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ABSTRACT 

Supply chain disruptions can lead to immense financial losses for affected enterprises. Quantitative models 
which analyze the impact of disruptions and the effect of possible mitigation strategies on the overall 

network are needed to support the decision making process of practitioners. Therefore, we present an agent-
based model of a supply network with eleven entities to analyze the benefits of dynamic pricing when 
confronted with material flow disruptions of different durations of two producers in the network. Our results 
show that dynamic pricing can reduce the financial burden of the total supply network but can also lead to 
strong interferences which entities are most affected by the disruption. 

1 INTRODUCTION 

Material flow disruptions pose a serious threat to today’s supply chains as risk exposure and associated risk 

consequences increase, particularly as a result of stronger international cooperation and an emphasis on 

lean management and lean logistics (Stecke and Kumar 2009). With nearly 1,700 incidents recorded in 

2017, the automotive industry, which was the most affected industry that year according to JLT’s 

Automotive Supply Chain Disruption Report 2018, saw a 30% increase from the 1,300 incidents reported 

in 2016. The most common incidents were plant fires, mergers and acquisitions, hurricanes, and labor 

strikes. The severity of the damage is evident from the mean recovery time, which averaged 52 days for 

strikes, 22 days for floods, and 22 days for power outages (JLT 2018).  

Due to the declining depths of added value and therefore increased, partly global, cooperation of 

companies, supply chains can no longer be regarded as serial entities, but rather as networks. Supply 

networks are highly complex and probabilistic systems with interdependent information and material flows 

in which the success of a network member also depends on the performance of their partners. If one or more 

entities suffer from serious production stops, the effects can spread across the system’s connections, 

affecting other entities and multiplying the damage. This effect is known as the ripple effect (Ivanov 2017). 

In order to investigate disruptions occurring in these complex networks, simulation is particularly useful. 

The academic field of supply chain risk management has attracted considerable interest over the last ten 

years due to the severity of the damage caused by disruptions. Intensive research has been undertaken to 

provide empirical research, conceptual theories on risk and risk reduction, and quantitative models for 

assessing risks and their impacts on the entire supply chain. The latter also integrates mitigation strategies 

to test their effectiveness and motivate practitioners to integrate beneficial strategies. Among the most 

popular mitigation strategies are backup and contingent supply as well as information sharing among 

partners. Even though some mitigation strategies have been studied profoundly, there are still a number of 

mitigation strategies that have not been considered (Bugert and Lasch 2018b). 
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For example, pricing strategies in supply chains with more than three entities have not yet been 

investigated in simulation models, except in Bugert and Lasch (2018a), who modeled responsive pricing as 

a reactive strategy against disruptions in a supply chain with two substitutable products and price-sensitive 

demand. This is rather surprising, as flexible pricing today is being facilitated by much higher data 

availability, information systems, more flexible pricing contracts, and e-commerce (Agatz et al. 2008). 

Amazon, for example, is reported to change its prices 2.5 million times a day (Mehta et al. 2018). 

The main objective of this paper is to present an agent-based model of a supply network to analyze price 

elasticity in the presence of a significant material flow disruption and price-sensitive demand. A detailed 

description of the model’s logic and parameters will facilitate implementation for practitioners to 

investigate price elasticity individually. 

The rest of the paper is structured as follows. Section 2 gives a brief overview of quantitative approaches 

which simulate a supply chain with more than three participants and implement mitigation strategies. The 

outlines of the research methodology of this approach and the presentation of the corresponding research 

questions are presented in the third section. Section 4 presents the simulation model and discusses in detail 

the assumptions of the model, the model logic, and the model parameters. In section 5, the results of the 

simulation experiment are illustrated and the presented research questions answered. Section 6 gives a brief 

outlook for future research work. 

2 LITERATURE REVIEW 

Several simulation techniques, such as Petri-Nets (PNs), System Dynamics (SD), Discrete Event 

Simulation (DES), and Agent-based Modeling (ABM), are widely used to model the dynamic impact of 

supply chain disruptions and the effects of mitigation strategies (Wilson 2007; Wang et al. 2014; Aqlan and 

Lam 2016; Bugert and Lasch 2018a). In this section, we examine simulation models that concentrate on the 

dynamic modeling of mitigation strategies in supply chains with at least three entities. A detailed overview 

of supply chain disruption models can be found in Bugert and Lasch (2018a), while the ripple effect is 

further investigated in Dolgui et al. (2018). 

