
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

THE EFFECT OF SYMMETRIC PERMUTATIONS ON THE CONVERGENCE OF A
RESTARTED GMRES SOLVER WITH ILU-TYPE PRECONDITIONERS

Sanderson L. Gonzaga de Oliveira
Cláudio Carvalho

Departamento de Ciência da Computação
Universidade Federal de Lavras
Câmpus Universitário, C.P. 3037
Lavras, MG, 37200-000 BRAZIL

Carla Osthoff

Laboratório Nacional de
Computação Cientı́fica

Av. Getulio Vargas, 333, Quitandinha
Petrópolis, RJ, 25651-075 BRAZIL

ABSTRACT

This paper is concerned with applying heuristics for bandwidth reduction as a preprocessing step of a restarted
Generalized Minimal Residual (GMRES for short) solver preconditioned by ILU-type preconditioners.
Hundreds of heuristics have been proposed to solve the problem of bandwidth reduction since the mid-
1960s. Previous publications have reviewed several heuristics for bandwidth reduction. Based on this
experience, this paper evaluates nine low-cost symmetric permutations. Numerical simulations are presented
to investigate the influence of these orderings on the convergence of the preconditioned GMRES solver
restarted every 50 steps when applied to large-scale nonsymmetric and not positive definite matrices. This
paper shows the most promising combination of preconditioner and ordering for each linear system used.

1 INTRODUCTION

The solution of large-scale sparse linear systems in the form Ax = b where A = [ai j] is an n× n sparse
matrix, x is the unknown n-vector solution, and b is a known n-vector is a fundamental step in several
applications in science and engineering. It is typically a step of the simulation that demands high running
times.

We concentrate our simulations on real nonsymmetric (structurally as well as numerically) matrices
that are not positive definite. Such matrices arise from the analysis of power system networks, circuit
simulation, computational fluid dynamics, electromagnetics, optimization problems, and elsewhere. These
problems can cause severe difficulties for preconditioned iterative methods.

Iterative methods are fundamental tools to the solution of several large-scale problems in scientific
computing (Benzi 2002). Krylov subspace iterative methods are now extensively employed in conjunction
with preconditioning techniques for large-scale instances in scientific and engineering applications. The
GMRES method of Saad and Schultz (1986) is a prominent Krylov subspace method for solving non-
Hermitian linear systems Ax = b where A ∈ Cn×n is a nonsingular matrix and b ∈ Cn (Saad 2003). The
GMRES method terminates with the exact solution in at most n steps. However, it uses the Arnoldi
algorithm and, consequently, its execution costs increases with each iteration. Thus, practitioners usually
restart the GMRES(m) method after m iterations, using the last computed residual as the next initial one. This
restarted version may stagnate (Saad and Schultz 1986). Convergence can be slow even if stagnation does
not occur, and researchers have proposed several remedies for this problem (see Güttel and Pestana (2014)
and references therein). Thereby, preconditioning is a crucial ingredient for the success of the restarted
GMRES method. Saad (2003) describes the restarted GMRES solver and incomplete LU factorizations in
detail (see also Saad (2016)).

3219978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Gonzaga de Oliveira, Carvalho, and Osthoff

Incomplete factorization preconditioners also depend on the ordering of unknowns and equations. It is
a common experience that if the matrix has nonzero coefficients close to the main diagonal, the number of
floating point operations in the ILU factorization can be smaller and, consequently, reordering the unknowns
and equations influence the rate of convergence of preconditioned Krylov subspace methods (Benzi et al.
1999; Benzi 2002).

We are particularly interested in the effects of symmetric permutations of the large-scale matrix A to
further improve incomplete (approximate) factorization preconditioning for sequential calculations with
the restarted GMRES solver. Thus, this paper shows a set of numerical simulations on the influence of
nine reordering approaches on the convergence of the preconditioned GMRES solver restarted every 50
steps when using the ILU (Meijerink and van der Vorst 1977), ILUT (Saad 1994), VBILU, and VBILUT
(Saad 2002) methods as preconditioners for a set of large-scale sparse matrices (ranging from 1,000,005
to 4,690,002 unknowns and from 3,105,536 to 27,130,349 nonzero coefficients). Specifically, we evaluate
nine heuristics for bandwidth reduction of matrices in a preprocessing step for the restarted preconditioned
GMRES solver.

There are significant motives for finding an adequate order for the coefficient matrix. Modern hierarchical
memory architecture and paging policies benefit programs that take locality of reference into account. Spatial
locality is a relevant aspect when designing an algorithm. An adequate nodal ordering is essential for
the low-cost solution of large and sparse linear systems. Heuristics for bandwidth reduction are typically
employed to obtain a sequence of graph (associated with the matrix A) vertices with spatial locality. Thus,
heuristics for bandwidth reduction are commonly used to obtain low processing times for solving large
sparse linear systems by iterative methods (Gonzaga de Oliveira et al. 2018b).

Due to its importance in numerical mathematics, important publications have investigated this subject,
as described below. Nevertheless, our contribution is to evaluate various low-cost heuristics for bandwidth
reduction along with several other variants of symmetric permutations in conjunction with the restarted
GMRES(50) solver preconditioned by four ILU-type preconditioners when applied to large-scale non-
symmetric linear systems. Specifically, we employed in our simulations both the preconditioners and the
Flexible GMRES solver available in ITSOL v.2.0, a package of iterative solvers (Saad 2016). In particular,
this is a state-of-the-art implementation of the restarted GMRES method and its preconditioners.

The remainder of this manuscript is structured as follows. Section 2 reviews important works in this
field. Section 3 discusses the heuristics for bandwidth reduction evaluated in this study. Section 4 describes
how the simulations were conducted in this study. Section 5 describes in detail the parameters evaluated in
the restarted preconditioned GMRES solver. Section 6 presents and discusses the results. Finally, Section
7 addresses the conclusions.

