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ABSTRACT 

Using a model as an input data source for integration into another model carries with it risks to the validity 
of the model composition. This paper presents research into the inherent risks of model integration. The 
research decomposes models into sets of semantic concepts allowing for a calculation of structural 
alignment. Measurable changes in a model’s output due to the integration of another model provide an 
impact assessment. Risks to decisions arise from incompatible assumptions and constructions of models. 
We present a risk assessment as a tuple containing differences in models’ alignment across three axes and 
in changes in a model’s output metrics. Risks to decisions arise from incompatible assumptions and 
constructions of models.  

1   INTRODUCTION 

In the analysis of large and complex systems, a number of assumptions are made in model construction to 
aide in its development and instantiation. A model may use any number of sources for data input, such as 
expert knowledge, authoritative databases, scientific theory, or other models’ outputs. This paper presents 
research into the conceptual alignments of models and their suitability for use in model integration. We 
assert that the risk of using a model for a decision purpose is affected by the incorporation of a second 
model into the decision space and present a means for estimating that risk. 

Model integration lacks a formal definition, but is a fundamentally human activity concerned with the 
management and governance of models and simulations (Dolk and Kottemann 1991). We take integration 
to be the act of joining two (or more) models together for a larger purpose. Much like model composability, 
we concern ourselves with the reuse of models and maintaining their validity. Where model interoperability 
concerns itself with the useful sharing of information during runtime, neither model composability nor 
integration make runtime concurrence a requirement. Model integration can be conducted for a variety of 
purposes: concatenation, amplification, parameter discovery, model construction, and model merging 
(Levis and Abu Jbara 2014). We concern ourselves with parameter discovery wherein a model is used to 
provide values, assumptions, or constraints onto information required in another model.  

In this paper, we will summarize germane concepts of model validity and model integration. We will 
present a method to decompose models into conceptual elements. We will show a method to use those 
conceptual elements as a mechanism to evaluate the conceptual alignment of models. We will apply this 
conceptual alignment into risk literature and develop an ordered set of value to calculate the risk to model 
validity due to model integration. 
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2   VALIDITY AND INTEGRATION 

2.1   Validation 

Validation is a well-understood requirement of successful modeling and simulation projects. There are 
myriad of definitions of validity in the literature (Sargent, 2013; Bair & Tolk, 2013). Many definitions have 
varying degrees of the phrase “accurate representation” or “from the perspective of the intended users.”  
The key term is the relationship of a model to its intended users, and by proxy, it’s intended use. Models 
are deliberate abstractions of a real-world system, and there must be some underlying purpose or intent to 
the model in order to select the components of the real-world that are necessary for a conceptual model to 
be developed and a simulation system. So, even models that purportedly examine the same phenomenon or 
systems may have slightly nuanced differences in their instantiations, sometimes inadvertently through 
developer or user biases, perceptions, and experiences. Models that are known to be different will certainly 
have differences in their assumptions of what they include, exclude, how they depict the underlying system 
theories, and how they handle uncertainties and unknowns. 

There is a myriad of methods by which to validate models, and interested readers may look to (Balci 
1994; Sargent 2013; Law 2007; Petty 2010; Jones 2015; Zeigler et al. 2018) for discussions about model 
validity and methods to achieve validation. Petty (2010) draws an analogy of model validation being a 
comparison – comparisons to other knowledge about the system(s) being modeled, empirical tests, or even 
to other models. (Balci, 1994) presents two principal types of validation error that have been derived from 
statistical testing and depend on comparison of model results to some other data set. Type I error is model 
user rejecting a valid model as invalid due to the results of objective tests. This error is sometimes called 
the model developer’s risk, as the development would fundamentally be for naught if the model were to be 
rejected. Type II error is called the model user’s risk and is a failure to reject an invalid model and accepting 
it as a valid. Type I error is often times correctable by further refinement or development of the model and 
the largest consequence of such an error is increased cost in the model development. However, Type II 
error can be catastrophic as it can lead a model user to make an incorrect decision. An additional form of 
validation error is sometimes referred to as Type III error, where one has answered the wrong question or 
formulated the problem incorrectly, an idea first espoused by Mitroff and Featheringham (1974). While the 
specification of an error type is interesting, it is beyond the scope of this paper, but it is of note that there is 
already a documented method of the notion that models may be wrong for their purpose and users may not 
always be able to know.  