Tuncel and Alpan (2010) examine the impact of mitigation strategies on a four-tier supply chain based 
on three disruption risks, namely quality risks, transport risks, and process risks, by using a PN. Risk 
mitigation is modeled conceptually as a reduced probability of occurrence. Kano et al. (2014) study the 

recovery phase after a disruption in a three-tier supply chain. With their PN, the authors investigate the 
influence on the supply chain’s productivity assuming that a backup supplier is identified after a certain 
period of time. Zhang (2016) tests the effectiveness of information sharing by using a PN in a three-tier 
supply chain with two different products if stock-outs occur. The authors differentiate between five different 
customer behavior patterns during stock-outs. 

Wilson (2007) uses an SD approach to analyze the impact of a ten-day transportation disruption at 

multiple locations on a five-tier supply chain. A traditional supply chain and a supply chain in which 
demand information is shared are compared, taking into account stock levels and service levels. Sidola et 
al. (2011) compare the impact of two transport disruptions on a regular and a visible four-tier supply chain, 
where all demand information is exchanged between supply chain partners. Performance metrics include 
inventory variability and the number of stock-outs of the retailer. Wang et al. (2014) consider a two-stage 
supply chain with one retailer and two independent suppliers, one of which is affected by a disruption. In 

their SD approach, the authors compare the use of a contingent supplier, who only receives orders in the 
event of a disruption, with a standby supplier, who maintains a certain capacity at a regular price and charges 
a higher price in the presence of higher demand. Li et al. (2016) explore the impact of 13 different disruption 
risks on the performance of a chemical supply chain with an SD model and evaluate the impact of increased 
transport capacity. Keilhacker and Minner (2017) examine the impact of five mitigation strategies (product 
substitution, recycling, increased research and development, and a mix of these strategies) to address the 

specific problem of supply shortages of critical earth elements due to export restrictions. Using extensive 
empirical data, an end-to-end supply chain model is developed, consisting of a large number of mining 

3141



Bugert and Lasch 

 

 

companies, raw material processors, manufacturers, and research laboratories. Bugert and Lasch (2018a) 
model a five-tier supply chain with two products in order to examine the consequences of supply chain 
disruptions of a different length and model the effect of responsive pricing as a mitigation strategy. 

The DES model by Schmitt and Singh (2012) considers a three-tier supply chain with two suppliers, a 
central packaging plant, and two distribution centers with two products and predefined mitigation strategies. 
The model is combined with a Monte Carlo simulation to determine an aggregated distribution of the 
frequency and duration of disruptions per site. The authors investigate the impact of different inventory 
levels on the supply chain. Aqlan and Lam (2016) combine Goal Programming with a DES model to find 
the optimal mitigation strategies, inventory levels, and production volumes under budget constraints in a 

supply chain with four suppliers. Mitigation strategies are modeled by an abstract reduction of risk values. 
In the DES model of Ivanov (2017) a four-tier supply chain with realistic transport distances is presented. 
Different recovery and disruptive scenarios are examined to analyze the ripple effect. Ivanov (2018) further 
studies the ripple effect as well as the post-disruption periods with a DES model with four production plants 
and four distribution centers. The author examines the influence of the network design and mitigation 
strategies, such as flexible capacity and backup supply, in a real-life case study with a multitude of 

performance factors. 
Seck et al. (2015) present an ABM approach to study the effect of different risk and recovery scenarios 

on the fill rate of a three-tier supply chain system with two suppliers and two sub-suppliers. The ABM 
model of Ledwoch et al. (2018) compares a random and scale-free network topology with a single original 
equipment manufacturer and 102 supplier nodes with respect to different disruption frequencies and 
durations. The fill rate, backlog, and inventory holding costs are considered as evaluation criteria. A random 

number of producing entities can perform two mitigation strategies, namely contingent rerouting by 
transferring orders to unimpacted suppliers and increasing buffer inventory. 

Flexible sourcing (Kano et al. 2014; Wang et al. 2014; Ivanov 2018, Ledwoch et al. 2018) and 
information sharing (Zhang 2016; Wilson 2007; Sidola et al. 2011) are the dominant mitigation strategies 
modeled in simulation models regarding supply chain disruptions. Other commonly modeled strategies are 
increased transport or production capacities (Ivanov 2018; Li et al. 2016), buffer inventory (Schmitt and 

Singh 2012; Ledwoch et al. 2018), abstract mitigation by lowering the probability of risks (Aqland and Lam 
2016; Tuncel and Alpan 2010), and modeling disruption recovery (Ivanov 2017; Seck et al. 2015). Apart 
from these strategies, only Bugert and Lasch (2018a) as well as Keilhacker and Minner (2017) model 
different strategies like responsive pricing, recycling, etc. 

