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ABSTRACT 

The design, construction, and operation of civil infrastructure that is more environmentally, socially, and 
economically responsible over its life cycle from extraction of raw materials to end of life is increasingly 
desirable worldwide. This paper presents a probabilistic framework for the design of civil infrastructure 
that achieves targeted improvements in quantitative sustainability indicators. The framework consists of 
two models: (i) probabilistic service life prediction models for determining the time to repair, and (ii) 
probabilistic life cycle assessment (LCA) models for measuring the impact of a repair. Specifically, this 
paper introduces a new mathematical approach, SIPmath, to simplify this design framework and 
potentially accelerate adoption by civil infrastructure designers. A reinforced concrete bridge repair in 
Norway is used as a case study to demonstrate SIPmath implementation. The case study shows that 
SIPmath allows designers to engage in sustainable design using probabilistic methods using the native, 
user-friendly Microsoft Excel® interface. 

1 INTRODUCTION 

The design, construction, and operation of civil infrastructure that is more environmentally, socially, and 
economically responsible over its full life cycle from extraction of raw materials to end of life is 
increasingly desirable worldwide. (Lepech 2018) These three design goals of improved environmental, 
social, and economic performance are commonly known as the “triple bottom line” of sustainability. As a 
critical set of systems that support quality of life and enable global development, while consuming vast 
amounts of material resources and energy, it is essential that civil infrastructure is designed according to 
these broad, long term design goals for the benefit of our planet and the current and future generations of 
humans, animals, and plants that will call it home. 
 While the goals of such sustainable design are well intended, the creation and execution of civil 
infrastructure designs that are socially, environmentally, and economically sustainable is not functionally 
possible for current practitioners. This inability is due to a lack of quantitative targets for a “sustainable” 
design, quantitative metrics for measurement and comparison of designs, and a probabilistic-based design 
approach that is translatable to engineering practices that manage uncertainty in infrastructure design, 
construction, and use. (Lepech 2018) Further, current approaches do not allow for simple, straightforward 
comparisons between systemic and aleatory uncertainty in design, and the costs associated with reducing 
such uncertainties. This is in contrast to probabilistic structural design approaches that are the hallmark of 
modern civil engineering design around the world (e.g., AISC-LRFD in the US, ACI-318 in the US, 
Eurocode 2 in Europe). 

Along these lines, the design of sustainable rehabilitation of civil infrastructure proposed in this paper 
is based on the probabilistic framework for service life design proposed by the 2006 fib Model Code for 
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Service Life Design of Reinforced Concrete (fib 2006) and embodied in the fib 2010 Model Code (fib 
2010). In Section 2, this paper provides an overview of the framework for probabilistic design of 
sustainable reinforced concrete infrastructure repairs. Section 3 presents the probabilistic design 
formulation and the novel application of SIPmath in native Excel® to enable simple, straightforward 
design comparisons by practitioners. Section 4 discusses the results of a simplified case study of a 
reinforced concrete bridge exposed to spray from roadway deicing salts.  Section 5 provides conclusions. 

2 FRAMEWORK FOR PROBABILISTIC DESIGN OF CIVIL INFRASTRUCTURE 

Probabilistic design of sustainable civil infrastructure rehabilitations begins with measurement of the 
cumulative environmental, social, or economic impacts of a facility’s repair and rehabilitation activities 
from initial construction up to the time of functional obsolescence. This is shown in Figure 1. (Lepech et 
al. 2013) Cumulative impact can be expressed as midpoint environmental indicators such as global 
warming potential (kg CO2-equivalents), polluted water (L), solid waste (kg), or primary energy (MJ). 

 
Figure 1: Probabilistic envelope of cumulative impacts of repairs and rehabilitations of civil infrastructure 
from initial construction (t0) to functional obsolescence (tfo) (Lepech et al. 2013). 

As seen in Figure 1, the time at which any repair, j, is performed (trj) is probabilistically characterized 
based on reaching a service life limit state corresponding to an unacceptable reduction in materials quality 
or structural performance. These distributions are shown as horizontal Gaussian distributions for 
illustration. The probabilistic time between repairs (trj+1 – trj) is based on the chosen repair strategy, the 
quality of the repair work, the variable nature of exposure and load conditions, the limit state, etc. 
 The cumulative impact of the repair timeline is the sum of all impacts associated with a facility’s 
repair and rehabilitation from initial construction up to the time of functional obsolescence. Metrics of 
environmental impact are based on globally accepted environmental impact assessment midpoint 
indicator protocols (e.g., TRACI in the US, ReCiPe in Europe), which can include climate change, 
acidification, land use, energy, and toxicity indicators. As also seen in Figure 1, the impact associated 
with each repair or rehabilitation action is probabilistic in nature (shown as vertical Gaussian distributions 
for illustration). The impact associated with a given repair action, irj, can vary due to uncertainty in the 
repair construction processes used, uncertainty in the supply chain of repair materials, uncertainty in the 
effects on infrastructure users (e.g., how many automobiles are disrupted by the repair construction), etc.   
 Combining the probabilistic models for both repair timeline (trj) and amount of impact (irj), a 
probabilistic envelope can be constructed for the entire infrastructure service life from the time of initial 
construction (t0) to the time of functional obsolescence (tfo). Based on the boundaries of this larger 
envelope (shown as dashes in Figure 1), an aggregated probabilistic envelope of cumulative 
environmental, social, or economic impact at any time, t, for the repaired structure can be calculated.  
 Sustainable design targets are drawn from policy goals, which are derived from scientific, political, 
technological, or economic assessments of “sustainable development”. For example, design targets could 
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be adopted from the Intergovernmental Panel on Climate Change’s proposed reductions in global 
greenhouse gas emissions. (IPCC 2013) A broader set of sustainable design targets are discussed in 
(Bakshi et al. 2015). With the goal of reducing impacts over time, an alternative (i.e., more sustainable) 
repair and rehabilitation scenario can be proposed.   
 The potential impact reduction using an alternative, more sustainable repair timeline versus a status 
quo repair timeline can be estimated probabilistically at any time in the future. For instance, to achieve a 
safe, stabilized atmospheric carbon-equivalent concentration of 500ppm to 550ppm, a 30% to 60% 
reduction in annual carbon-equivalent emissions is needed by Year 2050 (Year 2000 baseline) according 
to the UN Intergovernmental Panel on Climate Change. (IPCC 2013) Such reduction targets allow 
engineers to rationally design and probabilistically evaluate (through a probability of failure, Pf(t)), a 
cadre of infrastructure repair and rehabilitation timelines and technologies that meet proposed IPCC. 
Using this framework, engineers are incentivized to meet reduction targets at lowest economic cost, 
provided that the level of confidence that sustainability targets are met remains constant and acceptable. 
Tradeoffs between confidence levels (probabilities of failure) and cost can also be explicitly considered. 