2 RELATED WORK

In this field, significant works have addressed the influence of permutations on the convergence of the
restarted preconditioned GMRES solver (Saad and Schultz 1986). Camata et al. (2012) reviewed the most
important publications in this subject. We provide only a brief review of the most important contributions
in the field.

Benzi et al. (1999) published one of the most important articles on reordering nonsymmetric matrices
for solving linear systems by the GMRES method. These authors presented a very detailed review of
the subject. We reproduce here their main results. For the highly nonsymmetric test matrices used, i.e.,
when the nonsymmetric part is large, Benzi et al. (1999) concluded that level set reorderings favor the
convergence of the preconditioned GMRES solver. These researchers used several instances originating from
petroleum engineering, metal forming simulation, neutron diffusion, plasma physics, and incompressible
flow applications. The authors used small instances for today’s standards, i.e., the linear systems used were
lower than 6,000 unknowns and 84,000 nonzero coefficients. Benzi et al. (1999) employed the GMRES(20)
solver preconditioned by the ILU(0), ILU(1), ILUT(1e-2 ,5), and ILUT(1e-3,10) preconditioners. These
authors investigated the results achieved by the (reverse) BFS, (reverse) CM, and multiple minimum degree

3220

Gonzaga de Oliveira, Carvalho, and Osthoff

orderings. The authors did not describe the pseudoperipheral vertex finder used, but probably the RCM
method (George 1971) was used with the starting vertices given by the George-Liu algorithm George and
Liu (1979). Benzi et al. (1999) concluded that the Reverse Cuthill-McKee method (George and Liu 1981)
provided the best performance and robustness results, particularly alongside the ILUT preconditioning
when applied to finite difference approximations of convection-dominated convection-diffusion equations.
Benzi (2002) provided a detailed survey of preconditioned techniques for large linear systems.

Among several experiments, Camata et al. (2012) conducted a specific serial simulation. These authors
investigated the use of ordering strategies along with the ILU algorithm used as a preconditioner to the
restarted GMRES solver. Specifically, these authors compared the results obtained using natural, quotient
minimum degree, and RCM-GL (George and Liu 1981) orderings when applied to a 2-D serial adaptive
mesh refinement and coarsening problems arising from finite element discretizations. To provide further
details, the authors studied a mixed vector field problem. Specifically, this vector field problem is a variable
transient incompressible Navier–Stokes problem. They used an instance composed of 16,384 vertices and
concluded that the RCM ordering generally obtains faster solves.

The results presented by Benzi et al. (1999) and Camata et al. (2012) showed that the selection of the
ordering strategy strongly influences the CPU time and the number of GMRES iterations. Additionally,
their results show that the use of the natural (or original) ordering provides experiments substantially more
expensive than using the RCM-GL ordering (George and Liu 1981). In general, these authors recommended
employing the RCM-GL (George and Liu 1981) as a preprocessing step for the restarted preconditioned
GMRES solver.

3 HEURISTICS FOR BANDWIDTH REDUCTION EVALUATED

The bandwidth minimization problem consists of labeling the vertices of a graph with integer labels aiming
at minimizing the maximum absolute difference between the labels of adjacent vertices. The problem
is isomorphic to the problem of reordering the rows and columns of a symmetric matrix in such a way
that its non-null coefficients are maximally located as close as along the main diagonal (Koohestani
and Poli 2011). Let A = [ai j] be an n× n symmetric adjacency matrix associated with an undirected
graph G = (V,E) composed of a set of vertices V and a set of edges E. The bandwidth of line i is
βi(A) = i− min

1≤ j≤i
[j : ai j 6= 0]. The bandwidth of A is defined as β (A) = max

1≤i≤n
[βi(A)]. Equivalently, the

bandwidth of G for a vertex labeling S = {s(v1),s(v2), · · · ,s(v|V |)} (i.e. a bijective mapping from V to
the set {1,2, · · · , |V |}) is β (G) = max

v∈V
[({v,u} ∈ E) |s(v)− s(u)|]. The bandwidth minimization problem is

NP-hard (Papadimitriou 1976). Thus, since the mid-1960s, several heuristics for bandwidth reduction have
been proposed.

Previous publications (see Gonzaga de Oliveira et al. (2018b) and references therein) have identified
promising low-cost heuristics for bandwidth reduction: KP-band (Koohestani and Poli 2011), reverse
breadth-first search (BFS) with the starting vertex given by the George-Liu (GL) algorithm, and RCM-GL
(George and Liu 1981) heuristics. The Reverse Cuthill-McKee method (George 1971) labels the vertices
of a graph G(V,E) in order of increasing distance from a given pseudoperipheral vertex. Specifically,
the method labels vertices with the same distance from the vertex starting vertex in order of increasing
degree. Finally, the ordering is reversed. The KP-band heuristic labels the vertices of a graph using the
formula 0.179492928171 ·(ς(v))3 + 0.292849834929 · (ς(v))2− 0.208926175433 · n− 0.736485142138 ·
n · ς(v)− 1.77524579882 · ς(v)− 1.75681383404 where n is the dimension of matrix A and ς(v) is the
sum of degrees of vertices connected to the vertex v.

A low-cost heuristic that reasonably reduces the bandwidth of the coefficient matrix A is more relevant
in reducing the computing time required by an iterative linear solver than using a high-cost heuristic that
reduces the bandwidth of A to a considerable extent (Gonzaga de Oliveira et al. 2018b). Thus, in addition
to these three reordering algorithms, we also include in our simulations the BFS, reverse BFS (see Benzi

3221

Gonzaga de Oliveira, Carvalho, and Osthoff

et al. (1999)), BFS-GL, Cuthill–McKee (CM) (Cuthill and McKee 1969), Reverse Cuthill–McKee (RCM)
(George 1971), and CM-GL procedures.