A supply network can be defined as comprising of actors, resources, and activities and their connections 
relating to transforming inputs into products and services (Harland and Knight 2001). There is no clear 

distinction between the concept of a supply chain and a supply network. We regard a supply network of 
having at least three tiers with more than one entity per tier. According to this definition, only the model of 
Ledwoch et al. (2018) and Keilhacker and Minner (2017) have a network perspective. 

In theoretical contributions within the research area of supply chain risk management, a multitude of 
mitigation strategies are recommended, ranging from abstract strategies such as risk acceptance, risk 
avoidance, risk reduction, and risk transfer to a multitude of specific approaches. Rajesh et al. (2015) 

summarize, for example, 21 risk mitigation strategies, such as silent product rollovers, standardization, 
process postponement, flexible supply contracts, etc. Further publications with a summary of a multitude 
of mitigation strategies can be found in Aqlan and Lam (2015) and Tang (2006). As dynamic, autonomous 
pricing as a measure against supply chain disruptions has not yet been investigated, we propose a model 
that quantifies its usefulness in a supply network. 

3 RESEARCH METHODOLOGY 

Supply networks can be regarded as complex, dynamic systems with a multitude of stochastic influencing 

factors. The higher the complexity of the system, the more suitable simulation becomes compared to 
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analytical methods. We decide to conduct a simulation experiment in order to gain a deeper understanding 

of the system’s behavior under purposefully varying input parameters (Montgomery 2012).  

Several simulation techniques with unique features and applications are available, such as System 

Dynamics, Petri-Nets, Agent-based Modeling, Monte-Carlo Simulation, etc. Agent-based Modeling is of 

particular interest for our scope of research, as it is able to represent self-organizing systems in which self-

directed entities interact and influence each other (Macal and North 2014). In our model, the agents set their 

daily prices individually and interact with their direct partners via information and material flows.  

We have checked the plausibility of our model using extreme condition tests. For this purpose, we set 
the lengths of the disruption to values of 0 and 50, increased demand up to 500 units and reduced it down 
to 100 units, set the target stocks to 20,000 units, and then checked the inventories and costs incurred. 

Pre-experimental planning, the definition of research goals, the choice of factors, levels, and ranges of 

variables, and the selection of response variables are considered to be of importance, as they influence the 

choice of the experimental design (Kleijnen 2005). Our research questions (RQs) are defined as follows: 

 RQ1: What are the effects of disruptions of different lengths on the entire network and on each entity if 

fixed prices are applied? 

 RQ2: How do fluctuating prices perform compared to fixed prices if a disruption occurs? 

 RQ3: How should the degree of price elasticity be chosen to optimize overall supply chain profit when 

demand is price-sensitive? 

 RQ4: How does optimal price elasticity affect each partner’s profit? 

 

The definition of the four RQs has helped us to configure the experiment and define relevant factors 

which pose as input variables for the simulation experiment (Sanchez 2005). The degree of price elasticity 

and the customers’ price-sensitivity are designated as the relevant factors which are varied in the 

experiment. To answer the first RQ, we will also use fixed prices, while the remaining RQs are answered 

by allowing the entities to set their prices individually. 

In simulation studies, optimization is generally achieved by developing a response surface that represents 

the approximate relationships between factors and responses. Since a complete calculation of the responses 

of all possible factors would result in an incalculable computational effort, various designs, such as full and 

fractional factorial design, finer grids, space-filling designs, etc., are used to explore the response surface 

with reasonable effort (Sanchez 2015). We chose a uniform space-filling design where the examined factor-

response signals are evenly distributed in the factorial range. Prices are defined by the agents based on 

historical data about their total costs and their desired yield percentage. The moving average of the total 

costs is apportioned to one product sold, and the profit percentage is added. The degree of price elasticity 

can be adjusted with the order of the moving average, which is determined to be the first factor and referred 

to as the price smoothing parameter. It will vary between 30 and 200 in steps of five and will  be optimized 

by the simulation study. If the order is smaller than 30, the system becomes unstable. A normally distributed 

maximum price is defined for each customer up to which the customer is willing to buy. If the sales price 

exceeds this maximum price, the customer refuses the purchase. The mean of this maximum price is our 

second factor and varies between $60 and $150 in steps of five.  

For a variable price selection, the system requires between 400 and 1000 days until it reaches stability. 

The disruption with different lengths therefore occurs at the two producers on day 1500. To ensure that the 

simulation runs until equilibrium is restored, the simulation runs until day 2500. 