3 PROBABILISTIC SUSTAINABLE DESIGN FORMULATION IN EXCEL® USING 
SIPMATH 

As seen from the orthogonal distributions in Figure 1, probabilistic sustainable design requires two 
distinct modeling components; (i) time-dependent modeling of material and structural deterioration, and 
(ii) cumulative environmental, social, and economic impacts of repair and rehabilitation activities. For a 
reinforced concrete structure undergoing a series of repairs over its lifetime, both of these components are 
described in the following sections. Also seen in Figure 1 is the interconnected nature of these two 
models, such that the design and completion of an individual repair activity heavily influences both the 
time until the next repair is needed along with the impacts associated with carrying out the repair activity. 

3.1 Service Life Model 

Service life models are used to quantify the performance of the structure over time. For demonstration 
purposes, a simple, probabilistic service life model for a reinforced concrete structure is adopted from the 
2006 fib Model Code for Service Life Design of Reinforced Concrete. (fib 2006) This simple chloride-
induced corrosion initiation (i.e., steel depassivation) model is convenient for demonstration of the 
SIPmath approach to performing sustainable design of civil infrastructure in Excel®. Based on Fick’s 
Second Law, all that is needed are probabilistic quantifications of the corrosion initiation limit state and a 
model of chloride-induced reinforcement corrosion progress as a function of time. 

As proposed in the 2006 fib Model Code for Service Life Design of Reinforced Concrete (fib 2006), 
the corrosion initiation limit state is defined by the chloride ion concentration at the location of the 
reinforcing steel reaching a critical concentration, as seen in (1).  

    𝑪𝒄𝒓𝒊𝒕 = 𝑪'(𝒙, 𝒕) = (𝒅, 𝒕)-  (1)  

where, Ccrit is the critical chloride concentration in weight % of cement, C(x,t) the chloride concentration 
in weight % of cement at time, t, at depth, x, from the concrete surface in meters, and d the concrete cover 
in meters. 

 The time dependent concentration of chlorides at depth, x, from the concrete surface is provided 
as (2) through (6).  

    𝑪((𝒙, 𝒕) = (𝒅, 𝒕)) = 𝑪𝟎 + '𝑪𝒔,𝚫𝒙 − 𝑪𝟎-𝝀  (2) 

     

    𝝀 = 4𝟏 − 𝒆𝒓𝒇8 𝒅9𝚫𝒙
𝟐;𝑫𝒂𝒑𝒑,𝑪𝒕

?@  (3) 
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    𝑫𝒂𝒑𝒑,𝑪 = 𝒌𝒆𝑫𝑹𝑪𝑴,𝟎𝒌𝒕𝑨(𝒕)  (4) 

 

    𝒌𝒆 = 𝒆𝒙𝒑4𝒃𝒆 8
𝟏

𝑻𝒓𝒆𝒇
− 𝟏

𝑻𝒓𝒆𝒂𝒍
?@  (5) 

 

    𝑨(𝒕) = H𝒕𝟎
𝒕
I
𝒂
  (6) 

where, C0 is the initial chloride content of the concrete in weight % of cement, Cs,Dx the chloride 
content at a depth Dx and a certain point in time in weight % of cement, erf the error function, Dx the 
depth of concrete convection zone in meters, Dapp,C the apparent chloride diffusion coefficient of the 
concrete in m2/year, DRMC,0 the chloride migration coefficient in m2/year, ke a dimensionless 
environmental transfer variable, be a regression variable in degrees K, Tref a standard temperature in K, 
Treal the temperature of the reinforced concrete element or ambient air temperature in K, A(t) a 
dimensionless aging variable expressed as a function of time, t, t0 a reference time in years, and a a 
dimensionless aging exponent. The values or distributions in (2) through (6) are provided in Table 1. 
 

Table 1: Service life modeling variables, distributions, and characteristic parameters. 
 

