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ABSTRACT 

The creation of a new modeling and simulation engineering program presented the opportunity to evaluate 
the core skills desirable in a well-rounded graduate.  Software was identified as an often neglected aspect 
of modeling and simulation programs and an attempt was made to remedy this.  This paper discusses the 
software skills identified as necessary/desirable in a graduate. The focus is on discrete event simulation 
(DES), though the skills are transferable to other paradigms. The discussion is partitioned into discussing 
skills appropriate for simulation application development and simulation tool development. The discussion 
is further partitioned to discuss core computer science skills (object-oriented programming and data 
structures), software architecture, graphics development, implementing DES worldviews, and an ability to 
work with open source software. The result is a graduate that is desirable to industry and graduate research. 

1 INTRODUCTION 

The creation of the first ABET accredited undergraduate modeling and simulation (M&S) engineering 
program at Old Dominion University (Mielke et al. 2011; Leathrum and Mielke 2012) presented the 
opportunity to evaluate required core competency in a graduate.  An undergraduate program has the luxury 
of developing the necessary background skills to produce a well-rounded M&S professional. The result is 
a curriculum balanced between core M&S concepts, mathematics with an emphasis on analysis, and 
software development. The curriculum culminates in a year-long capstone experience where students 
develop a project from proposal to prototype for an industrial partner. The design of the curriculum came 
from a careful consideration of desired capabilities, drawing from the M&S Body of Knowledge (Tolk 
2010), industrial partnerships, and greater than 10 years of experience from a graduate program in modeling 
and simulation engineering.  

It was clear that teaching M&S purely from a tool-based perspective would be a disservice to the 
students. In order to address the needs of industry and research, a professional needs a strong software 
background. This allows the professional to develop simulation software beyond the scope and capabilities 
of existing simulation tools, develop the next generation of simulation tools, to interface existing 
simulations, and to interface with hardware (simulators, haptic devices, etc.). 

Software development coursework begins with basic computer science courses in programming, 
object-oriented design, and discrete math. It then continues with software-intensive M&S courses in 
simulation software design and computer graphics. The development of these courses resulted in a 
modification to the existing graduate program to provide a single course to cover all of the software 
concepts covered in the undergraduate program, in a compressed format. This experience resulted in careful 
consideration of what content was most important to cover. 
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This paper captures the conclusions drawn from our experience in creating the program. The paper 
covers skills necessary for discrete event simulation, but most of the skills presented are transferable to 
other simulation paradigms. The paper focuses on two primary aspects of M&S software development: 
development of simulation applications in software and development of simulation tools. While there is 
significant overlap between the two, there are some skills unique to each making it appropriate to address 
them individually.  The discussion highlights the software skills that we believe are important for a graduate. 
While the skills highlighted are considered of high importance, it should not be considered to downplay the 
importance of general software development skills to include software development and testing skills.  It is 
assumed that these skills are obtained in general computer science coursework, and can then be assessed 
within the curriculum in courses such as a senior capstone course. The skills presented are covered within 
our curriculum to varying levels of depth. The skills then allow students to better succeed in following 
elective courses or graduate courses such as distributed simulation and agent-based simulation where they 
can now develop the simulation software instead of solely relying on tools and getting a precursory exposure 
to the underlying simulation issues. 

