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ABSTRACT

In this paper, we propose an approach that combines jackknifing and randomized quasi-Monte Carlo in
infinitesimal perturbation analysis (IPA) to estimate quantile sensitivities, which improves the accuracy and
precision of the classical IPA estimator. Theoretical properties of the new estimators are provided, and
numerical examples are presented to illustrate the effectiveness of the new estimators.

1 INTRODUCTION
In many applications, quantile is a highly frequently used risk measure. For example, in finance, quantile,
i.e., Value-at-Risk (VaR), is an important indicator of risk of financial portfolios. When solving quantile-
based optimization problems, we need to estimate the quantile sensitivity. Recently, there are some works
on estimating quantile sensitivity based on IPA methods, see Hong (2009), Jiang and Fu (2015), and Peng
et al. (2018). However, those IPA-based estimators of α-quantile sensitivity do not perform well when
the probability level α is closed to 0 and 1. To improve the accuracy of the IPA estimator, Jiang et al.
(2014) proposed a two-fold jackknifing approach to reduce the bias but inflate the variance a little bit. If
the bias dominates the mean squared error (MSE), the jackknifing estimator works well. But if the bias is
not the main component of MSE, the jackknifing estimator will inflate the overall MSE despite of the bias
reduction. In this paper we apply randomized qusai-Monte Carlo (QMC) combining jackknifing method to
improve the IPA estimators of quantile sensitivity. For details of randomized QMC, refer to Owen (2003).

2 IPA ESTIMATOR VIA RANDOMIZED QMC AND JACKKNIFING

Let h(X(θ),θ) be a performance function of a stochastic system, where X(θ) is the random variable. Let θ be
the parameter of interest, and it can appear in the random variable or the performance function or both. The α-
quantile of h(X(θ),θ) is denoted by qα(θ) such that Pr{h(X(θ),θ)≤ qα}=α for any preset α ∈ (0,1). The
quantile sensitivity is defined by q′α(θ) = dqα(θ)/dθ . The classical batched IPA estimator is given as follow.
First, generate a batch (batch size m) of simulation samples (denoted by h(Xi(θ),θ)) of the performance
function and the sample derivatives (denoted by dh(Xi(θ),θ)/dθ) for i= 1,2, . . . ,m. Abbreviate h(Xi(θ),θ)
to hi(θ). Second, sort the simulation samples as h(1)(θ)≤ h(2)(θ)≤ ·· · ≤ h(dαme)(θ)≤ ·· · ≤ h(m)(θ), where
the subscript (l) denotes the lth order statistic from the simulation samples. Third, find the sample derivative
of the dαmeth order statistic, i.e., find Im , dh(dαme)(θ)/dθ . Fourth, replicate the first three steps k times

and obtain the batched estimator q̂′
m,k
α (θ), 1/k ∑

k
i=1 Im,i.

In this paper, the simulation samples in a batch are generated based on QMC method. We focus
on the (t,d)-sequences or (t,r,d)-nets in base b ≥ 2 for some integer t ≥ 0, which are evenly dispersed
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over [0,1)d (d is the dimension), and we randomize the low-discrepancy point set to obtain a randomized
(t,d)-sequences or (t,r,d)-nets (Owen 2003), which preserves certain benefits over QMC and MC. Besides,
randomized QMC allows to establish a central limit theorem for estimator of quantile sensitivity, so the
precision of the estimation can be quantified. According to Section 3 of He and Wang (2019), as sample
size m grows, quantile estimator of QMC is consistent with true quantile as m→ ∞ and error decreases at
rate O(m−1/d) under mild circumstances. It is known that a randomized (t,r,d)-net is a (t,r,d)-net with
probability 1 and all points in the net follow a uniform distribution U [0,1)d , as detailed by Owen (2003).
We sample points in randomized QMC setting, where n = km, and divide them into k batches with batch
size m. Denote the batched randomized QMC-IPA estimator as q̃′m,k

α (θ), 1/k ∑
k
i=1 Ĩm,i, and we summarize

the properties of the estimator in Theorem 1.

Theorem 1 Under some mild circumstances, if supm E(|Ĩ|2+γ
m )< ∞, γ > 0, m→ ∞ and k→ ∞ as n→ ∞,

then q̃′m,k
α (θ)→ q′α(θ) converges in probability as n = mk→ ∞. Furthermore, if the conditions of Lemmas

2 and 3 in Hong (2009) hold, m→ ∞ and k→ ∞ as n→ ∞, limn→∞

√
k/m1/d = 0, and σm > 0 for any m > 0,

then
√

k/σm[q̃′
m,k
α (θ)−q′m,k

α (θ)]⇒ N(0,1) as n = mk→ ∞, where σm is the variance of IPA estimator Ĩm.
To further reduce the bias, we apply jackknifing method into q̃′α(θ). Specifically, let J̃m,i = 2Ĩm,i−

1/2(Ĩ1
m,i + Ĩ2

m,i), where I1
m,i and I2

m,i are randomized QMC-IPA estimators derived from the first m/2 and
second m/2 samples in the ith batch. The batched randomized QMC-IPA estimator with jackknifing is
given by q̄′α(θ), 1/k ∑

k
i=1 J̃m,i. The pseudocode is provided in the online appendix (Yang 2019).

3 NUMERICAL EXAMPLES

We consider two examples, one is a European call option and the other is a portfolio return of two assets,
which are similar to Jiang et al. (2014). We plot the MSE of the estimators in the following figures. Both
figures indicate that the randomized QMC combining jackknifing performs very well.

Figure 1: MSE of estimates in Ex.1 (left) and Ex.2 (right). m = 800, k = 400. In Ex. 1, the parameters are
identical in Jiang et al. (2014). In Ex.2, µ = (0.06,0.25), σ = (0.02,0.2), and the correlation ρ =−0.2.
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