 Performance variables are the total supply chain disruption costs and the disruption costs of each supply 

chain member. To take into account the stochastic properties of the model, each experiment iteration will 

be replicated 50 times, and the median of the replications’ performance serves as the iteration’s result.  
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4 MODEL DESCRIPTION 

4.1 Model Assumptions 

The presented model consists of producing and non-producing entities in a four-tier supply network which 

can be seen in Figure 1. The daily number of potential customers is normally distributed. Each customer is 

assumed to buy a single product if the current retail price is below their maximum price expectation and 

the customer’s waiting time limit has not been exceeded. The customer’s maximum waiting time and 

accepted price level are stochastically modeled by a Gaussian distribution. Unmet retailer demand is 

considered as lost sales and is valued with opportunity costs. Upstream entities, namely the wholesaler, the 

producer, and the producer’s supplier, are penalized with backlog costs for every piece which they are not 

able to dispatch directly. The backlog costs per piece are dependent on their current sales prices.  

Inventory levels of producing entities are differentiated between raw material, work in progress, and 

finished products. The value per piece of raw material is determined by the mean purchase price, while 

finished products are valued by the current sales price. The value of a semi-finished good in the production 

process is considered to be exactly in the middle between the purchase and the sales price. Inventory levels 

of non-producing supply chain members are not differentiated into different categories and are valued with 

the mean of the purchase price and the current sales price. Holding costs per piece are incurred due to capital 

lock-up and warehousing costs. The inventory levels are replenished by a classical order-up-to policy. To 

guarantee a steady flow through the supply chain, it is assumed that the stock levels are checked daily and 

the order points are defined in a way that every entity orders once a day if the system is in balance. Fixed 

and variable order costs are tracked, and orders are immediately passed upstream. 

If inventory is available upstream, the order amount is dispatched once a day and received by the 

downstream partner after a fixed individual transport time has passed. Transportation capacity is regarded 

as unlimited and fixed variable transportation costs per piece, which are paid by the sender, are considered. 

Production processes require a uniformly distributed time span to occur and take place at the producer 

and their supplier. A given production capacity limits the amount of work in progress. Once goods are 

available in the inbound warehouse, production is initiated. Fixed and variable production costs are 

associated with the production. 

The total resulting costs and the amount of sold goods are tracked daily and documented. Each entity 

calculates its own price so that a predetermined profit margin is achieved. The moving average of the total 

costs and goods sold together with the profit margin are used to calculate the current price, which is updated 

daily. The retailer is the only entity which uses a demand forecast for its price calculation to prevent the 

system from reaching an unstable state. The price elasticity can be adjusted by changing the length of the 

time window considered for the moving average. The shorter the time window, the more elastic the prices 

behave. 

A major disruption occurs at both producers’ facilities (P1 and P2) after the system has reached its 
balance. The disruptive event could be, for example, a breakdown of the IT system or the production 
infrastructure due to a blackout or natural causes like floodings, earthquakes, etc.  During the disrupted 

Figure 1: Supply network structure with material flow relations. 
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period it is not possible for the producer to send out goods, to produce, or to order supply. Stock levels are 
frozen but not damaged. Goods which have already been ordered and downstream orders can be received. 
The profit and loss calculation still takes place each day and prices are adjusted. 

4.2 Agent Organization 

An agent is an autonomous, self-directed, individual entity which can function independently from other 

agents (Macal and North 2014). Each supply chain entity is modeled as a specific agent. All four agents 

have individual characteristics as well as common behavior. 

Each agent is able to send out shipments to and receive orders from the downstream partners. The current 
prices are sent out to each downstream entity daily. Every agent calculates its sales price, compares the 
received orders with the inventory, and, if possible, dispatches the total required order amount. If the 
inventory is too low for a complete delivery, the order is partially fulfilled and will be finished once 

inventory is available. Each agent tracks important data such as the inventory levels, the amount of sold 
goods, and the backlogged order amount.  After all satisfiable orders have been dispatched, the current 
inventory level and the expected quantity from the upstream partner are compared with the predefined target 
inventory level to calculate the order amount. Orders will be sent out instantly, and the expected volume 
from the supplier will be increased by the order amount and decreased once the shipment has arrived. The 
associated fixed and variable order costs are tracked. The variable order costs are dependent on the current 

price of the upstream partner. After the order process has been completed, the current service level is 
calculated and stored. The retailer calculates the service level based on the delivered order amount of this 
day and the total desired order amount of this day. All other entities consider the ratio of the instantly 
fulfilled order amount to the total desired order amount of this work day. The last daily process step of each 
entity is to calculate the profit. All relevant costs such as order costs, production costs, holding costs, and 
backlog costs are subtracted from the current revenue, and the cost and profit data are stored. 

The producer and their suppliers are the only entities with a production process. The producer’s supplier 
is placed at the upstream end of the modeled supply chain. Therefore, their supplier issues a fixed price for 
raw material, and the ordered material appears in the inbound warehouse of the producer’s supplier after a 
predefined delivery time. The production process of these two entities is initiated once inbound material is 
available and starts after the order process has finished.  