2 APPLICATION DEVELOPMENT 

2.1 Object-Oriented Programming 

One of the main software development concepts practiced today is object-oriented programming (OOP). 
This concept grew out of a simulation language development effort in the 1960s (Dahl 2002). OOP has the 
software developer think about what he or she plans to develop in terms of objects that represent concepts 
or physical items, specifically how those objects behave and interact. This methodology mirrors how a 
modeling and simulation (M&S) engineer would approach developing a computer simulation. Modeling 
involves identifying items (objects) to be modeled and then making explicit the behaviors and relationships 
that are unique to each item. Consequently, OOP is a natural way for an M&S engineer to capture these 
concepts. Therefore, he or she should be schooled in OOP principles and an associated programming 
language that allows for developing M&S applications from scratch. This software development skill is a 
key element of Old Dominion University’s approach to its M&S curriculum at both the undergraduate and 
graduate levels. 
 There are three distinguishing elements of OOP that set it apart from other software development 
methodologies. They are inheritance, polymorphism, and encapsulation (Chaudhari 2008). Inheritance 
allows an object to acquire properties of another object. This acquisition is done in a hierarchical manner. 
The M&S engineer saves time by reusing what they already developed and concentrating on what they need 
to add that makes a derived object unique from its parent. For example, we can define a vehicle object with 
certain universal characteristics found in most vehicles. Then we can define a car object that inherits the 
common vehicle properties as part of the car design. 
 Encapsulation binds together code and data related to a specific object and keeps both from misuse or 
unintentional modification. The M&S engineer, as the object designer, then specifies interfaces that allow 
access to the object and its functionality, while making sure that its structure is not unnecessarily modified. 
 Polymorphism, literally translated, means the ability to take more than one form. In terms of software 
design, it enables objects to have multiple properties, depending on how the object is used or instantiated. 
The M&S engineer specifies a general structure for an object and then can tailor it to specific purposes 
depending on the needs of the simulation.  For instance, software can be developed to implement a graph 
topology to connect nodes using edges.  The nodes can then be implemented as different process tasks and 
then interconnected to create a process, while the graph can simply view the individual process tasks as 
graph nodes. 

OOP facilitates breaking down complex modeling and simulation problems into manageable parts, in 
the form of objects, to act as building blocks for multi-part systems that would be difficult to represent 
without this type of approach (Mota 2015). As models become more complex, this skill is necessary to 
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master to be an effective M&S engineer. Researchers have developed libraries of software models to 
facilitate this process (Ward 1992). 

2.2 Data Structures 

Data structures play an important role in computer simulation. Organized data are often required as input 
to the simulation to help define the system being modeled (Bengtsson 2009; Allen 2016). Computer 
simulations also rely on internal data structures to capture system parameters and states as the simulation 
executes. One example is event organization in discrete event simulation (DES) (Schriber 1997). DES 
utilizes an event list to keep track of the proper order of events that must be executed by the simulation. 
Simulation engineers use one of several data structures to contain this list. Those structures include linked 
lists, various tree structures, and hash tables to mention a few. Implementation of these structures requires 
knowledge of how to efficiently code them in an OOP environment since their structure can account for 
significant computational load associated with DES. Simulation engineers must also understand the benefits 
and limitations of various data structures so that a proper method can be chosen for a particular application. 
Knowledge of lists, graphs, trees, and hashing algorithms is required to make the appropriate choice. 

2.3 Programming DES Worldviews 

Rashidi (2016) provides an assessment of current simulation software packages, categorizing them based 
on six taxonomies.  He bases the majority of his taxonomies on the simulation development environment 
or higher level modeling perspectives.  The focus of this discussion falls under Rashidi’s first taxonomy: 
worldviews.  There is plenty of literature covering worldviews such as (Overstreet and Nance 2004; Pegden 
2010; Pidd 2004; Sargent 2004), but little exists in educational textbooks.  Worldviews are defined as some 
subset of four approaches: event scheduling, activity scanning, three-phase, and process interaction (Balci 
1988).  The approaches differ in the representation of events and the underlying management of events.  
The two most prevalent approaches used in commercial software are event scheduling and process 
interaction (Rashidi 2016).  In event scheduling, the system is viewed from the perspective of system state.  
Time-stamped events are ordered by time of occurrence.  As the events occur over time, each event may 
change the system state and may schedule new future events.  This worldview requires the modeler to 
express the system model in terms of events and states, which for many systems is known to be difficult 
(Pegden 2010).  In process interaction, the system is viewed from the perspective of entities moving through 
one or more system processes.  Since the late 1980’s, process interaction has replaced event scheduling 
(Pegden 2010) as the most frequently used approach.  Rashidi’s survey of 62 simulation packages supports 
this claim, finding 32 software packages using process interaction, 26 using event scheduling, and a total 
of 20 using forms of the other two worldviews.   