We selected these nine low-cost heuristics for bandwidth reduction because an adequate vertex labeling
of a graph associated with a matrix contained in a linear system may reduce the computational times of an
iterative linear solver, such as the GMRES method (Benzi et al. 1999). The bandwidth reduction obtained
is not directly proportional to the computational time reduction of solving linear systems by an iterative
solver. Furthermore, at least when only a single linear system is to be solved (Gonzaga de Oliveira et al.
2018b), the total simulation time (i.e., including the time required by the reordering procedure) should
present low cost. Thus, an application should employ a low-cost reordering algorithm. The orderings
evaluated in this study are graph theoretical algorithms that perform only symmetric permutations and
preserve the set of diagonal entries. Additionally, these orderings neither affect the coefficients nor the
eigenvalues of the nonsymmetric matrix A.

4 DESCRIPTION OF THE TESTS

We wrote the codes of the heuristics for bandwidth reduction in the C++ programming language using the
g++ version 5.4.0 compiler, with the optimization flag -O3. As previously mentioned, we applied both
preconditioners and the Flexible GMRES solver available in ITSOL v.2.0 (Saad 2016). The implementations
use double-precision floating-point arithmetic.

To evaluate the performance of the restarted preconditioned GMRES solver (Saad and Schultz 1986)
computed after executing reordering algorithms, we used 11 linear systems contained in the SuiteSparse
matrix collection (Davis and Hu 2011). We selected real nonsymmetric instances with size greater than
1,000,000 from this sparse matrix collection. Thus, this search in the sparse matrix collection returns 14
nonsymmetric instances. However, we did not include the instances circuit5M, cage15, and HV15R in our
simulations. The amount of memory on our machine is insufficient to compute these instances. Because
the sizes of the problems are greater than 1,000,000 unknowns, we apply an iterative method to solve the
linear systems. Thus, the preconditioned GMRES(50) method solves the linear systems in this study. The
matrices are not positive definite, but real nonsymmetric instances.

We used the structure of A+AT in our simulations. There are other graphs used for preordering A,
including the row graph AT A and bipartite graph. Nevertheless, we computed A+AT because it is a simple
strategy that presents lower storage and execution costs than the other strategies do. In particular, the
MATLAB software (The MathWorks, Inc. 2019) includes this strategy along with the RCM-GL method
(George and Liu 1981).

The vectors b and x0 do not define if the GMRES converge or not, but can influence the number of
iterations and the CPU time is used to evaluate the results of algorithms in our simulations. We used CPU
time as the primary metric in the simulations because different iterations can be either time-consuming or
fast.

When the collection does not supply the right-hand side of a linear system, we generated a vector b
with random entries in the range (−1,1). We initialized the vector x0 with zeros. The performance of the
GMRES solver depends on the choice of the initial ordering, and we considered the original sequence of
unknowns and equations given in the linear systems.

A suitable parameter m could be very different for each matrix. The optimal value is profoundly
problem dependent. Thus, it is not straightforward to find an optimal value for each matrix. The sizes of
the matrices used in our simulations increase this issue. Nevertheless, since our interest is in the study
of the influence of symmetric permutations on the convergence of the restarted preconditioned GMRES
method, we fixed for all matrices the number of restart vector for the GMRES solver. Section 5 shows how
we chose the initial parameters for the GMRES(50) solver preconditioned by the ILU(`) and VBILU(`)
algorithms, for ` established as 1, 2, 4, and 12, and ILUT(τ ,p) and VBILUT(τ ,p) preconditioners with
(1e-3,50), (1e-6,75), (1e-9,100), (1e-12,200), and (1e-15,250). Section 5.2 defines the parameters τ and p.

3222

Gonzaga de Oliveira, Carvalho, and Osthoff

If the GMRES(50) solver does not converge with a specific preconditioner, our program repeats its
execution with different parameters. For example, if the GMRES(50) solver preconditioned by the ILU(1)
method does not converge when applied to a specific instance, then the program employs the ILU(2) method
as the preconditioner. If it does not converge again, the program applies the ILU(4) preconditioner. In our
simulations, the GMRES(50) solver stops either when the norm of the residual vector is less than 1e-8 or
when a maximum number of iterations (|n|) was reached.

Since the preconditioned GMRES method with 50 as the restart parameter generally takes few seconds
to solve a linear system, we aborted an execution that computed more than 20 minutes supposing that
either the solver would not converge or the solver would converge after a much longer time. We arbitrarily
chose this timeout. Nevertheless, the GMRES solver (along with the preconditioners used with different
parameters) did not converge when applied to some linear systems. When using these most difficult linear
systems, we performed another execution with the preconditioned solver applied to the instance with a
timeout of 3,600 seconds.

The solver executed if the condest associated with the matrix is smaller than 1e+15. The FGMRES
solver allows changes in the preconditioning every GMRES step, but we did not change the parameters
during execution.

The workstation used to compute the simulations featured an Intel R© CoreTM i7-4770 (CPU 3.40 GHz,
8 MB of L3 cache, 16 GB of main memory DDR3 1.333 GHz) (Intel; Santa Clara, CA, United States). This
machine uses Ubuntu 16.04.3 LTS 64-bit operating system with Linux kernel-version 4.13.0-39-generic.

5 PARAMETERS EVALUATED IN THE RESTARTED PRECONDITIONED GMRES SOLVER

This section describes how we chose the initial parameters in the restarted GMRES solver preconditioned
by four ILU-type preconditioners. It can be found in the literature the use of the restarted GMRES(m)
solver employed with several parameters. Essentially, the greater this parameter is, the larger the amount
of storage required. This characteristic can be a limiting factor for using this parameter in large-scale
instances. Even though we use large-scale linear systems, we studied greater values for the parameter in
the GMRES solver. In exploratory investigations, we studied the use of the values 30, 50, 100, and 250
for this parameter.