4.3 Model Parameters 

The number of daily customers for R1, R2, and R3 which desire to buy a single product is modeled by a 

normal distribution with a mean of 250 pieces per day and standard deviation of 10 pieces per day for each 

entity. Customers are willing to wait a maximum of five days for their product if the retailer’s inventory is 

empty. Holding costs, which include the physical warehousing costs and capital lockup costs, are set at  

18% of a product’s value per year, which results in 0.05% per day if a 360-day commercial year is 

considered. The backlog costs per day of the entities is determined to be 20% of each entity’s current price. 

Table 1: Model parameters. 
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Minimum production time [days] 10 10 11 4 4 - - - - - 

Maximum production time [days] 11 11 12 6 6 - - - - - 

Production setup costs [$] 40 50 60 50 50 - - - - - 

Variable production cost [$/piece] 2.75 2.5 2.2 5 5 - - - - - 

Fixed order cost [$] 90 90 90 180 180 120 120 90 90 90 

Target inventory [pieces] 11,000 11,000 12,000 3,000 4,000 2,000 2,000 1,500 1,500 1,500 

Delivery time [days] 6 6 6 4 4 2 2 - - - 
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The variable ordering costs correspond with the current forwarded price of the upstream entity. The price  

of the raw material at the upstream end of the supply chain is considered to be $9 per piece for S1, $11 per  

piece for S2, and $12 per piece for S3. The maximum production capacity of the supplier and the producer  

is set at 20,000 pieces. Variable transport costs of $0.5 per piece are incurred for shipments. The yield per 

piece was set at 0.0% to simplify the quantification of the pure disruption costs. Remaining parameters can 

be found in Table 1. 

5 DISCUSSION OF RESULTS 

5.1 Disruption Costs with Fixed Prices 

To analyze the usefulness of dynamic pricing with respect to supply network disruptions and to answer our 

first RQ, we have to quantify the pure disruption costs if fixed prices are assumed. In a balanced system’s 
state, variable prices fluctuate to a small degree. The average prices over a time span of 500 days have been 
calculated with 25 simulation runs in order to set the fixed prices in a way that each entity’s net profit stays 
on average at a level of $0. The prices of each entity are presented in Table 2.  

Table 2: Value of fixed prices. 
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Fixed prices per piece [$] 12.48 14.26 14.98 48.95 49.02 50.62 50.14 51.11 50.63 50.63 

 
 The length of the two disruptions present at P1 and P2 varies from 1 to 20 days. The results of the 50 
replications for each day can be seen in the box plot diagram in Figure 2. As expected, the total disruption  

Figure 2: Box plot diagram of the total supply network disruption costs with respect to the length of the 
disruptions. 
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Table 3: Experienced disruption costs [$] by the network entities in relation to the length [days] of the 
disruptions. 

costs, i.e. the sum of the disruption costs of all network entities, increase with the duration of the disruption. 
For a short-term disruption period of up to six days, the median of the total costs increases slowly: $80,823  

(1 day), $189,480 (2 days), $369,582 (3 days), $649,688 (4 days), $1,061,379 (5 days), and $1,787,759 (6 
days). Buffer and in-transit inventory can compensate for the production impairment so that the subsequent 
entities do not experience any stock outs and the end customer is not affected. If the supply network is 
interrupted for longer than 6 days and up to 16 days, the total costs of the supply network increase sharply  
and cause losses with a median of almost $18 million. The dispersion of total costs in the 50 replications 
increases in general. The buffer inventory can no longer compensate for the production impairment of P1, 

resulting stock outs for multiple entities in the network. For a disruption period of more than 16 days, the 
costs still increase but with less velocity. One reason for the slower increase can be found in the applied 
order policy. As soon as no inventory is available and the expected order amount rises to the complete 
order-up-to value, the entity stops ordering more material. Therefore, the backlog costs per day of the 
upstream partner remains at a constant level. Once the material is available upstream again, the backlog can 
be replenished more quickly to reach the condition of a stable system.  