The formulation of a model from knowledge about the real world and a well-defined research question 
is conceptual modeling. Ideally, this model development activity will document assumptions, knowledge 
that is being represented, and its intended purpose. However, even with clear knowledge of the experimental 
frame, any number of interpretations can be developed into a conceptual model and further developed into 
an instantiated model (Tolk et al. 2013). Both developers and users of models come with their own unique 
experiences and biases and apply them to their understanding of the model (Ezell and Crowther 2007). 
Given the myriad of interpretations and individuals’ perceptions, it becomes a significant challenge to 
validate a model by comparing its results to the results of another model without significant insights into 
the conceptual models.  

2.2   Integration 

We take model integration as the application of a model for usage in conjunction with another model 
without the need for simultaneous runtime or data exchanges. Model integration is by its nature a multi-
modeling effort requiring insights from two or more models. Appreciating the contexts, semantic meanings, 
and conceptual elements are critical for determining the appropriateness of models for integration. Model 
integration is not arbitrary, the models in question are presumed to offer insights to the same domain of 
interest, and share some representation of the real-world system under study.  
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Integration occurs for a variety of reasons; (Levis and Jbara 2014) list five major reasons why models 
are integrated with one another. The first such reason is concatenation wherein models share representations 
of entities or phenomena and can get instances from one another. This case is far more akin to traditional 
interoperability issues given the ability to share and use data from two or more sources. The second case is 
amplification. This is a case where a second model offers additional information or representation to the 
first model. That information can be in the form of greater detail on existing phenomena or in the form of 
additional considerations that were not explicitly part of the initial model. The third case is parameter 
discovery wherein a second model is used to bound or estimate parameters for inputs into the initial model. 
This is a case where a model is used as a data source for another model. The fourth case is model 
construction where a model is used to develop a second model. In this case, the initial model may yield 
insights into the dynamics or cause and effect relationships required in a new model. The last case is model 
merging where one model’s algorithmic changes are applied to another model’s structure. All five of these 
cases are extremely useful in understanding the potential space of model integration, and each require care 
and domain knowledge from model users and analysts. 

There are reasons to deliberately separate models and their respective representations of systems under 
study. Oftentimes analytic studies requiring the models in the first place have different scopes and 
intentions. The purpose of a model, its applicability to analysis, its efficiency of searching parameters and 
solutions, and the cost of the model – in terms of both time and money – are all reasons why one may want 
to divide system representations into separate models (Gallagher et. al 2014). Increasing complexity of the 
system(s) under study may be an additional reason for the establishment of a separate model (North, 2014). 
The ability to integrate a finely-detailed model into an aggregated model is a cross-resolution activity 
(Davis, 1995). However, it not always meaningful to offer additional information into a broader context, 
and may generate confusion in analyzing results, or may generate artificial dependencies that do not map 
to a real phenomenon in the real-world system. Users must be cognizant of the contexts and assumptions 
that drive any and all models that are being used in their studies and decisions. 

3   CONCEPTUAL ELEMENTS OF MODELS 

To be explicit and clear about the construction of a model and what it deliberately abstracts from the real-
world system, and how it makes those representations, we use the Objects-Processes-Relationships method 
developed by Turnitsa (2012) in his doctoral dissertation. To summarize here, models can be distilled into 
collections of three sets: Objects which are the artifacts of the system and hold value(s) describing their 
individual states. Processes are the dynamic elements of models that mark a change in the state of one or 
more Objects and represent the causality we wish to capture in our models. Relationships are the linkages 
between two other conceptual elements of the model. 