Table 1 shows the parameters used for the four preconditioners evaluated in this study. We considered
that the best combinations of parameters are those that lead to convergence of the GMRES solver at low
cost.

Table 1: Preliminary parameters studied in the restarted preconditioned GMRES solver.

Method Parameter Values
GMRES m 30, 50, 100, 250

ILU, VBILU ` 0, 1, 2, 3, 4
ILUT, τ 1e-1, 1e-3, 1e-6, 1e-9

VBILUT p 15, 50, 100, maximum degree

We applied each preconditioner with each combination of parameters to 35 linear systems ranging
from 12,111 to 150,102 unknowns. Table 2 shows these (arbitrarily chosen) instances.

Table 3 shows the values ρ calculated for each parameter m evaluated, where ρ = ∑
N
i=1

βH(i)−βmin(i)
βmin(i)

(Gonzaga de Oliveira et al. 2018a), βH(i) is the bandwidth obtained when using an algorithm H applied
to the instance i, βmin(i) is the lowest bandwidth obtained in the instance i (considering the algorithms
evaluated and the original bandwidth of the matrix), and N is the number of matrices. The metric ρ in Table
3 shows that the best results were obtained when using the restarted preconditioned GMRES solver with
50 vectors in the Krylov basis, denoted GMRES(50) solver, among the three other parameters evaluated
in this study. With this value for the GMRES solver, we also evaluated the best parameters on average for
the four preconditioners when applied to the instances exhibited in Table 2.

3223

Gonzaga de Oliveira, Carvalho, and Osthoff

Table 2: Thirty-five instances used in exploratory investigations.

Instance n |E| Instance n |E| Instance n |E|
ncvxqp1 12,111 73,963 minsurfo 40,806 203,622 cont-201 80,595 438,795
cbuckle 13,681 676,515 vanbody 47,072 2,329,056 apache1 80,800 542,184

olafu 16,146 1,015,156 gridgena 48,962 512,084 shallow water1 81,920 327,680
bodyy6 19,366 134,208 cvxbqp1 50,000 349,968 consph 83,334 6,010,480
raefsky4 19,779 1,316,789 sparsine 50,000 1,548,988 ASIC 100ks 99,190 578,890
qpband 20,000 45,000 dixmaanl 60,000 299,998 lung2 109,460 492,564

msc23052 23,052 1,142,686 blockqp1 60,012 640,033 torso2 115,967 1,033,473
bcsstk37 25,503 1,140,977 venkat01 62,424 1,717,792 cop20k A 121,192 2,624,331

smt 25,710 3,749,582 cant 62,451 4,007,383 cfd2 123,440 3,085,406
brainpc2 27,607 179,395 Dubcova2 65,025 1,030,225 Dubcova3 146,689 363,6643
ship 001 34,920 3,896,496 bcircuit 68,902 375,558 G2 circuit 150,102 726,674

c-57 37,833 403,373 cfd1 70,656 1,825,580

Table 3: Metric ρ calculated for four parameters evaluated in the GMRES solver.

m 30 50 100 250
ρ 4.47 2.25 2.29 3.74

It is natural that, due to the variety of characteristics present in the instances used in this study (i.e.,
the large number of vertices, large number of nonzero coefficients, etc.) arising from different application
areas, the choice of parameters is not ideal for every matrix used. This generic choice of parameters means
that a generic application of the restarted preconditioned GMRES solver will be unsuccessful for some
instances contained in the dataset used. Nevertheless, these values made effective the set of algorithms for
eight out of 11 large-scale nonsymmetric linear systems used in this study, recalling that our objective is
to investigate the performance of reordering algorithms employed as a preprocessing step for the restarted
preconditioned GMRES solver. Thus, we decided to set a “generic” restarted preconditioned GMRES
solver to study the performance of the reordering algorithms.

For each parameter, we calculated the average times of the restarted preconditioned GMRES solver.
Then, we calculated the metric ρ (Gonzaga de Oliveira et al. 2018a) with these average times. Table 4
shows the definitive parameters that we used for the preconditioners. As previously mentioned, we used
the parameters described in the following round if the preconditioned GMRES(50) solver did not converge
with the parameters set in the previous experiment. Section 5.1 [5.2] explains how we chose the parameters
listed in Table 4 for the (VB)ILU [(VB)ILUT] preconditioners.

Table 4: Parameters used in the simulations with the preconditioned GMRES(50). The program applied
values of the next trial only to instances that the solver did not converge in the previous experiment.

Preconditioner Parameter 1st round 2nd round 3rd round 4th round
ILU, VBILU ` 1 2 4 12

ILUT, τ 1e-3 1e-6 1e-9 1e-15
VBILUT p 50 75 100 250

5.1 ILU and VBILU Preconditioners

The ILU preconditioner available in the ITSOL package (Saad 2016) is an ILU preconditioner with level `
of fill. The VBILU preconditioner available in the ITSOL package is a variable block preconditioner with a

3224

Gonzaga de Oliveira, Carvalho, and Osthoff

level of fill and with automatic block detection. Because we use large-scale instances, these preconditioners
could compute for a long time if setting large values for the parameter `.