Variable Name Distribution Characteristic Parameters Reference 
Ccrit Beta a = 5.31, b = 18.58, min = 0.2, max = 2.0 (fib 2006) 
Cs,Dx Deterministic 2.325 (Vu 2000) 
d Normal  µ = Design Value, s = 10mm (fib 2006) 
Dx Beta  a = 1.9, b = 8.77, min = 0.06, max = 0.011 (fib 2006) 
DRCM,0 Normal  µ = Design Value, s = 0.2µ (fib 2006) 
be Normal µ = 4800, s = 700 (fib 2006) 
Tref Deterministic 293.0 (fib 2006) 
Treal Normal µ = Design Value, s = Design Value (fib 2006) 
kt Deterministic 1.0 (fib 2006) 
t0 Deterministic 0.767 (fib 2006) 
a Beta µ = Design Value, s = Design Value (fib 2006) 

 
In order to compute the time to reach the critical chloride concentration at the reinforcement, the error 

function is modelled using an approximation by (Abramowitz and Stegun 1983), shown in (7) and (8).  
 

    𝒆𝒓𝒇(𝒙) = 𝟏 − '∑ '𝒂𝒊𝝃𝒊-𝟓
𝒊M𝟏 -𝒆9𝒙𝟐  (7)  

    𝝃 = 𝟏
𝟏N𝒑𝒙

  (8)  

 
where, p is equal to 0.3275911, a1 is equal to 0.254829592, a2 is equal to −0.284496736, a3 is equal to 
1.421413741, a4 is equal to −1.453152027, and a5 is equal to 1.061405429. (Abramowitz and Stegun 
1983) report this numerical approximate to have a maximum error of 1.5 x 10-7 for positive values of x, 
which is the case in this circumstance since the values within the error function in (3) are limited to 
positive values between zero and one. 

3.2 Environmental, Social, and Economic Impact Model 

Life cycle assessment models are used to quantify the impacts (social, environmental, economic) of any 
system, product, process, or operation. LCAs are governed by ISO 14040 series standards. (ISO 2006a 
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and ISO 2006b) Typically, all parts of a defined system are included within the LCA, including all life 
cycle phases (i.e., cradle to grave), and all inputs and output crossing the modeling boundary. 

Following the ISO standards, after determining the scope and boundaries of the LCA, a life cycle 
inventory (LCI) is constructed to quantify all of the processes, materials, and flows that take place within 
and across the boundaries of the system. This life cycle inventory is then aggregated into a set of life 
cycle impact indicators through life cycle impact assessment (LCIA). In this project, these indicators 
include metrics such as global warming potential (CO2-equivalents), acidification potential (H+mol-
equivalents), etc.  As necessary, weighting among the various environmental indicators can be done based 
on predetermined weighting schemes among the disparate environmental impact indicators. 

For the purposes of sustainable design of civil infrastructure a list of required inputs into the repair 
and rehabilitation actions is needed. Many of these inputs come from the construction estimation 
(bidding) documents and quantity estimates. Other information is taken from manufacturer’s information 
(i.e., MSDS sheets), industry standards (i.e., EPA AP42), or discussions with material suppliers and 
contractors. Where possible, information on the type of distribution and parameters (e.g., normal 
distribution, mean, and standard distribution) associated with each of these values is requested.   

3.3 Probabilistic Design of Repair and Rehabilitations Using SIPmath 

As mentioned previously, current sustainable design approaches for civil infrastructure do not allow for 
simple, straightforward comparisons that consider systemic and aleatory uncertainty in engineering 
design, and the costs associated with reducing such uncertainties. In practice, most sustainable design of 
buildings and infrastructure has been reduced to a rubric of points, in which buildings are awarded silver, 
gold, or platinum status. Such approaches have effectively defined “sustainability” by the criteria used to 
recognize it (e.g., a gold rating or insignia). (Ehrenfeld 2007). As discussed by (Comello et al. 2012), 
these criteria are not formal logic definitions. Thus, the problem is the fundamental ex post facto nature of 
sustainability (i.e., today’s developments can only be judged as sustainable from far in the future). Having 
sustainability framed in such long time frames, there is little incentive for designers to focus on 
sustainable practices due to, in part, the high levels of uncertainty regarding capital outlay and returns on 
investment. Thus, the introduction of a simple, straightforward approach to sustainable design of civil 
infrastructure that explicitly considers uncertainty is a central component of this paper. 
 The requirements of a simple, straightforward approach are met in native Excel® by using SIPmath. 
SIPmath probabilistic modeling performs computations using Stochastic Information Packets (SIPs), in 
which uncertainty is modeled in Excel® as an array of possible outcomes. (Savage and Thibault 2015) 
Using SIPmath, uncertainties are represented as myriad possible outcomes within an array (SIPs). Due to 
their additive nature, SIPs may be operated on element by element with any algebraic operator through 
vectorization. Thus, if x and y are random variables from a joint distribution where SIP(x) and SIP(y) are 
arrays of realizations that preserve statistical dependence, the addition of SIPs is performed element by 
element over the arrays, preserving the additive relationship, shown in (9). 

    𝑺𝑰𝑷(𝒙 + 𝒚) = 𝑺𝑰𝑷(𝒙) + 𝑺𝑰𝑷(𝒚)  (9)  

This additive nature holds as the mathematical operators increase in complexity, as shown in (10) and 
(11), since the mathematical operations are taken element by element in the arrays.  

 

    𝑺𝑰𝑷(𝒙 ∙ 𝒚) = 𝑺𝑰𝑷(𝒙) ∙ 𝑺𝑰𝑷(𝒚)  (10)  

    𝑺𝑰𝑷'𝒙 ∙ 𝒄𝒐𝒔(𝒚)- = 𝑺𝑰𝑷(𝒙) ∙ 𝒄𝒐𝒔'𝑺𝑰𝑷(𝒚)-  (11)  

 
At its core, SIPmath is simply Monte Carlo simulation, except that the variables x and y are generated in 
advance, and stored in arrays, as are the output trials. This preprocessing enables rapid probabilistic 
analysis of many uncertain variables simultaneously in native Excel®. Since the outcomes are stored as 
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output trials, SIPmath also allows for auditing of design practices and decision-making, which is an 
essential component of the peer review design process used for the design of major civil infrastructures. 

