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ABSTRACT

We propose a fully sequential experimental design procedure for stochastic kriging (SK) methodology of
fitting unknown response surfaces from simulation experiments. The procedure first estimates the current
SK model performance by jackknifing the existing data points. Then, an additional SK model is fitted on
the jackknife error estimates to capture the landscape of the current SK model performance. Methodologies
for balancing exploration and exploitation trade-off in Bayesian optimization are employed to select the
next simulation point. Compared to experimental design procedures, our method is robust to the SK model
specifications. We design a dynamic allocation algorithm, which we call kriging-based dynamic stochastic
kriging (KDSK), and illustrate its performance through two numerical experiments.

1 INTRODUCTION

Kriging originated in the geostatistics community for analyzing data with spatial correlations (Koehler and
Owen 1996; Cressie 1993). It was later extended for constructing metamodels in the design and analysis of
deterministic computer experiments (Welch et al. 1990). More recently, the stochastic kriging methodology
extended the kriging estimator to modeling outcomes of stochastic simulations by introducing the intrinsic
noise, which could be reduced by having more simulation replications at the corresponding design points
(Ankenman et al. 2010). Kriging, often referred to as Gaussian process regression in the machine learning
community, is also the foundation for Bayesian optimization algorithms, which recently enjoyed great
success in machine learning applications (Jones et al. 1998; Snoek et al. 2012).

In the context of simulation metamodeling, stochastic kriging (SK) methods builds a global estimate
for the unknown function. A carefully designed experiment is crucial in ensuring the model performance.
Common practice is to use static designs, such as the uniform design, Latin Hypercube Design (LHS), and
maximum entropy designs (Koehler and Owen 1996). On the other hand, dynamical designs are expected
to be much more efficient, as more resources can be allocated to regions where the SK model is believed
to have poor performance. The work of Ng and Yin (2012), Chen and Zhou (2014), and Wang and Hu
(2018) focuses on utilizing the posterior uncertainty estimates from the fitted SK model for selecting design
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points. However, we illustrate in Section 2.3 that the posterior uncertainty estimates in SK models do not
properly reflect the roughness of the unknown function and such policies often lead to a near uniform
design. Van Beers and Kleijnen (2008) and Kleijnen and Beers (2004) developed bootstrap procedures
where new data points are sampled from the fitted kriging model for evaluating potential design choices.
Our approach differs from theirs, as we perform re-sampling of existing data points rather than from the
established SK models, and therefore is more robust to SK model specifications.

In this paper, we propose a novel approach for sequential experimental design for SK models. We
use a jackknife procedure to obtain a rough estimation of model prediction error at existing design points,
and construct a second SK model on the error estimates to obtain a smooth landscape for the model
performance. Value of information (VoI) measures developed for Bayesian optimization are then used for
selecting the next design point. Our approach is robust to the hyper-parameter choice of an SK model,
as it relies on jackknifing the existing data points for estimating model prediction error rather than on the
estimated posterior distributions. To the best of our knowledge, this is the first such attempt to develop a
dynamic experimental design procedure for building SK models.

The rest of this paper is organized as follows. Section 2 briefly reviews the SK model and techniques
for its experimental design, and presents an example for motivating our approach. Section 3 introduces the
jackknife error estimates and a kriging model that is used to search for new design points. Section 4 presents
a sequential design algorithm. Section 5 illustrates its performance with two numerical experiments. Finally,
we conclude the paper in Section 6.

2 STOCHASTIC KRIGING AND ITS EXPERIMENTAL DESIGN

2.1 Preliminaries on Stochastic Kriging

SK metamodels construct a response surface of an unknown function y(x) ∈ R for x ∈H , where x is a d
dimensional vector and H is a compact subset of Rd . We assume the analytical form of y(x) is unknown,
but independent samples of its noisy observations could be obtained with simulation. The standard SK
model assumes the output of the j-th simulation replication at the design point x can be modeled as

y j(x) = f (x)T
β +M(x)+ ε j(x), (1)

where f (x) is a feature vector at the point x and β is a fixed constant vector. The term f (x)T β describes a
fixed trend in the unknown target function y, and empirical evidence shows that a constant term performs
well in practice (Welch et al. 1990; Ankenman et al. 2010). The term M(·) is a second-order stationary zero
mean Gaussian process, which models the deviation of the true function y from the fixed trend term f (x)T β .
The term ε j(x), often referred to as intrinsic noise, captures randomness from stochastic simulations. We
work with the most basic setting where ε j(x) can be considered independent and identically distributed
(i.i.d.) at each design point x.