The metric ρ in Table 5 shows that the ILU and VBILU preconditioners yielded better results when
using the parameter ` established as 1 and 2. In particular, the computation of the no-fill ILU preconditioner
is inexpensive. This preconditioner is effective for significant problems, such as low-order discretizations of
scalar elliptic partial differential equations leading to diagonally dominant nonsingular matrices (Meijerink
and van der Vorst 1977; Benzi 2002). However, the metric ρ in Table 5 shows that for harder and more
practical problems, the no-fill factorizations result is a too simple approximation of A, and preconditioners
that allow fill-in in the incomplete factors are required (see Benzi (2002)). Benzi (2002) explains that
this is the case for highly nonsymmetric and indefinite matrices, such as those originating from many
computational fluid dynamics applications. The same author also describes that high values of ` hardly
pay the increasing computing times, except maybe for very complicated problems. In the cases where
instability occurs, the problem may disappear by allowing more fill-in in the incomplete factors (Benzi
et al. 1999). However, according to these authors, there is no guarantee that this strategy will always work.
Remarkably, these authors showed cases where increasing the amount of fill-in provided worse results by
increasing the instability of the factors. A preconditioner that returns a dense matrix may demand few
iterations to converge at the cost of high CPU time (Benzi 2002). Thus, we studied only a few sets of
parameters for the preconditioners, keeping in mind that the objective of this work is to investigate the
performance of reordering algorithms when applied as a preprocessing step of the restarted preconditioned
GMRES solver. Although the goal is to evaluate the effects of reordering algorithms, large values for the
parameter ` cause the resulting matrix to become denser. On the other hand, we used large-scale linear
systems in the simulations. Thus, we also used a high value for the parameter `. For instance, we used the
GMRES(50) preconditioned by the (VB)ILU(12) algorithm in the cases that the solver did not converge
when preconditioned by the (VB)ILU(1), (VB)ILU(2), and (VB)ILU(4) algorithms.

Table 5: Metric ρ calculated for five parameters for the ILU(`) and VBILU(`) algorithms when precondi-
tioning the GMRES solver.

GMRES ` 0 1 2 3 4
Four parameters in Table 3 ρ 6.77 5.29 5.28 5.64 10.16

GMRES(50) ρ 5.67 2.33 4.33 7.24 9.24

5.2 ILUT(τ , p) and VBILUT(τ , p) Preconditioners

The ILUT preconditioner available in the ITSOL package (Saad 2016) is an ILU preconditioner with a
threshold. The preconditioner drops an element if it is less than the relative tolerance τi (i.e., τ multiplied
by the original norm of the i-th row, e.g., the 2-norm). The preconditioner also applies another dropping
rule. It keeps only the p highest elements in each L and U parts of the row. The preconditioner always
keeps the diagonal element (Saad 2003). The VBILUT preconditioner available in the ITSOL package is
a variable block preconditioner with a threshold and with automatic block detection.

Usually, researchers empirically choose the parameters τ and p for a few sample matrices from a
specific application when searching for satisfactory values. The optimal values, however, are heavily
problem dependent.

The literature includes several combinations for the parameters τ and p. Researchers have established
the parameter τ as inversely proportional to the parameter p. Usually, the parameter τ is set ranging from
1e-7 to 1e-1. We studied this parameter defined as 1e-1, 1e-3, 1e-6, and 1e-9 (combined with several values
for the parameter p). We studied the parameter p set as 15, 50, 100, and the maximum degree found in
the instance.

The metric ρ in Table 6 shows that the preconditioners achieved better results when using the parameter
τ established as 1e-3 both when using results obtained by applying only the GMRES(50) solver and the

3225

Gonzaga de Oliveira, Carvalho, and Osthoff

solver with the parameters presented in Table 3. The values ρ in Table 6 show that the preconditioners obtain
better results when using the parameter p established as 50. Thus, we employed the ILUT and VBILUT
methods with the parameters (1e-3, 50), (1e-6, 75), (1e-9, 100), and (1e-15,250) when preconditioning the
GMRES(50) solver applied to large-scale linear systems. We employed the preconditioners established
with the parameters (1e-15,250) to the matrices in the cases that the preconditioned iterative linear solver
did not converge when setting the preconditioners with the other parameters described.

Table 6: Metric ρ calculated for several combinations of parameters in the ILUT(τ , p) and VBILUT(τ , p)
algorithms when preconditioning the GMRES solver.

GMRES τ 1e-1 1e-3 1e-6 1e-9
Four parameters in Table 3 ρ 18 10 30 97

GMRES(50) ρ 20 12 33 101
GMRES p 15 50 100 maximum degree

Four parameters in Table 3 ρ 12 10 15 15
GMRES(50) ρ 12 11 17 17

6 RESULTS AND ANALYSIS

Tables 7 and 8, built from a wide variety of references that were part of this computational experiment, show
the instance’s name, preconditioner used, average running time required by the preconditioned GMRES(50)
solver without the use of a reordering algorithm (see column Orig.), and running times of this preconditioned
solver along with several reordering algorithms. The symbol * indicates that the preconditioned solver
did not converge because of some inconsistency during preconditioning, such as a diagonal or pivot null
or exceedingly small pivots, which is a possibility for matrices that do not have diagonal dominance and
for highly unstructured problems. An inaccurate factorization can also happen even when the pivots are
large. This kind of failure occurs when the preconditioner drops many large fill-ins from the incomplete
factors. Ill-conditioning of the triangular factors also results in the instability of the recurrences involved
in the forward and backward solves when executing the preconditioning (Benzi et al. 1999). The symbol
† means that we aborted the run because of it computed for 20 minutes. A superscript indicates the trial
that the solver converged. It also means that the solver did not converge in the previous experiment(s). The
symbol ‡ denotes that we performed the fourth trial with the preconditioned solver applied to the instance,
and the simulation terminated for exceeding 3,600 seconds. Numbers in dark gray color indicate the run
that required the least amount of work when using the preconditioner. This case is not always the same as
the run that demanded the lowest number of iterations (in light gray color) because, in general, different
orderings result in a preconditioner with a different number of nonzero coefficients (Benzi et al. 1999).
Therefore, numbers in dark gray color are the best results yielded in the instance.