4 CASE STUDY 

4.1 OFU Gimsøystraumen Bridge  

To demonstrate the design framework, a case study was carried out based on trial repair activities 
performed on the OFU Gimsøystraumen Bridge in Norway from 1993 to 1995. A summary of the OFU-
Gimsøystraumen Bridge Repair Project can be found in (Blankvoll 1998). While the case study repair 
timeline proposed was never performed, the design, planning, and execution of the trial repair serves as a 
valuable dataset for case study. A more detailed discussion can also be found in (Lepech et al. 2014) 

The repair was performed from 1993 to 1995 and comprised the repair of columns and superstructure 
between Piers 1 and 3 of the bridge. The trial repair modeled for this case study was a mechanical repair 
that was comprised of water hydrodemolition of existing, chloride-infiltrated cover, and dry shotcreting of 
new concrete cover that measured 0.04m thick. The repairs are assumed to take place offset from the 
active traffic lane, with chlorides coming from deicing-salt spray and splash. The traffic over the bridge 
was approximately 3000 vehicles per day, however no traffic was interrupted during the completion of the 
trial repair due to the working location outside of active traffic lanes. The ambient air temperature at the 
site is assumed to be normally distributed with a mean of 279.9°K and standard deviation of 10.93°K.   

The case study in this paper applies SIPmath to sustainable design of two repair types and timelines; 
(i) a 0.04m thick cover replacement, and (ii) an 0.08m thick cover replacement.  For each of repair type, a 
probabilistic service life timeline prediction is constructed (following Section 3.1), along with a 
probabilistic life cycle inventory of the repair work activities (following Section 3.2). 

4.2 Service Life Model of OFU Gimsøystraumen Bridge Repairs  

Using the service life model discussed in Section 3.1, a probabilistic chloride-induced corrosion initiation 
model was constructed in Excel® using SIPmath. In addition to the variables, distributions, and 
parameters shown in Table 1, a number of design-specific variables, distributions, and parameters are 
given in Table 2. For this case study, ordinary Portland cement concrete with a water-to-cement ratio of 
0.45 was assumed. No supplementary cementitious materials (i.e., fly ash) were used in the concrete.  
 
Table 2: Service life modeling parameters specific to the OFU Gimsøystraumen Bridge repair case study. 

 
Variable Name Distribution Characteristic Parameters Reference 
d Normal  (Repair 1) µ = 0.04, s = 10mm;  

(Repair 2) µ = 0.08, s = 10mm 
 

DRCM,0 Normal  µ = 3.14 x 10-4, s = 6.31 x 10-5 (fib 2006) 
Treal Normal µ = 280, s = 11.0  
a Beta a = 4.08, b = 9.51, min = 0.0, max = 1.0 (fib 2006) 

 
The sequence of future repairs was modeled as a Markovian chain of independent, recurring, identical 
deterioration and repair processes according to (12). The construction duration of any one repair activity 
is considered to be irrelevant when considered within the decades-long service life of the bridge.  

    𝑷'𝒕𝒏N𝟏 = 𝒙|𝒕𝒏M𝒚- = 𝑷'𝒕𝒏 = 𝒙|𝒕𝒏9𝟏M𝒚-  (12)  

where, P is the probability that the time to the next repair will take time, t, (tn+1) the time from most recent 
repair event, n, to next repair event, (n+1), tn the time from the second most recent repair event, (n-1), to 
the most recent repair event, n, (tn-1) the time from the third most recent repair event, (n-2), to the second 
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most recent repair event, (n-1), and x and y are random probabilities. Thus, the time of any future repair 
event (trj in Figure 1) is the sum of the times to repair of all previous repair events, as shown in (13).  

    𝒕𝒓𝒋 = ∑ '𝒕𝒏(𝑪(𝒙 = 𝒅) = 𝑪𝒄𝒓𝒊𝒕)-
𝒋
𝒏M𝟏   (13)  

where, trj is the time at which any repair, j, is performed, and tn(C(x=d)=Ccrit) the time elapsing between 
the performance of repair action, n, and a critical concentration of chlorides reaching the location of the 
reinforcing steel a distance, d, from the concrete surface. 

4.3 Environmental, Social, and Economic Impact Model of OFU Gimsøystraumen Bridge 
Repairs  

To determine the life cycle impacts of repairs, a life cycle inventory of the repair materials, processes, and 
procedures was constructed. The main sources for this data were ( Kompen et al. 1997), primary data 
from contractors, product marketing materials, personal safety and hygiene sheets (MSDS), and 
commercial life cycle inventory datasets. Once again, a more detailed account can be found in (Lepech et 
al. 2014)  The mechanical repair comprised five steps; (i) hydrodemolition of deteriorated concrete cover, 
(ii) shotcreting of replacement concrete, (iii) application of a sprayed curing membrane, (iv) sandblasting 
of the surface, and (v) surface treatment with an elastic mortar. For each of these steps the commercial 
products used, the equipment needed, and the transportation of materials to the site were catalogued. The 
total environmental impact is the sum of impacts from all repair steps, as shown in (14).  
 