However, it is interesting to note that the overwhelming majority of available general simulation 
educational materials still focus on the event scheduling approach.  This educational focus may be due to 
historical reasons (event scheduling was developed earlier), a consequence of the simulation name (it is 
Discrete Event Simulation, not Discrete Process Simulation), or the fact that process interaction 
representations can be converted to an event scheduling representation (Overstreet and Nance 2004).  Two 
of the authors made the case previously (Leathrum et al. 2017) that both event scheduling and process 
interaction should be included in an M&S curriculum and proposed a unified view, finding the commonality 
between the two views, to avoid teaching them as distinctly different concepts when introducing software 
implementations.   

2.3.1 Event Scheduling Worldview 

The primary concept when developing software for the event scheduling worldview that is foreign to 
students with a classic computer science education is the need to schedule a call to an event subroutine to 
occur at a later execution time based on the scheduled simulation time.  Texts such as (Nutaro 2011) take 
the approach of creating a subroutine which when provided an event id calls the appropriate event 
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subroutine.  However, this approach does not support reusable code and thus development of libraries to 
support the event scheduling worldview. 

Instead, we teach students how to encapsulate an object method call for future execution.  They are 
taught the concept of command patterns (Gamma et al. 1994) to encapsulate a specific event subroutine call 
to include the object, the method to be called, and a parameter list.  This is consistent with the approach 
taken in libraries such as SIM (Boiler and Eliëns 1995) and SystemC (Open SystemC Initiative 2003).  By 
studying how a simulation executive executes events defined as command patterns, students gain a greater 
appreciation of polymorphism and encapsulation, and should be better prepared to utilize a simulation 
executive library due to a better appreciation of its functionality and interaction with their application. 

Experience has also shown that it is easier to teach DES software development if starting from a 
common modeling paradigm.  (Leathrum et al. 2017) proposed the event graph (Schruben 1983) as the 
starting point as it clearly defines all event scheduling activities as well as the state changes.  There is also 
literature showing how to transform other modeling paradigms to the event graph paradigm (Schruben and 
Yucesan 1994) and even other world views to event scheduling (Overstreet and Nance 2004).  

2.3.2 Process Interaction Worldview 

The process interaction worldview presents both advantages and disadvantages when introducing it to 
students.  On the one hand, programming a single process is just an exercise in structured programming.  
However, students must have an appreciation for the concurrency of the interacting processes.  While they 
may grasp this at the modeling level and when utilizing simulation tools, when stepping to software design 
this seems a more difficult concept.  Students more readily map the sequential nature of event scheduling 
repeatedly selecting events for execution than transferring control back and forth between processes. 

As in event scheduling, it is advantageous to start the software development process from a common 
modeling point.  UML activity diagrams and/or statecharts are selected as an appropriate representation of 
the inherent concurrency (Crichton et al. 2001) that readily maps to software.  Individual processes are 
defined in individual swimlanes.  Each swimlane can then be developed as a routine implementing that 
process in software.  Providing students with library support for process interaction and the passage of 
simulation time then allows them to focus on the development of the processes without worrying about the 
management of context switching between processes.  Again, this approach readily sets up the students for 
using available process interaction capabilities in software libraries, in particular, SIM (Boiler and Eliëns 
1995) and SystemC (Open SystemC Initiative 2003) both support both world views. 

2.4 Open Source Software 

The Internet has been the foundation of a revolution in how research and development are carried out, in 
making widely available subject matter expertise on a variety of spheres of activity, including YouTube-
based lessons and broad dissemination through open publications such as FrontiersIn.org and arxiv.org 
(Frontiers 2019) (arXiv.org 2019). In parallel, a large number of software engineers have not only made 
available their expertise, but also disseminated their software implementation and data repositories, in areas 
ranging from computer visualization (VTK 2019) to physiological models (CellML 2019) (BioGears 2017). 
On occasion, academic publications also encourage contributors to make either their software code or a 
visualizable model available as an adjunct to their paper.  