The disruption costs of each entity are presented in Table 3. With a disruption period of up to 6 days, P1, 
P2, S1, S2, and S3 are affected, resulting in high backlog costs and holding costs. The in transit inventory 
that is already heading to W1 and W2 is not affected by the disruption, so that the wholesalers’ buffer 
inventories can still compensate for a six days disruption of P1, while the upstream suppliers S1, S2, and 
S3 are affected. Minor disruptions up to four days only increase the fluctuations of the incoming purchase 
orders for S1, S2, and S3 and thus the holding costs. Further analysis has shown that as soon as the 

disruption of P1 and P2 lasts longer than four days, their suppliers suffer from higher holding costs, but 

D
is

ru
p

ti
o

n
 

L
en

g
th

 

R
1

 

R
2

 

R
3

 

W
1

 

W
2

 

P
1

 

P
2

 

S
1

 

S
2

 

S
3

 

1           39,325 30,225 4,764 5,215 3,187 

2           100,943 60,317 12,091 13,986 7,055 

3           218,863 104,107 23,067 25,466 14,502 

4           388,141 167,191 41,413 42,447 20,895 

5           630,044 258,056 67,691 73,144 25,275 

6           1,070,027 385,986 115,045 129,498 65,368 

7       5,858 10,612 1,639,881 556,023 199,144 194,354 77,753 

8       18,961 35,261 2,395,874 742,056 237,980 243,842 111,678 

9       49,842 71,810 3,256,421 949,821 274,604 304,754 152,010 

10       95,951 134,325 4,543,611 1,148,090 318,839 352,346 187,608 

11       165,264 233,032 5,702,629 1,334,482 341,568 338,509 201,874 

12       287,191 366,461 6,894,963 1,530,094 362,787 381,829 217,242 

13       487,758 539,444 8,028,436 1,851,688 409,462 416,664 243,588 

14       830,509 746,251 9,332,083 1,957,821 432,941 457,444 276,108 

15       1,252,584 947,175 10,295,689 2,184,024 487,924 516,911 271,631 

16 -2,031 -783 -855 1,700,434 1,238,442 11,643,362 2,281,495 497,046 480,509 278,045 

17 9,865 11,392 9,930 1,746,723 1,383,057 11,868,977 2,243,312 482,756 512,976 279,350 

18 23,895 24,286 22,790 1,863,052 1,406,453 11,794,960 2,364,153 472,351 540,856 307,627 

19 36,284 36,792 35,721 1,852,302 1,453,479 11,663,289 2,548,034 499,887 495,009 315,129 

20 49,189 49,354 48,200 1,898,342 1,607,862 11,853,249 2,571,492 504,224 527,268 300,704 
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also from backlog costs due to the increased order backlogs of P1 and P2 after the disruption has occurred. 
S3 is less affected because of its higher target inventory, although its maximum production time is higher 
compared to the other two suppliers S1 and S2. A seven-day disruption affects W1 and W2, who suffer 

from a one-day stock out, since the in transit inventory is depleted and the buffer inventory is also used up. 
The disruption costs of W1 and W2 increase the longer the disruption lasts. A disruption period of 10 days 
and more leads to two multi-period stock outs for W1 and W2 with a short intermediate interval for order 
fulfillment. A 14-day disruption leads to multiple stock-out situations with a prolonged recovery time and 
high backlog costs. If the disruption of P1 and P2 is in effect for 16-day the retailer can even profit from 
the disruption by having less inventory but avoiding stock outs. Longer disruption periods lead to increasing 

losses of all retailers R1, R2, and R3. In this model, the ripple effect can clearly be seen as the disruption 
propagates through the network. Total disruption costs increase exponentially before the entire network is 
affected and a saturation phase is reached in which the costs rise more slowly. The effects of material flow 
disruptions spread backwards more quickly as the upstream entities immediately suffer from higher holding 
costs in the event of missing purchase orders. Buffer and transit inventory are effective ways to delay the 
consequences of a disruption, but also mitigate the negative effects if holding costs are not too high. P1, 

which has a target inventory of 1,000 unit less than P2, suffers far more severe consequences than P2. A 
20-day disruption leads to nearly $12 million disruption costs for P1, while P2 suffers only about $2.5 
million.  

5.2 Disruption Costs with Dynamic Prices 

This section summarizes the impact of the entities’ dynamic price changes on the total disruption costs of 

the network and on the individual disruption costs to answer RQ2 and RQ3. Table 4 presents the percentage 

of total saved disruption costs (SDC) with respect to the median of the disruption costs in case of fixed 

prices. The simulation study determined the optimal price elasticity (E*) in relation to the average price 

expectancy of the customers (PE) for disruptions from 8 to 20 days in steps of two.  

Table 4: Saved disruption costs (SDC) [%] with respect to the price expectancy (PE) [$] of the customers 
and disruption duration [days]. 