Each of these sets are in turn defined by the concepts which they include. Those concepts are in turn 
divided into their defining elements. In the case of Objects, they are defined by Attributes which hold values 
that define the state of the Object. In the case of Processes, they are defined by Characteristics which define 
the state of the Process. In the case of Relationships, they are defined by Rules that define the applicability 
and nature of the Relationship. We can define these sets of concepts mathematically which will aide in the 
calculations of model alignment later. 
Let:  

MA indicate Model A 
MB indicate Model B 

Further, let: 
MA,O indicates the set of Objects in Model A 
MB,O indicates the set of Objects in Model B 
MA,O(n) indicate Object n in Model A 
MB,O(l) indicate Object l in Model B 
MA,O(n), A indicates the set of Attributes in Object n in Model A 
MB,O(n), A indicates the set of Attributes in Object n in Model B 
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MA,O(n), A(m) indicate attribute m in Object n in Model A 
MB,O(l), A(k) indicate attribute k in Object l in Model B 
MA,A indicates the set of all Attributes across all Objects in Model A 
MB,A indicates the set of all Attributes across all Objects in Model B 
 
These statements regarding Objects as sets of information in models have corollary statements about 

Processes and Relationships. Each of these three sets of major conceptual elements is a dimension of a 
model’s structure that can be evaluated against other models to arrive at model alignment metrics between 
the models. 

4   MISALIGNMENT 

We calculate three alignment values between two models, one representing each conceptual set of Objects, 
Processes, and Relationships. There are seven scenarios in which each of these alignment values can be 
calculated. On any of the dimensions, there can be a misalignment due to differences in scope, resolution, 
and structure or combinations of these. We introduce each of these in turn: 

Scope refers to the quantity of concepts that are included in each model. It can be thought of as the 
“breadth” of the model or of individual concepts, and is a count of the concepts that are included in the 
model either by design or by assumption. As depicted in the Figure 1 below, one model may contain a set 
of concepts while a second model has a different set of concepts. The two models may have significant 
overlap or very little overlap. At least one modeling system contains a major concept not found in the other 
system.  

 
Figure 1: Model concepts misaligned by scope (Tolk, 2012). 

Resolution refers to the level of precision that is incorporated into the model and its concepts to describe 
each concept. Where one model may have a succinct description for its own purposes, a second model may 
have a more detailed description of the same concept. The detail used to describe the components may be 
by explicit design, or may be implicit assumptions in the model. Figure 2 below depicts System A as having 
3 major concepts where System B has 4 concepts in place of each concept in A, for a total of 12 concepts. 
The ratio of concepts in B to concepts in A need not be fixed, nor need be consistent from one concept to 
another. 

 
Figure 2: Model concepts misaligned by resolution (Tolk, 2012). 

Structure refers to the grouping of one or more concepts in describing a larger concept. These groupings 
of subcomponents may not mirror one another across multiple models. To complicate matters, sub-concepts 
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may be included in the grouping of another major concept in another model. In the Figure 3 below, System 
A includes two entities, each with two descriptive components. Likewise, System B has two entities, each 
with two differing descriptive components, though some of those sub components have been swapped 
between major conceptual entities.  

 
Figure 3: Model concepts misaligned by structure (Tolk, 2012). 

More complicated misalignment scenarios arise with the combination of these misalignments. A 
misalignment of scope and resolution is depicted in the figure below. System A may have any number of 
concepts describing its scope breadth – Figure 4 shows three as an example. System B may share some 
non-zero number of major concepts with System A but replaces some number of System A’s concepts with 
higher levels of detail.  

 
Figure 4: Misaligned scope and resolution, adapted from Tolk (2012). 

Figure 5 below depicts models that are conceptually misaligned in both scope and structure. At least 
one of the two systems contain a major concept not included in the other system for a misalignment of 
scope. In the example below, System A contains “concept 1” which has no corollary in System B while 
System B contains “concept 4” which has no mapping in System A. In the major concepts that are shared 
between the models, there is a mismatch of which sub-components are included in each major concepts’ 
definition. It is possible that one or more sub-concepts may exist in one model with no mapping to the other 
model, as depicted in sub-component 2C. 