For any two design points x and y, the SK model assumes the covariance between M(x) and M(y) is
given by

Cov(M(x),M(y)) = τ
2R(d(x,y),γ), (2)

where τ is the stationary variance of the Gaussian process M(·), d(·) : Rd→R+ describes the closeness of
points x and y in the space H (e.g., a vector norm), the function R(·) is chosen such that R(0,γ) = 1 and
limd→∞ R(d,γ) = 0, ∀γ , and the parameter γ controls the smoothness of the random field (i.e., the fitted
response surface).

Given experimental design configuration {xi,ni}k
i=1, where xi’s are the design points at which to

perform simulations and ni is the number of simulation replications for xi, the samples Yi j, i ≤ k, j ≤ ni

can be used to compute the sample averages Ȳ = {Ȳi =
1
ni

∑
ni
j=1 Yi j}k

i=1 as the target of SK model fitting.
Denote F = [ f (x1), f (x2), .., f (xk)] the matrix of feature vectors at the existing design points. Following
the notation in Ankenman et al. (2010), let ΣM = [Cov(M(xi),M(x j))]i, j≤k be the k× k covariance

3437



Sun, Li, and Fu

matrix of random variables M(xi), i≤ k, Σε = diag[Var( 1
ni

∑
ni
j=1 εi j(xi))]i≤k = diag[Var(ε(xi))

ni
]i≤k be the k×k

diagonal matrix capturing the intrinsic noise under the iid noise assumption for the given experimental
design, and ΣM(x0, ·) = [Cov(M(x0),M(x1)),Cov(M(x0),M(x2)), ...,Cov(M(x0),M(xk))]

T be the k× 1
vector representing the correlation between the random field at a potential new design point M(x0) and that
at the existing design points {M(xi), i≤ k}. Assuming β , ΣM,Σε and ΣM(x0, ·) are known fixed quantities,
the best predictor of y(x0) that minimizes the mean squared error, which we denote as ŷ(x0), is shown in
Ankenman et al. (2010) to be

ŷ(x0) = f (x0)
T

β +ΣM(x0, ·)T (ΣM +Σε)
−1(Ȳ −Fβ ) (3)

with optimal Mean Squared Error (MSE)

MSE(ŷ(x0)) = ΣM(x0,x0)−ΣM(x0, ·)T (ΣM +Σε)
−1

ΣM(x0, ·). (4)

If the coefficients β are estimated with generalized least square regression, i.e.,

β̂ = (FT (ΣM +Σε)
−1F)−1FT (ΣM +Σε)

−1Ȳ ,

then the optimal predictor becomes

ŷ(x0) = f (x0)
T

β̂ +ΣM(x0, ·)T (ΣM +Σε)
−1(Ȳ −F β̂ )

with MSE

MSE(ŷ(x0)) = ΣM(x0,x0)−ΣM(x0, ·)(ΣM +Σε)
−1

ΣM(x0, ·)
+( f (x0−FT (ΣM +Σε)

−1)ΣM(x0, ·))T (FT (ΣM +Σε)
−1F)−1( f (x0−FT (ΣM +Σε)

−1)ΣM(x0, ·)).

In cases where ΣM and Σε also need to be estimated, the MSE expression becomes intractable. We refer
the readers to Welch et al. (1990), Kleijnen (2018), and Ankenman et al. (2010) for reviews of the original
kriging methods and its stochastic kriging variation for stochastic simulation experiments. For simplicity,
we use θ = (β ,τ,γ) to represent the hyperparameters for setting up an SK model in (1).