  8 10 12 14 16 18 20 

PE E* SDC E* SDC E* SDC E* SCD E* SDC E* SDC E* SDC 

60 200 24.73 200 28.18 200 29.83 200 14.00 200 31.08 200 11.76 200 10.68 

65 200 40.56 200 19.54 200 30.16 200 26.03 200 40.36 200 44.33 200 44.81 

70 200 78.75 200 42.31 200 14.25 200 28.39 200 22.77 200 48.02 200 13.85 

75 190 96.14 200 49.87 200 19.41 200 34.78 200 11.59 200 11.04 200 8.39 

80 170 99.25 200 76.65 200 32.13 200 42.23 200 2.45 200 19.57 200 62.44 

85 145 100.87 200 93.02 200 51.14 200 51.02 200 4.16 200 24.92 200 46.06 

90 110 100.73 180 96,95 200 73.16 200 66.57 200 9.09 200 27.19 200 11.42 

95 95 101.22 165 99.43 200 90.70 200 81.14 200 13.57 200 29.93 200 35.77 

100 80 101.37 150 100.58 195 99.87 200 94.87 200 19.07 200 37.32 200 24.03 

105 75 102.27 135 100.53 180 99.55 195 98.68 200 25.98 200 45.41 200 27.98 

110 65 102.56 120 100.01 170 100.63 185 99.32 200 34.46 200 56.49 200 36.98 

115 60 102.95 110 101.32 160 100.87 170 99.58 200 48.14 200 70.47 200 47.24 

120 60 103.33 100 100.87 150 101.27 165 100.68 200 62.87 200 85.46 200 60.27 

125 55 103.50 95 101.23 140 101.98 155 101.62 200 77.70 200 96.56 200 75.05 

130 50 103.38 90 101.95 135 101.59 145 100.98 200 90.97 200 97.86 200 89.13 

135 50 104.61 85 101.86 125 102.01 135 100.27 200 96.32 190 100.82 200 96.08 

140 45 104.01 80 101.24 120 101.51 130 101.84 195 98.98 185 101.19 200 99.22 

145 45 102.14 75 102.05 115 101.93 125 101.09 190 99.86 175 100.95 190 99.91 

150 45 103.66 75 101.87 110 101.44 120 102.50 185 98.95 170 101.74 185 101.98 
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Table 5: Comparison of the individual disruption costs [$] of the entities in the case of a fixed-price scenario 
and dynamic pricing with a price expectancy (PE) of $60, $100, and $140 with respect to the length of the 
disruption (DL). 

 

One understandable result is that the higher the PE, the higher the SDC. The SDC can even result in over 

100%, which indicates a profit generated for the total supply network. The results show that, the lower PE  

is, the higher E* must be chosen to achieve the best possible SDC. High values of E* are reflected in a low 

price elasticity. Since 200 is the upper edge of our tested optimized parameter, it is conceivable that better 

results can be achieved by selecting an even lower elasticity. Nevertheless, an E* of 200 still results in 

better SDC than the previously calculated fixed price scenario. For higher PEs, the optimal value of the 

price elasticity E* decreases, indicating higher price flexibility. Higher prices are chosen by the entities and 

not penalized by the customers. An interesting result is that the longer the disruption lasts, the less flexible 

prices should be chosen by the entities to achieve a high SDC. In this model, high price elasticity in the 

event of short-term disruptions is favorable, but depends strongly on the price expectations of the customers. 

Overall dynamic price changes can significantly affect the financial impact of the disruption on the total 

supply network.  

To answer RQ4, Table 5 presents the individual disruption costs suffered by each entity of the network 

with a fixed price strategy and with the optimal price elasticity regarding the mean price expectations of 

E* PE D
L

 

R1 R2 R3 W1 W2 P1 P2 S1 S2 S3 

- - 8       18,961 35,261 2,395,874 742,056 237,980 243,842 111,678 

200 60 8 557,145 536,221 530,440 296,887 574,109 95,764 82,853 7,612 7,965 5,482 

80 100 8 5,104 5,033 4,647 3,255 2,482 -35,110 -4,915 -2,180 -1,992 -1,763 

45 140 8 4,821 1,182 3,555 5,617 1,177 -107,661 -16,560 -7,632 -7,622 -4,935 

- - 10       95,951 134,325 4,543,611 1,148,090 318,839 352,346 187,608 

200 60 10 894,394 869,980 867,216 596,189 1,170,807 180,258 146,042 13,900 13,761 12,593 

150 100 10 104,221 95,305 89,616 11,234 7,054 -3,225 3,304 -1,117 -712 -1,009 

80 140 10 28,126 33,370 23,626 11,696 16,023 -171,701 -13,131 -12,670 -11,225 -5,019 

- - 12       287,191 366,461 6,894,963 1,530,094 362,787 381,927 217,242 

200 60 12 1,135,561 1,111,125 1,124,436 941,144 1,864,166 358,017 240,091 26,008 25,816 21,009 

195 100 12 132,107 116,054 98,233 5,340 4,177 -43,117 -1,478 -5,572 -4,188 -3,771 