The solver alongside the ILU(1) preconditioner achieved the best results when applied to the original
ordering in three linear systems (atmosmodd, atmosmodj, and atmosmodl) included in our simulations. The
RBFS ordering (see Benzi et al. (1999)) benefited the convergence of the GMRES(50) solver when applied
in conjunction with the ILUT(1e-3,50) preconditioner in one case (instance memchip). In particular, the
preconditioned GMRES(50) solver did not converge when applied to the original ordering of this instance.

The GMRES(50) solver preconditioned with the ILUT(1e-3,50) algorithm applied to the original
matrix achieved the best results to the instances cage14, circuit5M dc, and rajat31. The GMRES(50) solver
preconditioned with the ILUT(1e-6,75) algorithm alongside the BFS ordering achieved the best results when
applied to the instance Freescale1. The GMRES(50) solver preconditioned by the ILUT preconditioner
converged much faster after a permutation of the coefficient matrix (see Table 7) than using the original
ordering of the instance Freescale1. The George-Liu algorithm (George and Liu 1979) did not favor the
reordering algorithms in the simulations performed in this study.

3226

Gonzaga de Oliveira, Carvalho, and Osthoff

Table 7: Execution times (s) of the GMRES(50) solver preconditioned by the (VB)ILU and (VB)ILUT
methods applied to nine nonsymmetric linear systems (continue on Table 8).

I. Preconditioner Orig. RBFS-GL RCM-GL RBFS RCM BFS-GL CM-GL BFS CM KP

w
eb

ba
se

-1
M β 987649 979,737 979,948 979,737 979,948 985,437 999,148 979,712 998,678 979,799

(VB)ILU(T) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

at
m

os
m

od
d

β 21,904 7,772 7,772 7,773 7,773 7,773 7,772 7,773 7,773 7,775
ILUT t(s) 39 31 38 26 33 30 38 26 33 38

(1e-3,50) iter. 41 31 31 34 34 34 31 34 34 34
ILU t(s) 18 24 33 22 29 26 32 22 29 34
(1) iter. 75 71 75 75 75 75 71 75 75 77
VBILU(T) † † † † † † † † † †

at
m

os
m

od
j

β 21,904 7,773 7,772 7,773 7,773 7,772 7,772 7,773 7,773 7,775
ILUT t(s) 40 30 37 26 33 30 38 26 33 38

(1e-3,50) iter. 41 32 35 35 35 32 32 35 35 35
ILU t(s) 18 26 31 22 29 24 31 22 29 34
(1) iter. 75 75 66 75 75 66 66 75 75 75
VBILU(T) † † † † † † † † † †

at
m

os
m

od
l

β 39,204 7,182 7,183 7,183 7,183 7,182 7,183 7,183 7,183 7,185
ILUT t(s) 28 31 39 27 36 30 40 28 36 41

(1e-3,50) iter. 19 19 19 19 19 19 19 19 19 19
ILU t(s) 10 20 28 14 23 19 28 14 22 29
(1) iter. 35 38 37 34 35 37 38 35 34 36
VBILU(T) † † † † † † † † † †

H
am

rl
e3 β 1,442,878 1,446,303 1,442,845 1,442,845 1,442,845 1,446,680 1,446,908 1,442,845 1,445,832 1,445,433

ILUT, ILU ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
VBILU(T) ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡

ca
ge

14

β 676,026 200,002 214,595 198,281 200,311 204,409 203,775 198,281 200,311 207,827

ILUT
t(s) 32 65 84 51 67 64 81 52 68 87
iter. 4 4 4 4 4 4 4 4 4 4

ILU
t(s) 50 82 103 66 86 82 99 69 83 109
iter. 4 4 4 4 4 4 4 4 4 4

VBILU(T) † † † † † † † † † †

m
em

ch
ip

β 1,647,939 2,321,802 2,707,524 2,706,113 2,705,988 2,188,134 1,187,256 2,707,524 2,705,988 2,188,871
ILUT t(s)/iter. 18/5 9/5 28/6 21/6

ILU
t(s) ∗ 30 ∗ 21 ∗ ∗ 41 ∗ 33 ∗
iter. 39 39 40 39

VBILU(T) † † † † † † † † † †

F
ul

lC
hi

p ILUT ∗ ∗ ∗ ∗ ∗ ∗ ∗
‡

∗ ∗
ILU

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
VBILU(T)

Fr
ee

sc
al

e1

β 3,425,041 162,269 162,269 185,194 184,847 162,269 162,269 185,194 184,847 164,757

ILUT
t(s) 303 50 51 /2 33 36 /2 29 /2 69 17 /2 55 53 /2

iter. 565 51 10 47 10 10 50 10 52 11

ILU
t(s) 448 /3 360 /3

†
948 /3

† †
380 /3

†
906 /3

†iter. 782 570 1,605 575 1,509
VBILU(T) † † † † †

Table 9 provides the characteristics (name, size, number of nonzero coefficients (|E|), the best pre-
conditioner employed, the most promising reordering algorithm applied to the instance, and the best time
obtained) of the linear systems composed of real nonsymmetric matrices that were used in this computa-
tional simulation. The “—” symbol in Table 9 indicates the occurrences that could not be solved using the
preconditioned GMRES(50) solver.

3227

Gonzaga de Oliveira, Carvalho, and Osthoff

Table 8: Execution times (s) of the GMRES(50) solver preconditioned by the (VB)ILU and (VB)ILUT
methods applied to two other nonsymmetric linear systems (continued from Table 7).