 
Figure 5: Misaligned scope and structure, adapted from Tolk (2012). 

Figure 6 below depicts the next major Risk scenario where two models are misaligned in both resolution 
and structure. Both modeling systems include the same major concepts, but at least one of the two models 
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– in this case System B – includes greater detail in one or more of the concepts. Where major concepts are 
shared in each model, there may be different structures of supporting detail. In the example below, concept 
2A moved from describing one major concept in System A to describing another major concept in System 
B. Likewise, concepts 1B and 3B describe different major concepts between the two models. 

 
Figure 6: Misaligned resolution and structure, adapted from Tolk (2012). 

The most complex of the misalignments is a misalignment across all three major definitions of 
misalignment – scope, resolution, and structure. Each model may have different major concepts from one 
another, supporting sub-concepts may be grouped differently in each model to describe different major 
concepts, and one model may have more detail in place of simplified assumptions in the other model. In 
practicality, this is the most likely scenario, where models have been developed and applied independently 
with different assumptions, different levels of detail, and different purposes – perhaps nuancedly different, 
but different nonetheless. This complex scenario is depicted in Figure 7 below. 

 
Figure 7: Misaligned scope, resolution, and structure, adapted from Tolk (2012). 

5   RISK 

Thus far, this paper has reviewed at a somewhat high-level concepts related to model theory and model 
validation. To apply a risk assessment to the usage of two or more models in a single decision space, an 
overview of what risk is and how it is assessed is required. 

Generally, risk is some function of uncertainty and of damage (Kaplan and Garrick 1981). Oftentimes 
risk is colloquially seen as the product of uncertainty and damage, but this need not always be the case. The 
multiplication of uncertainty and damage assumes that the decision maker is risk neutral and doesn’t have 
a particular preference in mind (Hubbard 2009). In reality, the calculation of uncertainty or the calculation 
of damage might be non-linear and there are particular outcomes that may be significantly worse than 
others. Kaplan and Garrick stress the need for some sort of a loss or damage as a key component of risk, 
beyond simple uncertainty. They also espouse risk as a triplet, wherein each potential outcome is 
enumerated as a scenario, a probability, and a consequence. These scenarios aid in the development and 
enumeration of outcomes that are undesirable so that they can be addressed and mitigated. Therefore, risk 
can then be expressed as R= 〈S,P,C〉,	  where R = Risk, S = Scenario, P = Probability, and C = Consequence. 
Then, when risk is assessed, a table is generated wherein each scenario is listed, its likelihood or uncertainty, 
and the damage that could be expected if this scenario were to come to pass.  
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The cases of conceptual misalignment serve as scenarios, identifying the type of misalignment. The 
tuple from (Kaplan and Garrick 1981), R= 〈S,P,C〉 will be extended to include five different probabilities. 
The first three values are the alignment values for each dimension of model alignment and stand in place 
of the otherwise straightforward probability. The consequence dimension of risk is extended to include two 
metrics: changes in model MOEs and model MOPs.  

Thus, the new extended tuple for risk is R= 〈S, D(Obj), D(Proc), D(Rel), D(MOE), D(MOP)〉,	  where 
D(Obj) is the difference in the alignment value for the models’ objects; D(Proc) is the difference in the 
alignment value for the models’ processes; D(Rel) is the difference in the alignment value for the models’ 
relationships; D(MOE) is the change in a model’s effectiveness measures when incorporating a second 
model; and D(MOP) is the change in a model’s performance measures when incorporating a second model. 

5.1   Calculating Alignment Values 

The calculation of alignment depends on the scenario of misalignment. We take a value of 1.0 to mean that 
models are perfectly aligned conceptually and 0.0 to mean that models have no overlapping semantic 
meaning. Using set theory, where each dimension of Objects, Process and Relationships are expressed as 
sets, and their constituent Attributes, Processes, and Rules are likewise expressed as sets.  