    𝒊𝒓𝒋 = ∑ 𝒊𝒌𝟓
𝒌M𝟏   (14)  

 
where, irj is the impact (social, environmental, or economic) of performing repair, j, and ik is the impact of 
performing one of the five steps, k, of the mechanical repair. For demonstration purposes, global warming 
potential (kg CO2-equivalents) will be used as a proxy for overall environmental impact. 
 The impact due to hydrodemolition, i1, is computed as the sum total of impacts associated with water 
use, water for washdown purposes, waste disposal of the concrete, and impacts associated with the 
hydrodemolition equipment and shown in (15). The hydrodemolition equipment used includes an air 
compressor, a hydrodemoltion machine, and a front-end loader. Productivity rates and equipment needs 
were determined from RS Means Construction Cost Data (RS Means 2008).  

 

    𝒊𝟏 = 𝒊𝑯𝟐𝑶𝒓𝑯𝟐𝑶𝒅𝒂𝑯𝒀𝑫𝑹𝑶 + 𝒊𝑯𝟐𝑶𝒓𝑾𝑨𝑺𝑯 + 𝒊𝑳𝑨𝑵𝑫𝑭𝑰𝑳𝑳𝒅𝒂𝑯𝒀𝑫𝑹𝑶𝝆𝑪𝑶𝑵𝑪 

    +(𝒊𝑨𝑰𝑹𝒓𝑨𝑰𝑹𝜸𝟏 + 𝒊𝑯𝒀𝑫𝑹𝑶𝒆𝑯𝒀𝑫𝑹𝑶𝜸𝟐 + 𝒊𝑳𝑶𝑨𝑫𝑬𝑹𝒓𝑳𝑶𝑨𝑫𝑬𝑹)𝒓𝑯𝒀𝑫𝑹𝑶  (15)  

 
where, i1 is the impact of hydrodemolition, iH2O the impact of producing water in kg CO2-eq per kg, rH2O 
the rate of water use for hydrodemolition in kg per m3 of concrete removed, d the cover thickness in 
meters, aHYDRO the area being hydrodemolished in m2, rWASH the rate of water use for washdown in kg per 
m2 of hydrodemolition, iLANDFILL the impact of landfilling the waste per kg, rCONC the density of concrete 
in kg/m3, iAIR the impact of operating an air compressor per m2 of hydrodemolition, rAIR the energy 
consumption of an air compressor in horsepower, g1 is a unit conversion factor, iHYDRO the impact of 
operating a hydrodemolition machine per m2 of hydrodemolition, eHYDRO the energy consumption of a 
hydrodemolition machine in kW, g2 a unit conversion factor, iLOADER the impact of operating a loader per 
m2 of hydrodemolition, rLOADER the productivity of a loader in m3/hr, and rHYDRO the productivity of a 
hydrodemolition crew in hours per m2 of hydrodemolition. Distributions and parameters for these 
variables are provided in Table 3. 
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Table 3: Hydrodemolition environmental impact modeling variables, distributions, and parameters.  
 

Variable Name Distribution Characteristic Parameters Reference 
iH2O Deterministic 0.000998 (Lepech et al. 2014) 
rH2O Deterministic 100024 (Lepech et al. 2014) 
aHYDRO Deterministic Design Value (Lepech et al. 2014) 
rWASH Deterministic  60.0 (Lepech et al. 2014) 
iLANDFILL Deterministic 0.000546 (Lepech et al. 2014) 
rCONC Normal µ = 2250, s = 52 (Lepech et al. 2014) 
iAIR Deterministic 0.0885 (Lepech et al. 2014) 
rAIR Uniform min = 48, max = 111 (Lepech et al. 2014) 
g1 Deterministic 2.68 x 10-6 (Lepech et al. 2014) 
iHYDRO Deterministic 0.0885 (Lepech et al. 2014) 
eHYDRO Uniform min = 250, max = 750 (Lepech et al. 2014) 
g2 Deterministic 3.60 x 10-6 (Lepech et al. 2014) 
iLOADER Deterministic 0.546 (Lepech et al. 2014) 
rLOADER Deterministic 150 (Lepech et al. 2014) 
rHYDRO Uniform min = 0.24, max = 0.37 (Lepech et al. 2014) 

 
The impact from the shotcreting step, i2, is computed as the sum total of impacts associated with 
production of the shotcrete, impacts associated with equipment on site, and impacts from transportation of 
the shotcrete material from the producer to the construction site, as shown in (16). The shotcrete 
equipment used includes an air compressor, a shotcrete rig, and a concrete pump. Productivity rates and 
equipment needs were determined from RS Means Construction Cost Data (RS Means 2008). Material 
proportions and species were determined from product information sheets provided by the manufacturer 
or environmental health and safety documentation.  

 

    𝒊𝟐 = '𝒊𝑪𝒑𝑪 + 𝒊𝑯𝟐𝑶𝒑𝑯𝟐𝑶 + 𝒊𝑺𝒑𝑺-𝒅𝒂𝑯𝒀𝑫𝑹𝑶(𝟏 + 𝒓) 