2.2 Experimental Design For SK

Experimental design refers to the placement of {xi, i≤ T} in the design space H and the corresponding
number of replication ni, given a total simulation budget of T with ∑ni = T . In this work, we focus on
the search of xi and assume ni = 1. Let Dk = {(xi,yi), 1≤ i≤ k} denote a set of k observed data points.
The performance of the SK estimator ŷ fitted on Dk can be evaluated using the integrated mean squared
error (IMSE) defined as

IMSE =
∫

H
(ŷ(x)− y(x))2dx. (5)

Wang and Hu (2018) proved that IMSE will monotonically decrease if more data are inserted to Dk for
SK models with known fixed θ . The experimental design problem can be formulated as an optimization
problem for minimizing the IMSE with respect to (w.r.t.) the design choice. In both Wang and Hu (2018)
and Chen and Zhou (2014), IMSE is estimated using MSE from fitted SK models. In Section 2.3, we
illustrate the limit of such approaches through a motivating example: MSE from fitted Gaussian processes
often fail to capture the observed shape of existing data points, therefore providing little information on
the landscape of model performance.

3438



Sun, Li, and Fu

2.3 A Motivating Example: Uninformative MSE in SK

Consider the problem of fitting the unknown function y = sin(3x)e−250(x−0.25)2
on the interval (0,1). For

simplicity, we assume the observations are noiseless, i.e., ε(x) = 0 w.p. 1. We fit an SK model with a simple
uniform design with design points {0,0.1, . . . ,0.9,1}. The implementation details of the SK model are listed
in Section 5.1. The same setup is used for generating Figures 1 to 3. Despite y(0.1),y(0.2),y(0.3) having
larger jumps in function values compared to y(0.8),y(0.9),y(1), as illustrated in Figure 1 (b), the MSE
from the fitted SK model is roughly uniform across the design space (0,1). The observed shape at {yi}11

i=1 is
not reflected in the posterior belief of prediction errors in the fitted SK model. The observation is consistent
with the formula for MSE in Equation (4), since Ȳ does not appear in the expression. For addressing the
issue, we use jackknife error estimates to capture the landscape of model prediction performance.
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Figure 1: The SK model uses an exponential correlation kernel function (Cov(M(x),M(y)) =
τ exp(M(x)−M(y))2/σ2) with hyperparameters estimated through maximum likelihood estimation. In (c),
the MSE is uniform across (0,1). In (d), the true prediction error is larger in regions with larger variation
in the observed function values, which is not captured by MSE.

3 BAYESIAN EXPERIMENTAL DESIGN WITH JACKKNIFE ERROR ESTIMATES

Given current observations Dk = {(xi,yi)}k
i=1 and total budget T , we formulate our approach for dynamically

allocating the remaining budget T − k. The intuition is to place the budget on regions where the current
model is believed to have larger prediction error either due to insufficient sampling or higher roughness in
the underlying target function.

3.1 Jackknife Prediction Error Estimates

Jackknife is a resampling technique where typically one observation is left out from an existing dataset for
computing an estimate of an unknown target (Efron and Stein 1981). The true prediction error of an SK
predictor ŷ fitted with the data points Dk at the point x, which we denote as δ (x), is

δ (x) = |ŷ(x)− y(x)|.
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Computation of δ (x) requires evaluating y(x), which is assumed to be expensive. Therefore, we use a
jackknife procedure by leaving (xi,yi) out from Dk and use the readily available yi for computing an estimate
of δ (xi).

Let Dk[−i] = {(x1,y1), ...,(xi−1,yi−1),(xi+1,yi+1), ..,(xk,yk)} denote the data set with (xi,yi) left out
from the Dk. By fitting an SK model with the same θ as that in fitting ŷ on data set Dk[−i], a prediction
of y(xi) can be obtained, which we denote as ỹi(xi) Then, the jackknife error estimate at points xi can be
computed as

∆i = |ỹi(xi)− yi|. (6)

By using the same θ as that in fitting ŷ, ∆i captures the performance of such SK model under the data set
Dk[−i]. There are two issues with such an error estimator: (1) ỹ(xi) are estimated based on a smaller sample
size, therefore ∆i generally overestimates the prediction error of ŷ, and (2) SK model could be extremely
sensitive to the data point (xi,yi) and return drastically different ỹi(x) and ŷ(x). Despite the above issues,
{∆i}k

i=1 still provide an indication of SK model performance on H and could help in searching for the
next design point xk+1. As illustrated in Figure 2 (a), {∆i}k

i=1 align well with the unknown true prediction
error of ŷ for our motivating problem.

