal IMSE and IPFS with
number of covariate points m. It provides a concrete demonstration of the theoretical results obtained in
Section 3, and shows the rates that can be achieved on practical problems.

We use the following benchmark functions for testing. They have been extensively studied in the
literature, e.g., in Duan et al. (1993), Potter and Jong (1994).

1. Ackley’s function (d = 1):

y(z) = f (z)+ ε(z) =−a · exp(−b|z− x|)− exp(cos(c(z− x)))+a+ exp(1)+ ε(z).

Parameters a, b and c are set as a = 20, b = 0.2 and c = 2π . For function f (z), the global optimum z∗ is
obtained at z∗ = x, with f (z∗) = 0. We consider k = 9 discrete designs −4,−3, ...,3,4 and covariate x is
uniformly sampled in [0,4]. The variance of ε(z) is 1 for all z and x.

2. Rosenbrock’s valley (d = 2):

y(z) = f (z)+ ε(z) = 100[(z2− x2)− (z1− x1)
2]2 +[1− (z1− x1)

2]2 + ε(z).

For function f (z), the global optimum z∗ is obtained at z∗1 = x1 +1 and z∗2 = x2 +1, with f (z∗) = 0. We
consider k = 9 discrete designs (−4,−4),(−3,−3), ...,(3,3),(4,4) and covariate x is uniformly sampled
in [0,4]× [0,4]. The variance of ε(z) is 1 for all z and x.

3. Easom’s function (d = 2):

y(z) = f (z)+ ε(z) =−cos(z1− x1)cos(z2− x2)exp(−(z1− x1−π)2− (z2− x2−π)2)+ ε(z).

For function f (z), the global optimum z∗ is obtained at z∗1 = x1 +π and z∗2 = x2 +π , with f (z∗) =−1. We
consider k = 9 discrete designs (−4,−4),(−3,−3), ...,(3,3),(4,4) and covariate x is uniformly sampled
in [0,4]× [0,4]. The variance of ε(z) is 1 for all z and x.

In the test examples introduced above, we have modified the original benchmark functions in the
following two aspects to fit into the framework of OSOA: 1) added the observation noise ε(z) turn the
function output from deterministic to stochastic; and 2) introduced covariate x as parameters in test example.
We have used notation y(z) and f (z) to emphasize that the decision variable is z; their performance, of
course, is also affected by the covariate x. In the special case of x = 0, f (z) degenerates to the original
benchmark function.

To enable graphical presentation, we will test the convergence rates of M̃ and P̃ with

M̃ = EXm

[
max

i∈{1,2,...,k}
Ex∗
[
MSEi,opt(x∗)

]]
,

P̃ = EXm [Ex∗ [PFS(x∗)]] .

In the test, we fix the number of m, sample m points in the covariate space, generate n simulation samples
for each pair of design and covariate point, build the SK models and use the SK outputs to find MSE and
PFS. This is repeated for multiple runs for estimating M̃ and P̃ , and is then repeated for different values
of m for showing their convergence rates. For each test example, we will study three distributions for
ε(z): normal distribution with N(0,1), uniform distribution with U [−

√
3,
√

3], and Bernoulli distribution
with P(ε(z) = 1) = 0.5 and P(ε(z) =−1) = 0.5. We let the number of replications at each pair of design
and covariate value be 5, the number of test points x∗ for each SK model be 1,600 and the number of
macro-replications be 500. The IZ parameter for a correct selection is set as ∆0 = 0.01. Figure 1 shows
the convergence rates of M̃ and P̃ .

Note that according to Theorem 1 and part (i) of Theorem 2, we have

logM ≤− logm+ cM,

logP ≤− logm+ cP,
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Figure 1: Convergence rates of M̃ and P̃ .
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where cM and cP are both o(logm). That is, when m is large enough, logM and logP are approximately
negative linear with respect to logm. Therefore, in each subfigure of Figure 1, we have added a reference
line − logm+ c0 for a clear presentation, where c0 is a constant independent of m.

It can be observed that, for all the three functions tested, M̃ and P̃ converge. The convergence pattern
of M̃ for the Rosenbrock’s valley is not so obvious compared to the rest because in this test function, the
range of the function values is large, and M̃ is still far from 0 when m is 80. Both logM̃ and logP̃
are at least negative linear with logm, which is in line with our theoretical results. Different distributions
of the observation noise do not cause a great influence on the convergence rates of the two terms. It is
probably because the three distributions tested are all symmetric, and their variances are not very large. In
these experiments, we have only tested cases with dimension d = 1 and d = 2. For problems with higher
dimensions, the value of m for M̃ and P̃ to have stable performance is usually much larger.

5 CONCLUSIONS

Offline-simulation-online-application (OSOA) is a recently proposed framework for conducting simu-
lation experiments. It advocates to start the simulation (long) before the parameters (covariate values) of the
problems are revealed, and therefore has the potential to significantly reduce the time for simulation-based
decisions, making simulation applicable for online problems. In this paper, we focus on an important
question in OSOA, the relationship between the offline simulation efforts and the online application perfor-
mance. We introduce two measures for evaluating the prediction errors in the online application, namely
the maximal IMSE for system performance and IPFS for system optimization. By utilizing the stochastic
kriging (SK) models, we show that the maximal IMSE and IPFS both converge at least at the rate of
log

1
κ m/m, where m is the number of covariate points ever sampled. The convergence rate of IPFS can

be exponential as exp(−c
√

m log−
1

2κ m) or exp(−cm log−
1
κ m) in some more restrictive situations. These

results for practitioners provide good insight into the online application performance that can be achieved
from certain amount of offline simulation.
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