+𝒊𝑳𝑨𝑵𝑫𝑭𝑰𝑳𝑳𝒅𝒂𝑯𝒀𝑫𝑹𝑶'𝒑𝑪 + 𝒑𝑯𝟐𝑶 + 𝒑𝑺-𝒓 

    +(𝒊𝑨𝑰𝑹𝒓𝑨𝑰𝑹𝜸𝟏 + 𝒊𝑷𝑼𝑴𝑷𝒆𝑷𝑼𝑴𝑷𝜸𝟐 + 𝒊𝑹𝑰𝑮𝒆𝑹𝑰𝑮)𝒓𝑺𝑯𝑶𝑻 

    +𝒊𝑻𝒅𝒂𝑯𝒀𝑫𝑹𝑶'𝒑𝑪 + 𝒑𝑯𝟐𝑶 + 𝒑𝑺-(𝟏 + 𝒓)𝒅𝑺𝑯𝑶𝑻𝜸𝟑  (16)  

 
where, i2 is the impact of the shotcrete step, iC the impact of producing cement in kg CO2-eq per kg, pC the 
proportion of cement in shotcrete in kg of cement per m3 of shotcrete, pH2O the proportion of water in 
shotcrete in kg of water per m3 of shotcrete, iS the impact of producing sand and gravel in kg CO2-eq per 
kg, pS is the proportion of sand or gravel in shotcrete in kg of sand or gravel per m3 of shotcrete, r the 
portion of shotcrete wasted in rebound, iPUMP the impact of operating shotcrete pump per m2 of 
hydrodemolition performed, ePUMP the energy consumption of a shotcrete pump in kW, iRIG the impact of 
shotcrete rig truck per m2 of hydrodemolition performed, eRIG the fuel consumption of a shotcrete rig truck 
in L of diesel fuel per hour, rSHOT the productivity of a shotcrete crew in hours per m2 of shotcreting repair 
performed, iT the impact of truck transportation in tonne-km, dSHOT the distance shotcrete materials were 
shipped in km, and g3 a unit conversion factor. Distributions and characteristic parameters for these 
variables are provided in Table 4.  
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Table 4: Shotcreting environmental impact modeling variables, distributions, and parameters. 
 

Variable Name Distribution Characteristic Parameters Reference 
iC Deterministic 0.826 (Lepech et al. 2014) 
pC Uniform min = 224.3, max = 672.8 (Lepech et al. 2014) 
pH2O Uniform 0.5pC (Lepech et al. 2014) 
iS Deterministic  0.00859 (Lepech et al. 2014) 
pS Uniform 2230 -  pC -  pH2O (Lepech et al. 2014) 
r Uniform min = 0.02, max = 0.03 (Lepech et al. 2014) 
iPUMP Deterministic 0.0885 (Lepech et al. 2014) 
ePUMP Deterministic 30 (Lepech et al. 2014) 
iRIG Deterministic 3.08 (Lepech et al. 2014) 
eRIG Deterministic 3.785 (Lepech et al. 2014) 
rSHOT Deterministic 0.431 (Lepech et al. 2014) 
iT Deterministic 0.217 (Lepech et al. 2014) 
dSHOT Deterministic 1400 (Lepech et al. 2014) 
g3 Deterministic 0.001 (Lepech et al. 2014) 

 
The impact from application of an impermeable membrane, i3, sums impacts associated with production 
of the membrane material and impacts from transportation of materials to the construction site (17). The 
membrane is applied with a hand sprayer in two applications. Material proportions were determined from 
manufacturer product information or environmental health and safety documentation.  

    𝒊𝟑 = '𝒊𝑴𝒑𝑴 + 𝒊𝑵𝒑𝑵 + 𝒊𝑻(𝒑𝑴 + 𝒑𝑵)-𝒏𝑨𝑷𝑷𝒓𝑨𝑷𝑷(𝟏+ 𝒅𝑴𝑬𝑴𝜸𝟑) (17)  

where, i3 is the impact of the membrane application, iM the impact of producing methacrylate in kg CO2-
eq per kg, pM the proportion of methacrylate in the membrane in kg per L of material, iN the impact of 
producing naphtha in kg CO2-eq per kg, pN the naphtha proportion of the membrane in kg per L of 
material, nAPP the number of applications, rAPP the rate of membrane application in L per m2 of repair, and 
dMEM the distance that materials were shipped in km. Distributions and parameters are in Table 5. 

 
Table 5: Membrane application environmental impact modeling variables, distributions, and parameters. 

 
Variable Name Distribution Characteristic Parameters Reference 
iM Deterministic 6.03 (Lepech et al. 2014) 
pM Uniform min = 0.36, max = 0.9 (Lepech et al. 2014) 
iN Deterministic 0.651 (Lepech et al. 2014) 
pN Uniform 1 -  pM (Lepech et al. 2014) 
nAPP Deterministic 2 (Lepech et al. 2014) 
rAPP Deterministic 0.14 (Lepech et al. 2014) 
dMEM Deterministic 1400 (Lepech et al. 2014) 

 
The impact from sandblasting, i4, is the sum total of impacts associated with production of the 
sandblasting medium, operation of an air compressor, material transportation to the construction site, and 
impacts from landfilling of the waste medium (18). The sand blasting medium, Star-Grit, is comprised of 
recycled copper slag. Material proportions were determined from manufacturer information.  

    𝒊𝟒 = (𝒊𝑺𝑳𝑨𝑮𝒑𝑺𝑳𝑨𝑮 + 𝒊𝑺𝒑𝑺9𝑺𝑳𝑨𝑮)𝒘𝑴𝑬𝑫 + 𝒊𝑨𝑰𝑹𝒓𝑨𝑰𝑹𝜸𝟏𝒓𝑺  

    +𝒊𝑺𝑯𝑰𝑷𝒘𝑴𝑬𝑫𝒅𝑺𝑨𝑵𝑫𝜸𝟑 + 𝒊𝑾𝑨𝑺𝑻𝑬𝒘𝑴𝑬𝑫 (18)  
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where, i4 is the sandblasting impact, iSLAG the impact of producing the slag portion of the sandblasting 
medium in kg CO2-eq per kg, pSLAG the slag proportion of the medium in kg of slag per kg, pS-SLAG the 
proportion of sand in the medium in kg of sand per kg, wMED the mass of medium in kg consumed per m2 
of sandblasting, rS the crew productivity in hours per m2, iSHIP the impact of ship transportation in tonne-
km, and dSAND the shipping distance in km. Distributions and parameters are in Table 6. 