I. Preconditioner Orig. RBFS-GLRCM-GL RBFS RCM BFS-GLCM-GL BFS CM KP

ci
rc

ui
t5

M
dc

β 2,832,158 165,214 164,338 122,141 165,214 164,338 122,141165,937122,060 122,060

ILUT
t(s) 3 25 ∗ 10 ∗ 23 ∗ 11 ∗ 44
iter. 3 4 2 3 3 3

ILU
t(s) 7 26 ∗ 12 ∗ 30 ∗ 16 ∗ 51
iter. 9 4 4 4 9 9

VBILU(T) † † † † † † † † † †

ra
ja

t3
1

β 4,688,751 7,481 7,482 3,753 3,752 7,482 7,486 3,753 3,752 7,484
ILUT t(s)/iter. 4/6 ∗ 53 /2/3 ∗ 34/3 250 /3/3 ∗ 10/5 ∗ ∗
ILU t(s)/iter. 17/12 123 /2/7 44/4 29/8 22/10 57/13
VBILU(T) † † † † † † † † † †

Table 9: Best orderings and preconditioners used in conjunction with the GMRES solver restarted every
50 steps when applied to 11 linear systems composed of real nonsymmetric matrices. The simulations
evaluated the (VB)ILU and (VB)ILUT preconditioners with several parameters in conjunction with nine
reordering algorithms and the original ordering of the instance.

Instance Size |E| Preconditioner Ordering t(s)
webbase-1M 1,000,005 3,105,536 —
atmosmodd 1,270,432 8,814,880 ILU(1) original 18
atmosmodj 1,270,432 8,814,880 ILU(1) original 18
atmosmodl 1,489,752 10,319,760 ILU(1) original 10
Hamrle3 1,447,360 5,514,242 —
cage14 1,505,785 27,130,349 ILUT(1e-3,50) original 32

memchip 2,707,524 13,343,948 ILUT(1e-3,50) RBFS 9
FullChip 2,987,012 26,621,983 —

Freescale1 3,428,755 17,052,626 ILUT(1e-6,75) BFS 17
circuit5M dc 3,523,317 14,865,409 ILUT(1e-3,50) original 3

rajat31 4,690,002 20,316,253 ILUT(1e-3,50) original 4

7 CONCLUSIONS

Among several reordering algorithms for bandwidth reduction identified in the literature (see Gonzaga
de Oliveira et al. (2018a), Gonzaga de Oliveira et al. (2018b) and references therein), we applied
nine low-cost symmetric permutations to solve these problems. Consistent with the current findings, the
simulations conducted in this study show that the choice of the best combination of reordering algorithm
and preconditioned GMRES solver is highly problem dependent.

Even applying nine orderings and four preconditioners (ILU, VBILU, ILUT, and VBILUT) with different
parameters (see the parameters used in Table 4), the GMRES(50) solver did not converge when applied to
three out of 11 linear systems (instances webbase-1M, Hamrle3, and FullChip). One could investigate better
parameters for the restarted preconditioned GMRES solver (Saad 2016; Saad and Schultz 1986) to achieve
convergence with these instances, but our principal objective here is to study reordering algorithms used as

3228

Gonzaga de Oliveira, Carvalho, and Osthoff

a preprocessing step of the preconditioned iterative solver. A suitable parameter m for the restarted GMRES
solver could be very different for each matrix analyzed. Nevertheless, similarly to several publications in
this field, and since our objective is to evaluate the influence of reordering algorithms on the convergence
of the restarted GMRES solver, after exploratory investigations (see Section 5), we fixed the number of
restart vectors for the GMRES solver for all matrices used.

The George-Liu algorithm (George and Liu 1979) did not favor the reordering algorithms employed
in our simulations. Furthermore, the GMRES(50) solver preconditioned with the VBILU and VBILUT
algorithms did not converge to the 11 nonsymmetric linear systems used in this study.

The simulations show that the number of iterations is not the best metric to analyze the results. For
example, the solver preconditioned by the ILUT method, when applied to the instance rajat31, took 4 and
250 seconds with the original and BFS-GL orderings in six and three iterations, respectively.

Relevant publications in this field (Benzi et al. 1999; Saad 2003; Camata et al. 2012) affirm that level
set reorderings (such as the heuristics included in our simulations) can be useful for preprocessing iterative
methods applied to nonsymmetric linear systems. However, the use of a reordering algorithm in our study
led to the best results only when using two out of 11 linear systems, at least with the parameters evaluated.

It is a common experience that an important metric to be evaluated is the bandwidth of the matrices
before and after the reordering. In this sense, reordering cannot be useful for preprocessing matrices that
have small bandwidth. However, in most of the cases (instances atmosmodd, atmosmodj, atmosmodl,
cage14, rajat31, and circuit5M dc), although the heuristics have reduced the bandwidth of the matrices,
the best results were obtained with the original ordering.

The execution costs of the preconditioned GMRES(m) method may depend more on the structure of the
matrix A, the matrix spectrum, and spatial locality than the bandwidth of the instance. Nevertheless, if the
user realizes that a reordering algorithm can help, a simple BFS procedure or a variant (i.e., a reverse BFS)
should be preferred. The (reverse) breadth-first search ordering yielded, in general, better performance than
did the classical Reverse Cuthill-McKee ordering (George 1971). For example, the GMRES(50) solver,
even preconditioned by four algorithms, did not converge when applied to the instance memchip with the
original ordering. Nevertheless, the solver preconditioned by the ILUT algorithm converged in 9 seconds
to this instance when preprocessing the matrix with the RBFS algorithm. As another example, the solver
preconditioned by the ILUT algorithm took 303 seconds to solve the instance Freescale1 when using the
original ordering, but when preprocessing the matrix by the BFS procedure, the preconditioned solver
converged in 17 seconds.

We intend to investigate the effects of parallel orderings on the convergence of parallel implementations
of the restarted preconditioned GMRES solver using OpenMP, Galois, and Message Passing Interface
systems. We found no study on this subject. The literature on heuristics for bandwidth reduction presents
many works with sequential algorithms and just a small fraction of parallel strategies. A systematic review
of parallel heuristics for bandwidth reduction is another future step in our study. Concerning massively
parallel computing, we plan to evaluate heuristics for bandwidth reduction implemented within the Intel R©

Math Kernel Library running on Intel R© Scalable processors.

