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ABSTRACT

We analyse the equilibrium behaviour of a large network of banks in presence of incomplete information,
where inter-bank borrowing and lending is allowed, and banks suffer shocks to assets. In a two time period
graphical model, we show that the equilibrium wealth distribution is the unique fixed point of a complex,
high dimensional distribution-valued map. Fortunately, there is a dimension collapse in the limit as the
network size increases, where the equilibriated system converges to the unique fixed point involving a simple,
one dimensional distribution-valued operator, which, we show, is amenable to simulation. Specifically,
we develop a Monte-Carlo algorithm that computes the fixed point of a general distribution-valued map
and derive sample complexity guarantees for it. We numerically show that this limiting one-dimensional
regime can be used to obtain useful structural insights and approximations for networks with as low as a
few hundred banks.

1 MOTIVATION

We consider a graphical model of the banking network where vertices denote banks and edges spell out
the inter-bank liability structure. A two time period framework is considered: In period one, banks borrow
and lend capital to each other, and inter-bank linkages in the network are realised. In the next period, they
receive income from their external assets modulo random shocks, and use it to clear external and inter-bank
liabilities. The equilibrium wealth of the system is the resultant fixed point solution that balances the
incoming and the outgoing wealth at each bank. Such graphical models have been extensively studied in
literature, for example, by Allen and Gale (2000), Eisenberg and Noe (2001), Haldane and May (2011),
Acemoglu et al. (2015) and Glasserman and Young (2016) among others. It can be shown that the wealth
of banks in equilibrium is the unique fixed point of a vector valued map. However, one shortcoming in
much of the existing literature is the assumption that the entire network wealth and liability structure is
known to the modeller. This is often unrealistic in practice as observed by Anand et al. (2015): A modeller
typically only gets access to balance sheets of banks in the network and only knows the aggregate assets
and liabilities, i.e., how much each bank lends or borrows, but not from whom. A modeller may also
know the average number of creditors and debtors of a typical bank, without access to further information
granularity.

2 APPROXIMATION OF A LARGE BANKING NETWORK

To address this lack of complete information, we model the banking network as a random, weighted graph,
where the randomness captures the modeller’s incomplete information on exact assets and liabilities, as
well as unobserved (both idiosyncratic and systemic) shocks to the bank’s assets. We allow the inter-bank
connectivities, liabilities and external assets to be random variables, whose distribution matches the observed
statistical properties of the network. Other works, for example Amini et al. (2016), also consider random
graphical models of banking networks . However in their models, the recoveries of a bank from a defaulting
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debtor are independent of the actual wealth possessed by the debtor. Our model departs from this by
allowing recoveries on default to be state dependent, resulting in a more realistic view of the banking
network. We consider a sparse graph regime where each bank has only a few counter-parties and show that
the wealth possessed by banks in equilibrium is a random vector whose distribution is a fixed point of a
distribution-valued map. A similar approach is also followed by Kavitha et al. (2018), however, they model
the network as a dense graph, where the expected number of counter-parties of a bank go to infinity. The
sparse graph model which we consider differs from theirs both in terms of the analysis and conclusions.
Further, it has been observed empirically, for example, by Cont et al. (2010) that banking networks are
sparse, and hence we expect our regime to more accurately capture real banking networks.

To infer the statistical properties of the network, it is essential to sample from this distributional fixed
point. However, typical banking networks are quite large, often consisting of hundreds or thousands of
banks. Sampling thus is computationally prohibitive due to the underlying high dimensionality. We show
that as the size of the banking network grows, due to conditional independence amongst underlying random
variables, there is a dimension collapse: the distributional fixed point of a large banking system converges to
the product of the fixed point of a one-dimensional distribution valued map. Hence, the statistical properties
of a large network are well approximated by the limiting fixed point distribution. This provides a great deal
of structural insights and may be of use in conducting many what if analysis on a large network. Proving
the existence and uniqueness of fixed points as well as distributional convergence for the growing random
banking network is typically not straightforward. One of our contributions is to leverage the theory of
optimal transport, which enables us to metrize the infinite dimensional space of distributions in which the
fixed points and their limits lie. This provides a relatively simple approach to prove limit theorems.

The latter half of this paper focuses on simulation of the limiting fixed point and related computational
issues. Let T (·) be a map on the space of probability measures on the line. Suppose T (·) is contractive
(and hence has a unique fixed point), and satisfies certain moment bounds. Then, assuming that for any
distribution P one can sample from T (P), we develop a Monte Carlo algorithm which gives a distribution
which is close to the fixed point of T (·), and derive probabilistic guarantees for it. To the best of our
knowledge, the algorithm and its analysis are new. Applying this to the banking network, we show that
to approximate a realistic system a small number of computations are required. Testing this algorithm on
a simulated example where there are a few hundred banks in the network, we find that the limiting fixed
point distribution approximates the global properties of the large network well.
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