 
Table 6: Sandblasting environmental impact modeling variables, distributions, and parameters. 

 
Variable Name Distribution Characteristic Parameters Reference 
iSLAG Deterministic 0.0 (Lepech et al. 2014) 
pSLAG Uniform min = 0.9, max = 1.0 (Lepech et al. 2014) 
pS-SLAG Uniform 1 - pSLAG (Lepech et al. 2014) 
wMED Uniform min = 0.82, max = 1.18 (Lepech et al. 2014) 
rS Uniform min = 0.078, max = 0.228 (Lepech et al. 2014) 
iSHIP Deterministic 0.00844 (Lepech et al. 2014) 
dSAND Deterministic 2000 (Lepech et al. 2014) 

 
The impact from surface treatment of the repair, i5, is computed as the sum total of impacts associated 
with production of the surface treatment materials and impacts from transportation of the surface 
treatment materials to the construction site, as shown in (19). No mechanical equipment is used in the 
application of the surface treatment. Material proportions and species were determined from product 
information sheets provided by the manufacturer or environmental health and safety documentation.  

    𝒊𝟓 = 𝒊𝑪𝒑𝑪9𝑺𝑼𝑹𝑭 + 𝒊𝑺𝒑𝑺9𝑺𝑼𝑹𝑭 + 𝒊𝑳𝒑𝑳9𝑺𝑼𝑹𝑭 + 𝒊𝑻𝒘𝑺𝑼𝑹𝑭𝒅𝑺𝑼𝑹𝑭𝜸𝟑	 (19)  

where, i5 is the impact of the surface treatment, pC-SURF the proportion of cement used in the surface 
treatment mortar in kg per m2 of surface treatment, pS-SURF the proportion of sand used in the surface 
treatment mortar in kg per m2, iL the impact of producing the latex portion of the surface treatment mortar 
in kg CO2-eq per kg of latex,  pL-SURF the proportion of latex used in the surface treatment mortar in kg per 
m2, wSURF the mass of surface treatment mortar in kg consumed per m2, and dSURF the distance that 
materials were shipped in km. Distributions and characteristic parameters are provided in Table 7. 

 
Table 7: Surface treatment environmental impact modeling variables, distributions, and parameters. 
 

Variable Name Distribution Characteristic Parameters Reference 
pC-SURF Uniform min = 0.21, max = 0.63 (Lepech et al. 2014) 
pS-SURF Uniform 3.1 - pC-SURF - pL-SURF (Lepech et al. 2014) 
iL Deterministic 2.52 (Lepech et al. 2014) 
pL-SURF Deterministic 0.74 (Lepech et al. 2014) 
wSURF Deterministic min = 3.1 (Lepech et al. 2014) 
dSURF Deterministic 1400 (Lepech et al. 2014) 

4.4 Analysis and Sustainability Design of Repair Scenarios using SIPmath in Excel® 

Using SIPmath in Microsoft Excel®, modeling of cumulative impact envelopes, shown schematically in 
Figure 1, was done using a total of four interdependent workbooks. The model is interactive, such that the 
user can change the repair thickness, d, along with the mean and standard deviation of the ambient 
temperature, Treal. For illustration the cumulative impact was predicted for an 80-year analysis period for 
each of the repairs considered (0.04m and 0.08m) is shown in Figures 2(a) and 2(b), respectively.  
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(a)             (b) 
 
 
 
 
 
 
 
 
 
 
             (c) 
 
Figure 2: Cumulative global warming potential envelopes (kg CO2-eq/m2) for (a) 0.04m, (b) 0.08m repair, 
and (c) 0.04m repair + 2°C timelines.  For all three, the 20th, 50th, and 80th percentiles are plotted, as is one 
example timeline (Trial 16). The distributions of cumulative GWP are shown schematically for Year 40. 
  
As seen in Figure 2, increasing cover thickness from 0.04m to 0.08m effectively reduced total carbon 
emissions over an 80-year analysis period. Also, by the end of 80 years there is enough difference in the 
CO2-eq emissions of the 0.04m and 0.08m timelines to give confidence that the 0.08m repair is the more 
sustainable choice. Taking the model further, the effect of climate change can be explored. Figure 2(c) 
shows the cumulative envelope for a 0.04m repair timeline under a temperature rise of 2°C. (IPCC 2013) 
 While slight, there is a noticeable increase in the cumulative global warming potential for timelines 
exposed to higher temperatures. Given that these results are only for one square meter of repairs over an 
80-year analysis period, the results become more concerning when considering the myriad concrete 
repairs performed annually worldwide. Moreover, the vicious cycle of carbon emissions leading to 
temperature rise, leading to faster deterioration of concrete infrastructure, leading to more repairs, leading 
to increased carbon emissions becomes clearer to decision-makers. This clarity is motivation for the 
development of easy-to-use probabilistic modeling and design tools using SIPmath modeling. 