As an example of alignment calculation, consider two models that are misaligned in scope and 
resolution. A Venn diagram of their shared concepts is depicted in Figure 8. In this simple example, each 
model contains a unique concept. But of the two objects that are similar, one offers more detail than the 
other model in one of the concepts. In this case, we count the number of attributes, characteristics, or rules 
(depending if this was a representation of objects, process, or relationships, respectively) that are within the 
shared space of these two models. This sum is divided by the total number of components in the first object 
plus the ratio of conceptual components in both models divided by the components in the first model. 
Mathematically, this is expressed as: 

 
(𝑀(,) * ,() ∪ (𝑀-,)	   * ,()

(𝑀(,) * ,() +
(𝑀(,) * ,() ∩ (𝑀-,)	   * ,()

(𝑀(,) * ,()

 

 

 
Figure 8: Two models with misaligned scope and resolution. 

In this simple example, this formula would yield (1) / (2 + ((2+4)/2)) = 1 / 5 = 0.2 as an alignment 
value. Such set theoretic calculations are conducted for each possible permutation of shared conceptual 
elements.  

In this illustrative example, it was assumed that the single concept with similar resolution in each model 
was semantically compatible with the other model. However, it is possible or even likely that a conceptual 
component will not be semantically the same, and its value will not strictly be 1.0. Wartik et al. (2001) 
present a method for assessing the alignment between seemingly similar concepts. Their method is a value 
table with discrete levels of semantic meaning. An analyst would assess the alignment between two 
concepts across models and assign it a value score from 0.0 to 1.0 based upon the alignment of the concepts. 
Table 1 below is adapted from their report to illustrate how these assessments are made. 

In the simple illustrative example above, it becomes possible to see the impacts of an imperfect 
alignment in a conceptual element. If we change the attribute of the one shared concept from a 1.0 to a 0.5 
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due to a medium degree of alignment, the formula now yields: (0.5) / (2 + ((0.5+3.5)/2)) = 0.5 / 4 = 0.125. 
We now see that the addition of this assessment unsurprisingly reduced the degree of alignment between 
these two concepts from 0.2 to 0.125. 

Assessments can be made for the entire structural space of the models, yielding a value for each of the 
three dimensions of alignment.  

Table 1: Alignment assessment from Wartik et al., 2001. 

Value Standard Phrase Definition 
0% No Alignment This value is assigned in either of the following circumstances: 

There is no overlap between the models. One model contains an 
instance of an element that has no analog in the other. 
Lack of information in one model prevents alignment analysis. 

25% Low Degree of 
Alignment 

There is some overlap, but it seems coincidental. Overlap might have 
been achieved by using some attributes in ways that its designers did 
not originally intend. 

50% Medium Degree of 
Alignment 

There is a moderate amount of overlap, but still a significant 
disconnect between the models. 

75% High Degree of 
Alignment 

Perfect alignment can probably be achieved by small changes to one 
model or the other. 

100% Perfect Alignment There is an exact, unambiguous mapping between the models. 

5.2   Calculating Impacts 

The most basic definitions of risk indicate that there must be a consequence associated with a chance or 
probabilistic event. Having derived a method to assess models’ alignments as a proxy for those chances, 
we turn now to defining the consequences of models integration. To find such consequences, we assume 
that a model has been run in isolation on its own merits to produce a set of metrics, both measures of 
effectiveness and measures of performance. After such a model run has been conducted, the model is rerun 
with the integration of a second model that will have some effect – great or small – on the output metrics 
of the model. 