3.2 Modeling the Prediction Error Landscape

With {(xi,∆i)}k
i=1 obtained from the jackknife step, we construct a kriging model to represent our belief

on the unknown prediction errors
∆(x) = µ

∆ +M∆(x)+ ε
∆(x), (7)

where M∆(·) and τ∆R∆(·,θ ∆) follow the standard SK model setup outlined in Section 2.1. Using similar
notation as that in the stochastic kriging model in Equations (3) and (4), given the existing design points
and jackknife error estimates {(xi,∆i)}k

i=1, the MSE-optimal estimates of ∆(x0),x0 ∈H , for x0 /∈ {xi}k
i=1

from the model in (7), denoted by ∆̃(x0), would be

∆̃(x0) = µ
∆ +ΣM∆(x0, ·)T (ΣM∆ +Σε∆)−1(∆−µ

∆), (8)

where

∆ =[∆1,∆2, · · · ,∆k]
T ,

µ
∆ =[µ∆,µ∆, · · · ,µ∆]T ,

with the MSE
MSE(∆̃(x0)) = ΣM∆(x0,x0)−ΣM∆(x0, ·)T (ΣM∆ +Σε∆)−1

ΣM∆(x0, ·). (9)

A superscript of ∆ is placed on all covariance matrices and vectors for clarification. ∆̃ can be viewed as a
posterior belief of the upper bounds for model prediction error of ŷ. When selecting the next design point
xk+1, we use a myopic policy of the form

xk+1 = argmax
z∈H ,z/∈{xi}k

i=1

g
(
∆̃(z),MSE(∆̃(z))

)
, (10)

where g is a function for measuring the benefit of drawing an additional sample at z. Following the
terminology in the machine learning community, we call g the acquisition function. Instead of the greedy
approach of setting the next design point to the maximizer of ∆̃, we borrow ideas from Bayesian Optimization
for balancing exploitation (sampling in regions where ∆̃(x) is large) and exploration (sampling in regions
where ∆̃(x) has higher uncertainty). We introduce two common choices of acquisition functions: the
probability of improvement (PI) and expected improvement (EI).
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3.3 Probability of Improvement and Expected Improvement

Let ∆∗ = max{∆i}k
i=1 denote the current maximum among the jackknife error estimates. Under the model

in (7), for any x ∈H , ∆(x) conditioned on {xi,∆i}k
i=1 is a Gaussian random variable with mean ∆̃(x) and

variance MSE(∆̃(x)) in Equations (8) and (9), respectively. Let Φ(·) and φ(·) be the cumulative distribution
function and density function for the standard normal distribution, respectively, and gPI and gEI denote the
two acquisition functions, respectively.

1. PI at point x is defined as P{∆(x)≥ ∆∗}, and has the analytical expression

gPI(x) = Φ

 ∆̃(x)−∆∗√
MSE(∆̃(x))

 .

2. EI computes the expected value of improvement (∆̃(x)−∆∗)+ and is given by (Jones et al. 1998)

gEI(x) = (∆∗− ∆̃(x))Φ

 ∆∗− ∆̃(x)√
MSE(∆̃(x))

+

√
MSE(∆̃(x))φ

 ∆∗− ∆̃(x)√
MSE(∆̃(x))

 ,

where (·)+ is max(·,0).

Both PI and EI are popular choices of acquisition functions for balancing exploration and exploitation
trade-off, and are shown to be successful in many stochastic optimization problems such as global optimization
(or Bayesian optimization in the machine learning community) (Jones et al. 1998; Snoek et al. 2012),
multi-armed bandits (Srinivas et al. 2012), and ranking and selection (Ryzhov 2016). In Figure 2 (b),
both gPI and gEI select the next design points in regions where the true error is higher for our motivating
example, whereas the point with maximum MSE of ŷ(x) (i.e., xMSE = argmaxx

ˆy(x)), xMSE , lies in the
region where the true error is small.
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Figure 2: (a) ∆i and ∆̃ overestimate the true error |y− ŷ| but capture the overall trend of |y− ŷ|. The regions
where y is observed to be flat have smaller values of ∆̃. (b) The gEI and gPI criteria choose the next point
in the more interesting region, compared to the MSE based selection.
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Figure 3: (a): 10 points uniformly spaced on the interval [0,1]. (b): 20 uniform design points. (c): 100
uniform design points. (d): 100 design points randomly selected to focus around 0.25 and 1.