REFERENCES
Benzi, M. 2002. “Preconditioning Techniques for Large Linear Systems: A Survey”. Journal of Computational Physics 182(2):418–

477.
Benzi, M., D. B. Szyld, and A. Van Duin. 1999. “Orderings for Incomplete Factorization Preconditioning of Nonsymmetric

Problems”. SIAM Journal on Scientific Computing 20(5):1652–1670.
Camata, J. J., A. L. Rossa, A. M. P. Valli, L. Catabriga, G. F. Carey, and A. L. G. A. Coutinho. 2012. “Reordering and

Incomplete Preconditioning in Serial and Parallel Adaptive Mesh Refinement and Coarsening Flow Solutions”. International
Journal for Numerical Methods in Fluids 69(4):802–823.

Cuthill, E., and J. McKee. 1969. “Reducing the Bandwidth of Sparse Symmetric Matrices”. In Proceedings of the 1969 24th
International Conference, August 26–28, 157–172. New York, NY: ACM.

3229

Gonzaga de Oliveira, Carvalho, and Osthoff

Davis, T. A., and Y. Hu. 2011. “The University of Florida Sparse Matrix Collection”. ACM Transactions on Mathematical
Software 38(1):1–25.

George, A. 1971. Computer Implementation of the Finite Element Method. Ph. D. thesis, Stanford University, Stanford.
George, A., and J. W. Liu. 1981. Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs: Prentice-Hall.
George, A., and J. W. H. Liu. 1979. “An Implementation of a Pseudoperipheral Node Finder”. ACM Transactions on Mathematical

Software 5(3):284–295.
Gonzaga de Oliveira, S. L., J. A. B. Bernardes, and G. O. Chagas. 2018a. “An Evaluation of Low-cost Heuristics for Matrix

Bandwidth and Profile Reductions”. Computational & Applied Mathematics 37(2):1412–1471.
Gonzaga de Oliveira, S. L., J. A. B. Bernardes, and G. O. Chagas. 2018b. “An Evaluation of Reordering Algorithms to

Reduce the Computational Cost of the Incomplete Cholesky-Conjugate Gradient Method”. Computational & Applied
Mathematics 37(3):2965–3004.

Güttel, S., and J. Pestana. 2014. “Some Observations on Weighted GMRES”. Numerical Algorithms 67(4):733–752.
Koohestani, B., and R. Poli. 2011. “A Hyper-heuristic Approach to Evolving Algorithms for Bandwidth Reduction Based

on Genetic Programming”. In Research and Development in Intelligent Systems XXVIII, 93–106. London, UK: Springer
London.

Meijerink, J. A., and H. A. van der Vorst. 1977. “An Iterative Solution Method for Linear Systems of Which the Coefficient
Matrix is a Symmetric M-matrix”. Mathematics of Computation 31:148–162.

Papadimitriou, C. H. 1976. “The NP-completeness of Bandwidth Minimization Problem”. Computing Journal 16(3):177–192.
Saad, Y. 1994. “ILUT: A Dual Threshold Incomplete LU Factorization”. Numerical Linear Algebra with Applications 1(4):387–402.
Saad, Y. 2002. “Finding Exact and Approximate Block Structures for ILU Preconditioning”. SIAM Journal on Scientific

Computing 24(4):1107–1123.
Saad, Y. 2003. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia: SIAM.
Saad, Y. 2016. “ITSOL v.2.0: Iterative Solvers Package”. http://www-users.cs.umn.edu/ saad/software/ITSOL/index.html.
Saad, Y., and M. H. Schultz. 1986. “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear

Systems”. SIAM Journal on Scientific and Statistical Computing 7(3):856–869.
The MathWorks, Inc. 2019. “MATLAB”. http://www.mathworks.com/products/matlab/index.html.

AUTHOR BIOGRAPHIES
SANDERSON L. GONZAGA DE OLIVEIRA is an Assistant Professor of Computer Science at the Universidade Federal de
Lavras, Brazil. He holds a DSc degree in Computer Science from the Universidade Federal Fluminense, Brazil. His research
interests include heuristics for bandwidth and profile reductions, numerical methods, and parallel computing. His email address
is sanderson@ufla.br.

CLÁUDIO CARVALHO holds a M.Sc. degree in Computer Science from the Universidade Federal de Lavras, with a
dissertation in the fields of heuristics for bandwidth and profile of matrices and the restarted preconditioned GMRES solver.
His email address is claudiovicar@gmail.com.

CARLA OSTHOFF is a researcher at National Laboratory for Scientific Computing (LNCC-Brazil). Her main research
areas are: high performance computing, cluster computing, hybrid parallel computing, high performance scientific computing
applications and parallel programming models. Prof. Osthoff received her BSc in Electronics Engineering from PUC/Rio de
Janeiro, a MSc and a PhD in Computer Science from Universidade Federal do Rio de Janeiro, UFRJ, Brazil. She is currently
the coordinator from LNCC High Performance Computing Center. Her email address is osthoff@lncc.br.

3230

http://www-users.cs.umn.edu/~saad/software/ITSOL/index.html
http://www.mathworks.com/products/matlab/index.html
mailto://sanderson@ufla.br
mailto://claudiovicar@gmail.com
mailto://osthoff@lncc.br

	INTRODUCTION
	RELATED WORK
	HEURISTICS FOR BANDWIDTH REDUCTION EVALUATED
	DESCRIPTION OF THE TESTS
	PARAMETERS EVALUATED IN THE RESTARTED PRECONDITIONED GMRES SOLVER
	ILU and VBILU Preconditioners
	ILUT(, p) and VBILUT(, p) Preconditioners

	RESULTS AND ANALYSIS
	CONCLUSIONS