Changes in both MOEs and MOPs could range from minor to significant. The introduction of a new 
conceptual components from an additional model may augment, change, or contradict the metrics of a single 
model on its own. Cases where metrics change significantly or new metrics contradict previous metrics are 
the scenarios of highest consequence to the overarching purposes of the models and resulting decisions. 
Developing a hierarchy of preferences for MOEs and MOPs as consequences is relatively straightforward.   
The principle of maximum information entropy will be applied here to determine weightings for MOEs and 
MOPs in the Consequence component of risk. When the only piece of information is a general preference 
order of categories, we will equally divide the consequence space from zero to one and take the centroid 
value of each subspace. To develop a hierarchy table of MOPs and MOEs, we need only list a preference 
order of categories. Characteristics of these categories are the significance of changes in MOP values upon 
the integration of an input model – minor, moderate, or significant, the introduction of new attributes as 
part of the MOPs, and if new attributes exist whether they contradict the original model’s MOPs or not 
yields 18 categories to measure consequences of model integration (Table 2). Similarly, a value hierarchy 
for MOEs can be constructed with the same categories and definitions of categories (Table 3). 

These tables yield lookup values when a domain expert has seen that changes in model outputs are 
minor or significant, whether new information has been added to the outputs, and if so, does that new 
information conflict with existing information.  
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Table 2. Value hierarchy for MOPs. 

Preference 
Order 

Change in 
MOPs' Values 

New Attributes 
in the MOPs 

Conflicting 
Attributes 

Upper Bound of 
Level 

Centroid 
Weighting 

1 Minor No NA 0.111 0.056 
2 Minor Yes No 0.222 0.167 
3 Minor Yes Yes 0.333 0.278 
4 Moderate No NA 0.444 0.389 
5 Moderate Yes No 0.556 0.500 
6 Moderate Yes Yes 0.667 0.611 
7 Significant No NA 0.778 0.722 
8 Significant Yes No 0.889 0.833 
9 Significant Yes Yes 1.000 0.944 

Table 3. Value hierarchy for MOEs. 

Preference 
Order 

Change in 
MOEs' Values 

New Attributes 
in the MOEs 

Conflicting 
Attributes 

Upper Bound of 
Level 

Centroid 
Weighting 

1 Minor No NA 0.111 0.056 
2 Minor Yes No 0.222 0.167 
3 Minor Yes Yes 0.333 0.278 
4 Moderate No NA 0.444 0.389 
5 Moderate Yes No 0.556 0.500 
6 Moderate Yes Yes 0.667 0.611 
7 Significant No NA 0.778 0.722 
8 Significant Yes No 0.889 0.833 
9 Significant Yes Yes 1.000 0.944 

5.3   Overall Risk Calculation 

From the previous subsections on the dimensions of Risk, there are a number of model misalignments that 
can generate risk in model integration. The risk tuple R = 〈S, D(Obj), D(Proc), D(Rel), D(MOE), D(MOP)〉	  
can help identify the risk profile of permutations among the alignment of conceptual elements and the 
potential changes in metrics from the model. In plain words, the risk tuple reads that integration risk is a 
function of the alignment scenario, the differences of each of three conceptual dimensions of the model, 
and the impact the integration of the models has on the outputs of the modeling process. 

The calculation of the misalignment between two models follows the general form of: 
P(misalignment) = p(misalignment of Objects) ∪ p(misalignment of Processes) ∪	  p(misalignment of 

Relationships)  
The total misalignment of the two models is D(ModelMisalignment) = D(Obj) + D(Proc) + D(Rel) – 

(D(Obj) × D(Proc)) – (D(Obj) × D(Rel)) – (D(Proc) × D(Rel)) + (D(Obj) × D(Proc) × D(Rel)), where 
D(Obj) = 1 – A(Obj), representing the misalignment between models’ Objects; D(Proc) = 1 – A(Proc), 
representing the misalignment between models’ Processes; and D(Rel) = 1 – A(Rel), representing the 
misalignment between models’ Relationships. 