3.4 Practical Model Fitting for Jackknife Error Estimates

In our empirical tests we found {∆i} to be extremely rough, even for a smooth y(x). For standard SK
models, the underlying parameters governing the assumed Gaussian process are often estimated through
maximum likelihood estimation (Ankenman et al. 2010). Such approach tends to lead to a ∆̃ that overfits
to the jackknife error estimates {∆i}. As the jackknife procedure only provides a noisy indication of model
prediction error, we recommend building a smooth model on {(xi,∆i)} by setting stronger correlation matrix
ΣM∆ and using noise covariance matrix Σε∆ with larger diagonal components. In Figure 3, we illustrate
the jackknife error estimates for various design choices for the motivating problem outlined in Section 2.3.
The model implementation details are listed in Section 5.1. By manually setting a smooth model for the
jackknife error estimates, the model ∆̃ captures the regions that would benefit the most from additional data
sample in the 4 designs illustrated in Figure 3. For uniform designs in (a),(b),(c) of Figure 3, ∆̃ captures
the need for more samples at regions around 0.3, as the underlying target function exhibits sharp changes.
For the design in (d) where budget is allocated around 0.3 and 1, ∆̃ captures the need for more samples
around 0.8, as we have not learned much about y in that region. A smooth ∆̃ is often sufficient for capturing
the overall landscape of model performance.

4 THE KDSK ALGORITHM

We summarize our approach and propose the KDSK algorithm for sequential experimental design for SK
models. In Algorithm 1, superscript (t) represents the allocation steps and D(t)

m represents a data set with
m data points. At the t-th iteration, t SK models will be constructed to obtain the jackknife error estimates,
each with (n0+ t)3 computational complexity, where n0 is the number of initial samples. The optimization
of the acquisition function could be non-trivial, especially for SK models on a higher dimensional space
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(Jones et al. 1998). However, under the standard assumption that obtaining an output from the underlying
target function y is expensive, the computation overhead of KDSK is justified for obtaining a better ŷ.

Algorithm 1: KDSK

Input: The initialization budget n0 and the initial data D(0)
n0 = {xi,Yi}n0

i=1. The total remaining
design budget k. SK model parameter choices θ for ŷ and θ ∆ for ∆̃. The acquisition
function g.

Output: Final experimental design and observed values {xi,Yi}k
i=1 and a fitted SK model ŷ

1 Set t← 1,
2 while t ≤ k do

3 Jackknife D(t)
n0+t to obtain data sets

{
D(t)

n0+t−1[−i]
}n0+t

i=1
4 Compute the {∆i}n0+t

i=1 with Equation (6) with ỹ constructed according to θ

5 Fit an SK model on {(xi,∆i)}n0+t
i=1 with model specification θ ∆

6 Select xt+n0 using Equation (10)
7 Evaluate the unknown function at xt+n0 and obtain Yt+n0

8 Set D(t+1)
n0+t+1←{(xt+n0 ,Yt+n0)}∪D(t)

t+n0

9 Set t← t +1

10 Construct an SK model ŷ with data set Dk
n0+k and model parameter θ . Return ŷ.

5 NUMERICAL EXPERIMENTS

In this section, we illustrate the effectiveness of the proposed KDSK algorithm through two numerical
experiments. Let the domain of interest H be (0,1) and ŷ denote the fitted SK model based on a design
choice D. IMSE defined in Equation (5) is used to evaluate the quality of ŷ. For comparison purpose, we
also implement two naive allocation policies, the UNIFORM policy and min-MSE policy. For UNIFORM
allocation, the current total budget is uniformly allocated on H ; therefore it is not dynamic and has an
advantage, as it has no initialization overhead. We use it as a benchmark and observe the benefit of having
dynamic allocation algorithms. The min-MSE methods selects the next point to be the maximizer of the
posterior variance of the current SK model. In both experiments, the dynamic algorithms are initialized with
a uniform 11 design points, and IMSE is computed at each allocation step for illustrating the effectiveness
of allocation algorithms.