Equally important, these tools are also finding support in industry, where employers who view them as 
a means of quickly ramping up software projects, while exploiting complementary software tools that 
support software projects, such as GIT version control (Git 2019), Mantis bug tracker software (Mantis 
2019), Doxygen documentation generation (Doxygen 2018) or CMake cross-platform compilation support 
(CMake 2019). It is not uncommon for job ads, such as those on Indeed.com (Indeed 2019), to specify as a 
hiring criterion the required expertise in many of the aforementioned open-source software implementations 
or software project support tools.  
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As educators, it has been apparent that we would be delinquent in preparing engineering students for 
the workforce if we neglected to account for the importance of the emergence of these open-source tools, 
in potentiating their toolbox as future M&S engineers. Moreover, learning to write software in an open 
source-aware manner is often significantly different than learning to write software in the absence of these 
tools. First of all, students have to become experts in reading code written by other people and discerning 
whether a specific implementation is appropriate for their needs. Moreover, these tools may require an 
important effort in building the publicly available software from source code, in that they are often reliant 
on other software libraries. If the build process of these open-source tools fails to conclude successfully, 
the software engineer must become an expert in these second- or third-party libraries to produce linkable 
libraries that can be integrated into his/her own code.  

As a result, our department has encouraged students to consider open-source building blocks in their 
implementation, both for discrete event simulation classes as well as Capstone classes. In discrete event 
simulation, part of the emphasis is certainly on sophisticated Commercial-Off-The-Shelf (COTS) DES 
software, such as ARENA (Arena 2019) and SIMIO (Simio 2019), as it should be, especially early on in 
the program. As described in the survey by Dagkakis (Dagkakis 2016), the strength of such packages lies 
in the graphical tools for modeling, debugging and experimentation, provided to the user, combined with 
advanced visual facilities that enhance model development. However, the program is dedicated to 
producing M&S engineers, not merely users, so the junior and senior years encourage the use of high-level 
tools available in open source, in addition to software enabling tools such as GIT. In addition, commercial 
software tools are limited by cost, flexibility and reusability, whereby open-source DES is a compelling 
alternative (Dagkakis 2016). 

There is in fact a plethora of open-source DES tools, and no single implementation seems to dominate 
currently. Dagkakis (2016) cites OMNeT++ (OMNeT++ 2019) , NS-3 (ns-3 2019), SimPy (SimPy 2018) 
and Jaam SIM (Jaam Sim 2019) in particular, with the latter deemed exceptionally promising in terms of 
offering functionality that competes with COTS software packages. Important considerations in the choice 
of open-source DES software include the specifics of the license and the language in which the package is 
implemented. In the former case, we strive to educate students on the broad license categories, and in 
particular make them aware of the subset of licenses with copy-left requirements that preclude the sale of 
commercial products built on them. As for the implementation language, many packages are developed in 
C++ or Python, which typically entails a trade-off of computational performance versus ease of 
implementation, which factors into their design choice. 

Over the years, many Capstone projects have relied on Qt (Qt 2019) for their graphical user interface 
component, and an open-source counterpart under the hood as appropriate to the nature of the project. The 
customer varies every year, and the interests of this customer dictate the nature of the Capstone project and 
the choice of open-source components. Newport News Shipbuilding is particularly dedicated to the 
application of M&S in its fabrication and logistics processes; not surprisingly, this company has its own 
proprietary M&S software, which one senior group has leveraged as part of their Capstone project (Allen 
et al. 2014). More recently, a third group exploited Open MPI (Open MPI 2019) for a high-performance 
computing application that emphasized its Message Passing Interface. A fourth group exploited the Open 
Dynamics Engine (Smith 2019) in conjunction with a Navy project on naval simulation (Branch et al. 2017).  

The current senior group (class of 2019) is exploiting SUMO traffic simulation (DLR - Institute of 
Transportation Systems 2019) as well as the TRACI TCP-based client-server interface to SUMO (TraCI 
2019), to develop a proof-of-concept for their autonomous vehicle (AV) testbed based on simulated 
automobile navigation. The AV will be simulated by synthetic vehicle using AirSim (Microsoft 2019). The 
graphical user interface for this project is once more Qt-based. 