Changes in both MOEs and MOPs are likewise combined using probability statements. In a simple case 
of two values, the numbers can simply be averaged. In more complex situations with multiple MOEs or 
MOPs, the combination of MOEs and MOPs follow the general form combing metrics: P(metrics) = 
p(change in MOE1) ∪ p(change in MOE2) ∪	  … ∪ p(change in MOEn) ∪ p(change in MOP1) ∪ p(change 
in MOP2)	  ∪ … ∪ p(change in MOEn). 
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With methods to calculate probabilities of misalignment and consequences available, overall risk can 
be calculated. With the changes of model metrics – both MOEs and MOPs – a result of the inclusion of an 
additional feeder model, then the Risk due to Model Integration is defined as Model Results will adversely 
affect the decision because of Model Integration and that Model Results are worsened because of Model 
Integration and that Model Results adversely affect the decision. This is mathematically defined as: 

 
Integration	  Risk	  

= 	  p(misalignment)	  x	  p(metrics)	  x	  [1 − 	  p(misalignment) 	  
+ 	  p(misalignment)	  x	  p(metrics)] 

 
Values for the misalignment, the metrics, and therefore the overall risk will range between 0 and 1. 

Higher values of misalignment indicate that the models have relatively poor alignment in their conceptual 
components. Higher values in the metrics mean that there are significant changes to the model’s outputs. 
Unsurprisingly, there is higher risk to the decision from model integration when alignment is poor and when 
metrics change significantly. Likewise, there is lower risk when the models are well-aligned and the 
changes to metrics are small. However, the value of this analysis is identifying risk values for moderate 
changes in either alignments or in metrics.  

Figure 9 presents the risk surface response to changing combinations of models’ structural alignments 
and changes to model outputs. The X axis represents changing values of the aggregate of misalignments, 
scaled from 0 to 1 where 0 represents a perfect alignment between the two models and 1 means complete 
misalignment. The Y axis represents changes to models’ outputs in both MOEs and MOPs, ranging from 0 
to 1 where 0 means no change and 1 means significant change. The Z axis represents the calculated 
integration risk where 0 represents no risk and 1 represents a high risk to the quality of the decision and 
model credibility. The surface area of this curve is larger in regions of lower risk, and smaller in regions of 
higher risk. This indicates that the risk of model integration may in fact be skewed towards smaller risks. 

The image depicts break points along the surface of the curve at 20% intervals of integration risk. The 
green region is the lowest risk portion of the curve and accounts for 63.38% of the surface area. The blue 
region is the region where integration risk ranges from 20% to 40% and accounts for 21.02% of the surface 
area. The yellow region is the portion of the curve where risk is between 40% and 60%, representing 9.86% 
of the surface area. The light red is the region where risk is between 60% and 80%, representing 4.45% of 
the surface area. The upper most, dark red, region depicts the portion of the curve where integration risk 
exceeds 80%, and represents 1.29% of the total surface area. 

6   CONCLUSIONS 

We have developed this risk assessment methodology to aide modeling and simulation analysts and users 
in their metamodeling activities. Models that are ostensibly in the same domain are not always as 
semantically compatible as they may seem on the surface, and scrutinizing the structure and impacts of 
model integration is an important activity in understanding and explaining the behavior of models. By 
combining the ideas of conceptual and structural alignments with risk values, using established approaches 
and formulae, we are providing a repeatable, unbiased, and well document method to support the decision 
makers when model compositions are considered. The method is domain agnostic and supported by 
established practices for validation and verification, as presented in this conferences several times. As such, 
this method helps analysts in determining the appropriateness of using models to inform, integrate, or tune 
other models’ parameters. Conceptual and structural differences can create sensitivities in models to 
concepts that are not included in the conceptual models of others and may not meet expectations. 
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Figure 9: Model integration risk plot. 

This theory is applicable to a variety of domains, particularly those where multiple models are used in 
concert with one another.  A notable example is the military and defense establishment which uses a variety 
of modeling and simulation applications for analytic, wargame, and experimentation purposes.  Using 
models to establish parameters with one another or to inform the same decision naively overlooks the 
contexts and structures of the models and may not account for covariance and interdependencies of modeled 
phenomena.  This method allows simulation practioners to quantify the risks to their models’ validity.  
Future research should be applied to this domain to examine different weighting schemas to model outputs 
or different methodologies to measure models’ alignments. 
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