5 CONCLUSIONS 

This paper presented a probabilistic framework for the design of civil infrastructure that achieves targeted 
improvements in quantitative sustainability indicators. The framework consists of two types of models; (i) 
probabilistic service life prediction models, and (ii) probabilistic life cycle assessment (LCA) models. 
Specifically, this paper introduced a new mathematical approach, SIPmath, to simplify sustainability-
focused design and potentially accelerate its adoption by infrastructure designers. A reinforced concrete 
bridge repair in Norway was presented as a case study to demonstrate SIPmath implementation.   
 Ultimately, the case study showed that SIPmath tools can provide designers and engineers an 
engaging tool for sustainability-focused probabilistic design of reinforced concrete infrastructure. The 
analysis showed that a 0.08m concrete repair was preferable to a 0.04m concrete repair over the 80-year 
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analysis period of the OFU Gimsøystraumen Bridge. Additionally, the effect of a 2°C increase in annual 
average temperature associated with global climate change had a noticeable effect on the cumulative 
carbon emission profile of the case study bridge. Future work will continue to expand the use of SIPmath 
to compute the time dependent probabilities of failure of meeting environmental targets. 

ACKNOWLEDGMENTS  

The authors thank Professors Mette Geiker, Henrik Stang, and Alexander Michel for their contributions, 
along with the support of the Thomas V. Jones faculty scholarship at Stanford. This research is partly 
funded by the US NSF (Award #1453881). Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. 

REFERENCES 

Abramowitz, M., and  I. Stegun. 1983. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 
Washington D.C: Dover Publications. 

Bakshi, B., G., Ziv, and M., Lepech. 2015. “Techno-Ecological Synergy: A Framework for Sustainable Engineering”. 
Environmental Science & Technology 49(3): 1752-1760. 

Blankvoll, A. 1998. OFU Gimsøystraumen bru, Hovedresultater og oversikt over sluttdokumentasjon. Publication 89, 
Veglaboratoriet, Oslo: Vegdirektoratet. 

Comello, S., M., Lepech, and B., Schwegler. 2012. “Project Level Assessment of Environmental Impact: An Ecosystem Services 
Approach to Sustainable Management and Development”. ASCE Journal of Management Engineering 27(1): 5-12 

Ehrenfeld, J. R. 2007. "Would Industrial Ecology Exist without Sustainability in the Background?" J. of Ind. Eco.11(1): 73-84. 
fib. 2006. Model Code for Service Life– Bulletin 34. Lausanne, Switzerland: Fédération Internationale du Béton.   
fib. 2010. 2010 Model Code - Bulletin 55, 56. Lausanne, Switzerland: Fédération Internationale du Béton.   
IPCC. 2013. Climate Change 2013, United Nations Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report. 

New York, New York: United Nations Intergovernmental Panel on Climate Change. 
ISO (2006), “ISO 14040: LCA – Principles and Framework.” International Organization for Standards. Geneva, Switzerland. 
Kompen, R., A., Blankvoll, T., Berg, E., Noremark, P., Austnes, and K., Grefstad. 1997. OFU Gimsøystraumen bru: 

Prøvereparasjon og produktutvikling. Publication 84, Veglaboratoriet, Oslo: Vegdirektoratet. 
Lepech, M., H., Stang, and M., Geiker. 2013. “Probabilistic Design and Management of Environmentally Sustainable Repair and 

Rehabilitation of Reinforced Concrete Structures”. Cement and Concrete Composites 47:19-31. 
Lepech, M., M., Geiker, H., Stang, and A., Michel. 2014. Sustainable Rehabilitation of Civil and Building Structures. Lyngby, 

Denmark: Department of Civil Engineering (BYG), Technical University of Denmark (DTU). 
Lepech, M. 2018. “The Future Design of Sustainable Infrastructure”. National Academy of Engineering The Bridge 48(2): 13-21. 
RS Means. 2008. Heavy Construction Cost. Kingston, MA, USA: Reed Construction Data. 
Savage, S. L., and J. M., Thibault. 2015. “Towards a Simulation Network or the Medium is the Monte Carlo”. In Proceedings of 

the 2015 Winter Simulation Conference,  edited by L. Yilmaz, I.-C. Moon, W. K. Chan, T. Roeder, C. M. Macal, and M. D. 
Rosetti, 4126-41333. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc. 

Vu, K. A. T., and M. G., Stewart. 2000. “Structural Reliability of Concrete Bridges Including Improved Chloride-induced 
Corrosion Models”. Structural Safety 22(4), 313-333. 

AUTHOR BIOGRAPHIES 

MELISSA ZIRPS is a Structural Engineering MS student at Stanford University. Her research interests focus on the modeling 
and design of sustainable reinforced concrete structures. Melissa received her BS in Civil and Environmental Engineering from 
Lehigh University. Her email address is mzirps@stanford.edu.  
 
MICHAEL D LEPECH is an Associate Professor of Civil and Environmental Engineering at Stanford. Dr. Lepech is also a 
Senior Fellow of the Woods Institute for the Environment and Associate Director of the Center for Sustainable Development and 
Global Competitiveness at Stanford. He researches multi-scale design and construction of sustainable built environments. Dr. 
Lepech received his BSE, MSE, PhD, and MBA from the University of Michigan. His email address is mlepech@stanford.edu.  
 
SAM L SAVAGE is Executive Director of ProbabilityManagement.org, a 501(c)(3) nonprofit devoted to the communication and 
calculation of uncertainty. Dr. Savage is author of “The Flaw of Averages: Why We Underestimate Risk in the Face of 
Uncertainty” (John Wiley & Sons, 2009, 2012), and is an Adjunct Professor of Civil and Environmental Engineering at Stanford 
University. He received his PhD in computational complexity from Yale. His email address is sam@probabilitymanagement.org. 

3115