2.5 Graphics 

Visualization is an integral component of modeling and simulation and it is used in various stages of 
discrete event simulation (DES), such as input analysis, model development, results display, verification 
and validation, and analysis.  Three levels of graphics software development capabilities are expected for 
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M&S graduates: 1) code development from scratch, 2) understanding and reuse of source code of existing 
projects or co-workers, and 3) efficient utilization of third-party software libraries when needed.   

Most software applications involve different types of files and DES is no exception.  File input and 
output are perhaps the first tasks to be addressed when developing DES applications for the real world. 
DES involves many types of files such as input files, output files, image files and even 3D files.  M&S 
graduates are expected to understand relatively simple file structures and develop corresponding file readers 
and writers.  For example, images are used in DES to represent different entities and statuses (e.g., busy, 
idle).  The portable pixmap format (PPM) is a relatively simple image format and our students are required 
to write code from scratch to read and manipulate existing PPM files and generate new PPM files (screen 
captures).  M&S graduates should understand file structures of moderate complexity.  For instance, OBJ is 
a file format for representing polygonal meshes, including vertex positions, normals, colors, and texture 
coordinates. Our students are required to read, understand, and reuse the OBJ file parser developed by the 
instructor.  For extremely complex or proprietary file formats, such as JPEG and FBX, students are expected 
to make full use of third-party software libraries to access these files in their code. 

Although not necessarily mandatory for customized DES applications, graphical user interfaces (GUI) 
are a standard component of general DES tools such as Arena. Various building blocks allow users to create 
DES applications visually in a drag-and-drop manner and visualization of input, output, and other 
components enable users to understand and manipulate simulations effectively and efficiently.  M&S 
graduates are required to generate primitive geometries procedurally (i.e., directly in the code, not pre-
generated by an artist) and apply affine transformations (translation, rotation, and scaling) to produce 
multiple instances of the same base geometry. Also required are software implementations of complex 
mathematical functions, conversion between one-dimensional arrays to multi-dimensional arrays (e.g., 3-
dimensional or 4-dimensional arrays), basic matrix operations (e.g., transpose and multiplication), and 
memory layout for variables and objects.  Students should understand different visual representations of 
the same object and select the most effective one.  For instance, while the length of a queue for a call center 
can be represented by a number inside a box, the queue for a restaurant or a bank can be visualized by icons 
or 3D models representing the customers, offering the user direct appreciation of the physical restraints 
(space) on the maximum queue length. Understanding of different spaces, such as object space, world space, 
camera space, and screen space, and conversions among different spaces is critical for creating correct 
visualizations.  Utilization of camera projections (orthographic and perspective), viewport, lighting, 
shading, and texture mapping is required to produce an informative visualization that allows the application 
user to understand the simulation from multiple perspectives.   

M&S students are required to develop various data structures (structures, enumerations, and classes) to 
store graphical entities such as geometry (vertex positions), topology (triangle, polygon), and visual 
attributes (colors and texture coordinates). Utilization of the classes such as vector and map provided by 
the C++ Standard Template Library (STL) allow for rapid application development.  Students should be 
able to develop reusable code via inheritance and containment/delegation.  Students are expected to design 
classes to properly model real-world objects with the understanding the same object may need multiple 
representations, such as behavior model, graphical model, or even physics model for a realistic 3D 
rendering of a DES application.  Students need to create class hierarchies by applying the key principles of 
OOP programming (inheritance, encapsulation, and polymorphism) and advanced classes that contain other 
more basic classes using the containment/delegation model. These software design and development 
principles and techniques are applied to the entire application development to produce an overall software 
architecture that is clean and adaptive to future revision and upgrades.  This perspective clearly supports 
the previous discussion on the importance of object-oriented programming. 

Another important aspect is the utilization of industry standard software library tools.  OpenGL is a 
cross-platform application programming language (API) for 3D computer graphics and it is the de facto 
industry standard for professional graphics, such as architecture design, scientific visualization, and 
information visualization (OpenGL 2019).  It is available on Microsoft Windows, Linux, MacOS, Android, 
iOS, and game consoles. Utilizing a low-level library like OpenGL in instruction ensures students have 
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deep understandings of the theories of computer graphics and visualization, providing students a solid 
foundation to build their visualization capabilities on top of OpenGL or make use of other high-level 
libraries, such as OpenSceneGraph. 