120 140 12 -8,681 -2,663 -16,900 1,230 1,860 -125,405 -3,069 -10,326 -7,498 -6,372 

- - 14       830,509 746,251 9,332,083 1,957,821 432,941 457,444 276,108 

200 60 14 2,779,954 2,631,452 2,254,322 733,564 1,526,863 907,232 334,252 41,215 42,038 14,171 

200 100 14 308,779 216,244 223,811 66,351 64,146 -67,978 2,447 -3,172 -3,210 -1,144 

130 140 14 9,256 11,877 -3,446 19,201 7,142 -130,244 -16,245 -9,112 -13,371 -1,488 

- - 16 -2,031 -783 -855 1,700,434 1,238,442 11,643,362 2,281,495 497,046 480,509 278,045 

200 60 16 3,464,224 2,756,522 2,733,275 587,127 1,442,141 1,547,191 327,228 49,131 52,229 16,425 

200 100 16 3,137,264 3,384,475 3,213,147 1,595,445 2,999,667 192,340 86,666 -21,133 -19,205 -18,710 

195 140 16 186,669 144,927 94,160 52,237 34,114 -124,189 -12,234 -9,027 -7,170 -6,886 

- - 18 23,895 24,286 22,790 1,863,052 1,406,453 11,794,960 2,364,153 472,351 540,856 307,627 

200 60 18 2,521,810 1,911,553 1,761,661 2,015,688 4,922,141 2,511,203 713,628 91,423 96,699 74,442 

200 100 18 2,811,022 2,862,612 2,846,011 1,318,561 2,297,081 -104,141 78,224 -20,017 -17,122 -17,076 

185 140 18 90,221 97,406 84,856 -14,133 -29,297 -261,440 -31,618 -11,351 -6,841 -7,880 

- - 20 49,189 49,354 48,200 1,898,342 1,607,862 11,853,249 2,571,492 504,224 527,268 300,704 

200 60 20 4,752,442 3,822,163 3,678,704 752,462 2,266,351 2,633,208 375,299 23,340 71,433 17,227 

200 100 20 3,310,459 3,416,553 3,457,112 1,685,113 3,243,156 -62,449 42,160 -23,020 -25,547 -24,486 

200 140 20 252,365 198,332 176,207 -9,441 -32,462 -345,220 -55,166 -11,355 -17,010 -8,499 
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$60, $100, and $140. If the price expectancy is $60, the losses are mainly experienced by R1, R2, and R3, 

and also by W1 and W2. The producers P1 and P2  and the three suppliers can substantially reduce their 

suffered disruption costs compared with the application of fixed prices. If the price expectancy of the 

customers is $100, then the disruption costs depend on the length of the disruption. For short-term 

disruptions of 8 days, R1, R2, and R3 have to bear relatively small levels of disruption costs with $5,104 

for R1, $5,033 for R2, and $4,647 for R3. For disruption lengths of 16 and 18 days, R2 and R3 suffer even 

a little bit more than in the case of a price expectancy of $60. In this model, it can be seen that, in the case 

of a fixed-price scenario, the disruption costs correspond strongly to the location of the disruption. The 

longer the disruption lasts, the more the disruption costs spread across the network, but they are at the 

highest at the direct location of disruption. Dynamic prices alleviate the upstream partners and the directly 

affected entities P1 and P2, but hurt the downstream partners. These results are interesting, since the total 

supply network costs can be sharply reduced, but the share of the experienced disruption costs can change 

extensively. If the network entities are willing to cooperate with each other, losses could be distributed 

equally among the network partners and the total network could profit from dynamic pricing between 2.45% 

and 104.61%.  

6 CONCLUSION AND FUTURE RESEARCH 

This approach has presented an agent-based model to quantify the financial consequences of material flow 

disruptions in a supply network and to analyze if dynamic price setting can reduce the negative monetary 
effects. By varying the disruption length, it could be seen how the disruption costs increase rapidly and how 
the number of impacted entities increases the longer the disruptions are in full effect. Dynamic price 
changes can increase the saved disruption costs up to more than 100% depending on the maximum price 
the customers are willing to pay and the height of the chosen price elasticity. The longer the disruptions 
last, the lower the price elasticity which should be chosen. In this model, dynamic prices lead to better 

results than fixed prices. With dynamic prices, the burden of disruption costs can shift to downstream 
entities while the upstream entities are alleviated.  

Future research could consist of finding out how the network behaves when prices are selected 
cooperatively using cost information from the entire supply network. It could also be investigated to what 
extent different customer profiles with different price sensitivities influence the results. Real data from 
supply networks could be useful for further investigation. We would like to motivate researchers and 

practitioners to adapt the model to an individual network and incorporate further mitigation strategies into 
quantitative models. 
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