5.1 The Motivating Deterministic Function

We test with the target function y(x) = sin(3x)e−250∗(x−0.25)2
for x ∈ (0,1). ŷ is constructed in two ways:

(1) with fixed and known θ , and (2) with θ estimated through maximum likelihood. The following setups
are applied:

1. model choices for ŷ: For the fixed parameter experiment, the correlation is chosen to have the
Gaussian kernel R(d(x,y)) = τe−(x−y)2/σ with σ set to be 10 and τ equal to 1. The constant trend
term µ is set to be 0. The noise covariance matrix is set to be Σε = diag(0.1). When constructing ŷ
with estimated parameter values, we obtain the fitted SK models with the GPfit software package
which estimates θ by maximizing the maximum likelihood with a multi-start gradient based search
(L-BFGS-B) algorithm (MacDonald et al. 2015). Note that in the second setting, the error covariance
matrix is set to be 0; therefore the fitted SK model interpolates the existing data points; and

2. model Choices for ∆̃: The correlation kernel is set to be Gaussian with τ∆ = 1,σ∆ = 1. The trend
term is set to be 0. We also include a noise term with Σε∆ = diag(0.005).
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We use EI as the acquisition function. Additional 12 allocation steps are performed, with the numerical
results illustrated in Figure 4. In both implementations, KDSK outperforms UNIFORM and min-MSE.
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Figure 4: (a) ŷ constructed with fixed parameters with noise. (b) ŷ constructed with estimated parameters
without error term.

5.2 The Steady-State M/M/1 Queue with Noise

Taking the example from Ankenman et al. (2010) for estimating the number of customers in an M/M/1
queueing system with service rate 1.02 and arrival rate x ∈ (0,1). For simplicity, we use the known steady
state results y(x) = x

1.02−x +ε where ε is a normal noise with standard deviation 0.1. In this experiment, we
test the performance of the KDSK algorithm with both the EI and PI activation function with the following
setups:

1. implementation of ŷ: The correlation function is chosen to be the Gaussian Kernel R(d(x,y)) =
τe−(x−y)2/σ with τ = 1 and σ = 1 and the constant term is set to be 0. The error covariance matrix
is Σε = diag(0.01); and

2. Implementation of ∆̃: We use the same setup as for ŷ. And we test with two choices of Σε∆ :
diag(0.05) and diag(0.01).

20 dynamic allocation steps are performed and the IMSE of the fitted ŷ at each step is shown in Figure 5.
The min-MSE approach has the worst performance. KDSK-PI and KDSK-EI have the best performance
with KDSK-PI slightly outperforming KDSK-EI in both tests. We list the design choices of KDSK-PI and
KDSK-EI in Table 1 with xt denoting the choice of x at allocation step t. The allocation budget is placed
heavily in the region where y(x) has sharp changes.

Table 1: The dynamical design choices of KDSK algorithms.

x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21

KDSK-EI 0.999 0.858 0.866 0.866 0.998 0.758 0.637 0.873 0.863 0.999 0.001
KDSK-PI 0.994 0.889 0.878 0.999 0.725 0.890 0.998 0.811 0.0142 0.892 0.868
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Figure 5: (a): Σε∆ : diag(0.05) in the error model G∆. (b)Σε∆ : diag(0.01).

6 CONCLUSION

In this paper, we propose a novel approach for the experimental design for the kriging methodology of
fitting a global response surface for expensive black-box functions. Instead of relying on the posterior error
estimates, which are subject to parameter tuning and model choice, we propose the idea of using a jackknife
sampling procedure for establishing a landscape of model performance and perform sequential design point
selection with Bayesian information criterion. The performance of our approach is illustrated through two
numerical experiments. We discuss challenges for implementing the proposed KDSK algorithm, including
the smoothness of jackknife error estimates and scaling issue due to the computational complexity. Our
approach successfully captures the observed shape of the target function and adjusts the design choices
accordingly, and simulation experiments indicate it is more efficient compared with uniform and MSE-based
design methods.
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