3 SIMULATION TOOL DEVELOPMENT 

3.1 Software Architecture 

The nature of simulation software development requires solid architecture design to enable both reusability 
and extensibility.  Students should be exposed to the main concepts, and be comfortable with at least two 
basic architecture models.  The first is directly relevant to development of simulation libraries and important 
in tool development, the concept of separating the application from the simulation executive.  (Pidd 2004) 
presented this simple decomposition where the application schedules events with the simulation executive 
and the simulation executive executes events on the application. 

In addition, it is important for students to understand the interrelationship between components in the 
system, especially between the core simulation and the user interface.  They should be exposed to reusable 
design patterns such as Model-View-Controller (MVC) and Model-View-Presenter (MVP) (Qureshi and 
Sabir 2013).  This instruction on design patterns assists them in understanding the decomposition at various 
levels of the software design. 

3.2 Simulation Executive Development 

A relatively unique experience of the students in ODU’s program is their exposure to the inner workings of 
the simulation executive.  They not only understand its inner workings and why it matters (Schriber 2014), 
but also the implications of software design decisions.  These foundations are highlighted in three areas: 
data structure design of the event list, the basic control structure of the executive, and a basic understanding 
of the mechanisms to execute an event in both the event scheduling and process interaction worldviews.  

When discussing the event list, it is a perfect opportunity to demonstrate to students the impact of 
selecting different data structures for implementation.  They can start with a simple linked list solution, but 
then the class quickly introduces alternative solutions using hash tables and binary search trees to enable 
students to better understand their potential benefits and pitfalls.  This material leads into further advanced 
solutions such as calendar queues (Brown 1988), lazy queues (Rönngren 1991) and ladder queues (Tang et 
al. 2005), in a never ending search for an O(1) solution.  This class is not intended to promote one solution 
over another, but rather to expose the student to options and design considerations.  

Finally, the student is exposed to the different ways to execute an event based on the worldview.  They 
are fully exposed to the event scheduling approach, and are capable to execute events in the simulation 
executive with no knowledge of the application’s event structure thanks to the use of command patterns.  
Students become so comfortable with this approach that it becomes their fallback technique when posed 
with an industry driven problem in their Capstone course, opting to build their own (or rather use the one 
built in a prior simulation software design course) over utilizing a simulation software library.  Process 
interaction poses a more difficult problem when presenting approaches to implementation.  Students are 
not exposed to multithreading in the current computer science curriculum, let alone the preferred co-routine 
approach (Weatherly and Page 2004; Xu and Li 2012).  So they have to settle with a blackboard discussion 
of the approach.  They are provided a homegrown library implemented using threads, threads chosen due 
to their inclusion in the C++11 standard alleviating the need to use further libraries despite the loss in 
performance. 

4 CONCLUSIONS 

This paper presents the core software skills that we believe are necessary for a well-rounded simulationist.  
While not all practitioners need a thorough background in these skills, we argue that students should 
minimally be aware of them.  As such, our undergraduate program provides a fairly thorough coverage with 

3291



Leathrum, Sokolowski, Shen, and Audette 
 

 

some exceptions such as the implementation of the process interaction worldview.  Graduate students come 
from varied backgrounds, and do not have the time in  the program to develop these skills.  However, we 
have created a graduate-level course that covers all of these topics in a single semester, giving students 
exposure, albeit little time to practice the skills necessary to become competent.  Our graduates are valued 
for their breadth in the field, adept at core M&S, analysis, and software development: an ability that more 
than one employer has commented as being an attractive quality in a candidate.  Students have also been 
more productive in graduate research as many projects require software development.  Therefore, we 
believe our efforts in including core software skills in a M&S curriculum have been well founded. 

The original curriculum design involved identifying core skills required by an M&S professional based 
on various sources such as the M&S Body of Knowledge (Mielke et al. 2011; Leathrum and Mielke 2012).  
By delving deeper into the high-level concepts down to the level described in this paper, available university 
courses, in particular from the Computer Science department, can be organized into a curriculum.  But it 
also highlights where the program’s needs go beyond concepts available in general software courses. 
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